Intern
    Experimentelle Physik IV

    Markus Paul (PhD thesis)

    Markus Paul (PhD thesis): Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates

    Abstract

    The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties.
    Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs.
    Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature.
    For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition.

    You find the complete pdf version here.