Experimentelle Physik IV

    Sebastian Glawion (PhD thesis)

    Sebastian Glawion (PhD thesis): Spectroscopic Investigations of Doped and Undoped Transition Metal Oxyhalides


    In this thesis the electronic and magnetic structure of the transition metal oxyhalides TiOCl, TiOBr and VOCl is investigated. The main experimental methods are photoemission (PES) and x-ray absorption (XAS) spectroscopy as well as resonant inelastic x-ray scattering (RIXS). The results are compared to density-functional theory, and spectral functions from dynamical mean-field theory and different kinds of model calculations. Questions addressed here are those of the dimensionality of the magnetic and electronic interactions, the suitability of the oxyhalides as prototypical strongly correlated model systems, and the possibility to induce a filling-controlled insulator-metal transition. It turns out that TiOCl is a quasi-one-dimensional system with non-negligible two-dimensional coupling, while the one-dimensional character is already quite suppressed in TiOBr. In VOCl no signatures of such one-dimensional behavior remain, and it is two-dimensional. In all cases, frustrations induced by the crystal lattice govern the magnetic and electronic properties. As it turns out, although the applied theoretical approaches display improvements compared to previous studies, the differences to the experimental data still are at least partially of qualitative instead of quantitative nature. Notably, using RIXS, it is possible for the first time in TiOCl to unambiguously identify a two-spinon excitation, and the previously assumed energy scale of magnetic excitations can be confirmed. By intercalation of alkali metal atoms (Na, K) the oxyhalides can be doped with electrons, which can be evidenced and even quantified using x-ray PES. In these experiments, also a particular vertical arrangement of dopants is observed, which can be explained, at least within experimental accuracy, using the model of a so-called "polar catastrophe". However, no transition into a metallic phase can be observed upon doping, but this can be understood qualitatively and quantitatively within an alloy Hubbard model due to the impurity potential of the dopants. Furthermore, in a canonical way a transfer of spectral weight can be observed, which is a characteristic feature of strongly correlated electron systems. Overall, it can be stated that the transition metal oxyhalides actually can be regarded as prototypical Mott insulators, yet with a rich phase diagram which is far from being fully understood.

    You find the complete pdf version here.