Recent Highlights

Spin-Texture Inversion in the Giant Rashba Semiconductor BiTeI

Abstract

Semiconductors with strong spin-orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin-orbit effects for [...]

more

Prediction and Observation of an Antiferromagnetic Topological Insulator

Abstract

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics, such as the quantum anomalous Hall effect and chiral Majorana fermions. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however,  such an approach leads to strongly inhomogeneous magnetic and electronic properties of these materials [...]

more

Electron-Vibration Coupling in Molecular Materials

Abstract

Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion [...]

more