Recent Publications

Observation of room temperature excitons in an atomically thin topological insulator

Optical spectroscopy of ultimately thin materials has significantly enhanced our understanding of collective excitations in low-dimensional semiconductors. This is particularly reflected by the rich physics of excitons in atomically thin crystals which uniquely arises from the interplay of strong Coulomb correlation, spin-orbit coupling (SOC), and lattice geometry. Here we extend the field by reporting the observation of room temperature excitons in a material of non-trivial global topology. We study the fundamental optical excitation spectrum of a single layer of bismuth atoms epitaxially grown on a SiC substrate (hereafter bismuthene or Bi/SiC) which has been established as a large-gap, two-dimensional (2D) quantum spin Hall (QSH) insulator. [...]

Nat. Commun. 13, 6313 (2022)

Indium epitaxy on SiC(0001): a roadmap to large scale growth of the quantum spin Hall insulator indenene

Indenene─the triangular single layer phase of indium─is a novel large gap (∼120 meV) quantum spin Hall (QSH) insulator that stabilizes on SiC(0001) substrates. Thanks to excellent lattice matching, indenene nucleates in monodomains that are promising for devices if synthesized in the micrometer range. Here, we establish a simple, but robust and scalable indenene fabrication protocol based on an initial Stranski–Krastanov growth stage followed by a short anneal whose temperature selects between a three, two, or one monolayer In coverage. Their specific structural and electronic properties produce distinct fingerprints in experimental surface characterization by electron microscopy, diffraction, and spectroscopy, thus providing an efficient metric for the synthesis of large scale high-quality indenene on SiC.

Phys. Chem. C  126, 16289 (2022)

Hard x-ray angle-resolved photoemission from a buried high-mobility electron system

Novel two-dimensional electron systems at the interfaces and surfaces of transition-metal oxides recently have attracted much attention as they display tunable, intriguing properties that can be exploited in future electronic devices. Here we show that a high-mobility quasi-two-dimensional electron system with strong spin-orbit coupling can be induced at the surface of a KTaO3 (001) crystal by pulsed laser deposition of a disordered LaAlO3 film. The momentum-resolved electronic structure of the buried electron system is mapped out by hard x-ray angle-resolved photoelectron spectroscopy. From a comparison to calculations, it is found that the band structure deviates from that of electron-doped bulk KTaO3 due to the confinement to the interface. [...]

Phys. Rev. B 106, 125137 (2022)

Research Groups

Nanophysics at surfaces

The research activities of our group are concerned with the physics of low-dimensional systems, where the electron states resulting from dimensional confinement lead to unusual conduction properties and to phase transitions as a function of temperature.

Oxide interfaces

Our group focusses on the electronic structure of correlated systems in transition metal oxides (TMOs). Special interest lies in the interplay of different degrees of freedom (charge, spin, orbital, lattice) in the light of metal-insulator and other phase transitions.

Neutron and resonant X-ray spectroscopy

In our group we investigate complex, functional materials such as transition metal oxides, which are used in the emerging field of correlated nanoelectronics. Unlike with conventional semiconductors, exotic superconducting, orbital and magnetic states can be realized at the interfaces in layered structures comprising such materials.