piwik-script

Deutsch Intern
Technische Physik

Dr. Tobias Huber-Loyola

Dr. Tobias Huber-Loyola

Junior Research Group Leader
Technische Physik
University of Würzburg
Am Hubland
97074 Würzburg
Germany
Building: P1 (Physik)
Room: AO27

Google Scholar: Account

I am an independent junior research group leader, sponsored by the BMBF “Quantum Futur” initiative. In the research project “Qecs” (Quantum dots as deterministic Efficient photonic Cluster-state Sources) my team and me are developing a source for highly entangled states that can be used in measurement based quantum computing and in memory free quantum networks. I am PI and co-PI in several other international projects that are running at the chair with different research focusses, but all projects include quantum dots. Since 2018 I am at the Chair for Applied Physics at the Julius-Maximilians-Universität Würzburg, where I am also pursuing my habilitation in the field of experimental physics since 2021.

Study and development of quantum dots as single and entangled photon sources, quantum technologies for quantum communication and quantum computing, integrated quantum photonics, study and generation of non-classical and non-Gaussian states of light, light-matter interaction in weakly coupled systems, spin-photon interaction, hybrid quantum systems, frequency conversion, technology and design of microcavities

Since 2022
Independent Junior Research Group Leader in the BMBF “Quantum Futur” initiative, University of Würzburg, Chair for Applied Physics

2018-2021
Group Leader for “Spin-Photon interactions” and “Spectroscopy”, University of Würzburg, Chair for Applied Physics

2016 – 2018
Post-Doctoral Fellow, Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, USA

2012 – 2016
PhD, Department of Experimental Physics, Universität Innsbruck, Austria, supervised by Prof. Gregor Weihs

2009 – 2011
MSc., University of Innsbruck, Austria, supervised by Prof. Gregor Weihs

2008 – 2009
BSc., University of Innsbruck, Innsbruck, Austria, supervised by Prof. Gregor Weihs

2006 – 2008
Diploma program in Physics, University of Innsbruck, Innsbruck, Austria – changed to BSc. Program

2006 – 2008
Diploma program in art, Instrumental study of Viola, Tiroler Landeskonservatorium Innsbruck, Innsbruck, Austria (unfinished)

SS22
Lab course Physikalisches Praktikum im Nebenfach Physik

WS21/22
Exercise class Optik- und Quantenphysik 1

SS21
Lab course Physikalisches Praktikum A Lehramt (Mechanik, Wärme, Elektromagnetismus) 
Lab course Physikalisches Praktikum A für Studierende Physik, Nanostrukturtechnik, Mathematische Physik, Luft- und Raumfahrtinformatik sowie Anwendungsfach Physik im Bachelor Mathe und Computational Mathematics (Mechanik, Wärme, Elektromagnetismus) 
Exercise class Fortgeschritte Fehlerrechnung und computergestütztes Arbeiten

WS20/21
Exercise class Vorkurs Mathematik für Studierende des ersten Fachsemesters (MINT-Vorkurs der Physik - Rechenmethoden)

Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots
L. Bremer, C. Jimenez, S. Thiele, K. Weber, T. Huber, S. Rodt, A. Herkommer, S. Burger, S. Höfling, H. Giessen, and S. Reitzenstein
Opt. Express 30, 15913 (2022), DOI: 10.1364/OE.456777

Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths
Ł. Dusanowski, C. Nawrath, S. L. Portalupi, M. Jetter, T. Huber, S. Klembt, P. Michler, and S. Höfling
Nat. Commun. 13, 748 (2022), DOI: 10.1038/s41467-022-28328-2

Technological implementation of a photonic Bier-Glas cavity
J. Jurkat, M. Moczała-Dusanowska, M. Arentoft Jacobsen, A. Predojević, T. Huber, N. Gregersen, S. Höfling, and C. Schneider
Phys. Rev. Mater. 5, 64603 (2021), DOI: 10.1103/PhysRevMaterials.5.064603

Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots
S. Gerhardt, M. Moczała-Dusanowska, Ł. Dusanowski, T. Huber, S. Betzold, J. Martín-Sánchez, R. Trotta, A. Predojević, S. Höfling, and C. Schneider
Phys. Rev. B 101, 245308 (2020), DOI: 10.1103/PhysRevB.101.245308

Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device
T. Huber, M. Davanço, M. Müller, Y. Shuai, O. Gazzano, and G. S. Solomon
Optica 7, 380 (2020), DOI: 10.1364/OPTICA.382273

Strain-Tunable Single-Photon Source Based on a Circular Bragg Grating Cavity with Embedded Quantum Dots
M. Moczała-Dusanowska, Ł. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, and S. Höfling
ACS Photonics 7, 3474 (2020), DOI: 10.1021/acsphotonics.0c01465

Effects of resonant-laser excitation on the emission properties in a single quantum dot
O. Gazzano, T. Huber, V. Loo, S. V. Polyakov, E. B. Flagg, and G. S. Solomon
Optica 5, 354 (2018), DOI: 10.1364/OPTICA.5.000354

Hyperentanglement of Photons Emitted by a Quantum Dot
M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević
Phys. Rev. Lett. 121, 110503 (2018), DOI: 10.1103/PhysRevLett.121.110503

Interfacing a quantum dot with a spontaneous parametric down-conversion source
T. Huber, M. Prilmüller, M. Sehner, G. S. Solomon, A. Predojević, and G. Weihs
Quantum Sci. Technol. 2, 34016 (2017), DOI: 10.1088/2058-9565/aa7b65

A solid state source of photon triplets based on quantum dot molecules
M. Khoshnegar, T. Huber, A. Predojević, D. Dalacu, M. Prilmüller, J. Lapointe, X. Wu, P. Tamarat, B. Lounis, P. J. Poole, G. Weihs, and H. Majedi
Nat. Commun. 8, 15716 (2017), DOI: 10.1038/ncomms15716

Simultaneous, Full Characterization of a Single-Photon State
T. Thomay, S. V. Polyakov, O. Gazzano, E. Goldschmidt, Z. D. Eldredge, T. Huber, V. Loo, and G. S. Solomon
Phys. Rev. X 7, 41036 (2017), DOI: 10.1103/PhysRevX.7.041036

Coherence and degree of time-bin entanglement from quantum dots
T. Huber, L. Ostermann, M. Prilmüller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojević
Phys. Rev. B 93, 201301 (2016), DOI: 10.1103/PhysRevB.93.201301

Effects of photo-neutralization on the emission properties of quantum dots
T. Huber, A. Predojević, G. S. Solomon, and G. Weihs
Opt. Express, OE 24, 21794 (2016), DOI: 10.1364/OE.24.021794

Optimal excitation conditions for indistinguishable photons from quantum dots
T. Huber, A. Predojević, D. Föger, G. S. Solomon, and G. Weihs
New J. Phys. 17, 123025 (2015), DOI: 10.1088/1367-2630/17/12/123025

Polarization entangled photons from quantum dots embedded in nanowires
T. Huber, A. Predojević, M. Khoshnegar, D. Dalacu, P. J. Poole, H. Majedi, and G. Weihs
Nano Lett. 14, 7107 (2014), DOI: 10.1021/nl503581d

Time-bin entangled photons from a quantum dot
H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs
Nat. Commun. 5, 4251 (2014), DOI: 10.1038/ncomms5251

Efficiency vs. multi-photon contribution test for quantum dots
A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs
Opt. Express, OE 22, 4789 (2014), DOI: 10.1364/OE.22.004789

Quantum non-Gaussian Depth of Single-Photon States
I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip
Phys. Rev. Lett. 113, 223603 (2014), DOI: 10.1103/PhysRevLett.113.223603

Measurement and modification of biexciton-exciton time correlations
T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. S. Solomon, and G. Weihs
Opt. Express, OE 21, 9890 (2013), DOI: 10.1364/OE.21.009890

Deterministic photon pairs and coherent optical control of a single quantum dot
H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs
Phys. Rev. Lett. 110, 135505 (2013), DOI: 10.1103/PhysRevLett.110.135505