Intern
Fakultät für Physik und Astronomie

„Bauanleitung“ für Quantenmaterialien

13.07.2021

Physiker der Uni Würzburg und der TU Dresden haben herausgefunden, in welchem Mindestabstand Elektronen in Drähten aus Quantenmaterialien fließen müssen, um Strom verlustfrei zu leiten.

Das Bild zeigt den Elektronenfluss auf der Oberfläche des Quantenmaterials Blei-Zinn-Selenid. Durch die keilförmige Anordnung der „topologischen Drähte“ konnten die Physiker exakt bestimmen, ab welchem Mindestabstand Strom verlustfrei fließt – im Bild rot markiert.
Das Bild zeigt den Elektronenfluss auf der Oberfläche des Quantenmaterials Blei-Zinn-Selenid. Durch die keilförmige Anordnung der „topologischen Drähte“ konnten die Physiker exakt bestimmen, ab welchem Mindestabstand Strom verlustfrei fließt – im Bild rot markiert. (Bild: Matthias Bode)

25 Nanometer: Das ist der Mindestabstand, den topologische Drähte in dem Quantenmaterial Blei-Zinn-Selenid (PbSnSe) einhalten müssen, damit sie Strom verlustfrei leiten können. Dies ist das Ergebnis einer neuen Studie von Physikern des Würzburg-Dresdner Exzellenzclusters ct.qmat – Complexity and Topology in Quantum Matter.

Ihre Erkenntnisse tragen dazu bei, dem Einsatz sogenannter topologischer Isolatoren in elektronischen Bauteilen ein Stück näher zu kommen. Seit es einem Mitglied des Clusters 2007 erstmals gelang, diese neue Materialklasse nachzuweisen, boomt die weltweite Forschung an topologischen Quantenmaterialien. Denn sie versprechen eine „grüne Elektronik“, die Zukunftstechnologien nachhaltiger werden lässt. Die aktuellen Untersuchungsergebnisse wurden in der Fachzeitschrift Physical Review Letters veröffentlicht.

Topologische Isolatoren – Hoffnung auf eine umweltfreundliche Technik

In elektronischen Geräten verbinden viele Drähte die einzelnen Komponenten und leiten Strom von einem Ort zum anderen. In Drähten aus topologischen Quantenmaterialien kann dieser Strom nahezu verlustfrei fließen. Das verhindert ungewollte Erwärmungseffekte und bietet einen entscheidenden Vorteil gegenüber herkömmlichen Leitungen zum Beispiel aus Kupfer.

Somit verspricht die noch junge Materialklasse der topologischen Isolatoren weniger Abwärme, einen geringeren Energieverbrauch und im Ergebnis eine umweltfreundlichere Informationstechnologie. Seit ihrem ersten Nachweis an der Julius-Maximilians-Universität Würzburg (JMU) im Jahr 2007 werden diese Zukunftsmaterialien hier intensiv erforscht, seit 2019 im Würzburg-Dresdner Exzellenzcluster ct.qmat. 

Auf den Abstand kommt es an

Allerdings war der Abstand, in welchem topologische Drähte in elektronischen Bauteilen verlaufen können, bisher nicht bekannt. Das Forscherteam vom Lehrstuhl für Experimentelle Physik II der JMU hat nun systematisch untersucht, wie benachbarte Drähte aus dem Material Blei-Zinn-Selenid (PbSnSe) – einem topologischen Isolator – zusammenwirken.

„Dadurch können wir den Mindestabstand der Elektronenbahnen auf der Materialoberfläche topologischer Isolatoren zum ersten Mal exakt definieren und verstehen topologisches Quantenmaterial wieder ein Stück besser“, kommentiert Professor Matthias Bode, Gründungsmitglied des Exzellenzclusters ct.qmat und Projektleiter. 

Die aktuellen Forschungsergebnisse zeigen, dass topologische Drähte aus dem untersuchten Quantenmaterial PbSnSe nur mit einem Mindestabstand von 25 Nanometern Strom verlustfrei leiten. Bei kürzeren Abständen wird der besondere topologische Zustand, der dies ermöglicht, mehr und mehr verzerrt. Bei Drahtabständen unter zehn Nanometern verliert sich der topologische Charakter der Drähte vollständig.

Ausblick

Derzeit untersuchen die Forscher den Einfluss von magnetischen Atomen auf die Transporteigenschaften der topologischen Elektronendrähte.

Beteiligte

An der Publikation sind neben Clustermitgliedern der JMU auch Wissenschaftler der Polnischen Akademie der Wissenschaften beteiligt, von denen die Materialproben stammen. Die Experimente wurden von den Würzburger Physikern Johannes Jung und Dr. Artem Odobesko durchgeführt.

Publikation

Jung et al., Systematic Investigation of the Coupling between One-Dimensional Edge States of a Topological Crystalline Insulator, Physical Review Letters 126, 236402 (2021). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.236402

Kontakt

Prof. Dr. Matthias Bode, Lehrstuhl für Experimentelle Physik II, Universität Würzburg, Tel: +49 931 31-83218, matthias.bode@uni-wuerzburg.de

Von Katja Lesser / ct.qmat

Zurück