piwik-script

Deutsch Intern
Experimental Physics V

Publications

Nano-Optics and Biophotonics

Latest publications

Dicke enhancement of light-matter interaction for a single quasi-degenerate multilevel emitter

We study a quantum emitter with N nearly degenerate excited states (sublevels) coupled to the ground state via the same optical resonance. We show that in such circumstances an approximate Jaynes-Cummings system emerges, with an effective coupling constant scaling with the square root of N. While our conclusions hold in general, we also present detailed analytical derivations for the instructive case N=2. Employing a quantum optical master equation we further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics. Interestingly, we find that finite emitter dephasing can improve the quality of the approximation in some cases. By showing a novel route to increase the effective light-matter coupling strength, our findings may facilitate the control and detection of single-photon nonlinearities at ambient conditions.

T. Tufarelli, D. Friedrich, H. Groß, J. Hamm, O. Hess, B. Hecht
arXiv:2010.12585

Driving optical nanoantennas using coherent perfect absorption

Driving nanoantennas with perfect impedance matching is challenging. Here, we exploit nanoscale coherent perfect absorption (CPA) of the propagating plasmon on a gold nanowire to perfectly drive a single gold nanorod. By carefully tuning the rod length and gap width, CPA can be achieved at a fixed frequency to perfectly drive a nanorod antenna in its sub-radiant or super-radiant resonance as an efficient heat source or a perfectly matched transmitting nanoantenna, respectively. We also demonstrate superior sensing capability of the proposed CPA scheme. Resulting applications encompass perfect driving of optical nanoantennas, background-free sensing, and coherent control of optical nanoantennas, opening new perspectives for the exploitation of CPA in plasmonic nanocircuitry.

P. Grimm, G. Razinskas, J-S. Huang, B. Hecht
arXiv:1907.08174v2

Electrically-driven Yagi-Uda antennas for light

Yagi-Uda antennas are a key technology for efficiently transmitting information from point to point using radio waves. Since higher frequencies allow higher bandwidths and smaller footprints, a strong incentive exists to shrink Yagi-Uda antennas down to the optical regime. Here we demonstrate electrically-driven Yagi-Uda antennas for light with wavelength-scale footprints that exhibit large directionalities with forward-to-backward ratios of up to 9.1 dB. Light generation is achieved via antenna-enhanced inelastic tunneling of electrons over the antenna feed gap. We obtain reproducible tunnel gaps by means of feedback-controlled dielectrophoresis, which precisely places single surface-passivated gold nanoparticles in the antenna gap. The resulting antennas perform equivalent to radio-frequency antennas and combined with waveguiding layers even outperform RF designs. This work paves the way for optical on-chip data communication that is not restricted by Joule heating but also for advanced light management in nanoscale sensing and metrology as well as light emitting devices.

R. Kullock, M. Ochs, P. Grimm & B. Hecht
Nature Comm. 11, 115 (2020)

press:
pro-physik.de
elektronik-informationen.de
photonics.com
sciencedaily.com
laboratory-journal.com
phys.org
nanowerk.com
Gold Nanoparticles (nanopartz)


innovations-report.com
bestresearchreports.com
trendintech.com
electronicsonline.net
idw-online.de
scitechdaily.com
advancedsciencenews.com
 

Mono-crystalline Gold Platelets: A High Quality Platform for Surface Plasmon Polaritons

We use mono-crystalline gold platelets with ultra-smooth surfaces and superior plasmonic properties to investigate the formation of interference patterns caused by surface plasmon polaritons (SPPs) with scattering-type scanning near-field microscopy (s-SNOM) at 521 nm and 633 nm. By applying a Fourier analysis approach, we can identify and separate several signal channels related to SPPs launched and scattered by the AFM tip and the edges of the platelet. Especially at the excitation wavelength of 633 nm, we can isolate a region in the center of the platelets where we find only contributions of SPPs which are launched by the tip and reflected at the edges. These signatures are used to determine the SPP wavelength of lambda_SPP = 606 nm good agreement with theoretical predictions. Furthermore, we were still able to measure SPP signals after 20  μm propagation, which demonstrates impressively the superior plasmonic quality of these mono-crystalline gold platelets.

K.J. Kaltenecker, E. Krauss, L. Casses, M. Geisler, B. Hecht, N.A. Mortensen, P.U. Jepsen & N. Stenger
 Nanophotonics 0362 (2019)  arxiv:1909.08321 (2019)

 

Driving optical nanoantennas using coherent perfect absorption

Driving nanoantennas with perfect impedance matching is challenging. Here, we exploit nanoscale coherent perfect absorption (CPA) of the propagating plasmon on a gold nanowire to perfectly drive a single gold nanorod. By carefully tuning the rod length and gap width, CPA can be achieved at a fixed frequency to perfectly drive a nanorod antenna in its sub-radiant or super-radiant resonance as an efficient heat source or a perfectly matched transmitting nanoantenna, respectively. We also demonstrate superior sensing capability of the proposed CPA scheme. Resulting applications encompass perfect driving of optical nanoantennas, background-free sensing, and coherent control of optical nanoantennas, opening new perspectives for the exploitation of CPA in plasmonic nanocircuitry.

P. Grimm, G. Razinskas, J.-S. Huang & B. Hecht
arxiv:1907.08174v2 (2020)

 

Nonclassical optical properties of mesoscopic gold

Gold nanostructures have important applications in nanoelectronics, nano-optics as well as in precision metrology due to their intriguing opto-electronic properties. These properties are governed by the bulk band structure but to some extend are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm. To suppress the effects of geometrical resonances and grain boundaries, we prepared atomically flat ultrathin films of various thicknesses by utilizing large chemically grown single-crystalline gold platelets. We experimentally probe thickness-dependent changes of the band structure by means of two-photon photoluminescence and observe a surprising 100-fold increase of the nonlinear signal when the gold film thickness is reduced below 30 nm allowing us to optically resolve single-unit-cell steps. The effect is well explained by density functional calculations of the thickness-dependent 2D band structure of gold.

S. Großmann, D. Friedrich, M. Karolak, R. Kullock, E. Krauss, M. Emmerling, G. Sangiovanni & B. Hecht
Phys. Rev. Lett., 122, 246802 (2019)
arXiv:1905.09942 (2019)

 

Spatial variations in femtosecond field dynamics within a plasmonic nanoresonator mode

Plasmonic resonators can be designed to support spectrally well-separated discrete modes. The associated characteristic spatial patterns of intense electromagnetic hot-spots can be exploited to enhance light–matter interaction. Here, we study the local field dynamics of individual hot-spots within a nanoslit resonator by detecting characteristic changes of the photoelectron emission signal on a scale of ~12 nm using time-resolved photoemission electron microscopy (TR-PEEM) and by excitation with the output from a 20 fs, 1 MHz noncollinear optical parametric amplifier (NOPA). Surprisingly, we detect apparent spatial variations of the Q-factor and resonance frequency that are commonly considered to be global properties for a single mode. By using the concept of quasinormal modes we explain these local differences by crosstalk of adjacent resonator modes. Our findings are important in view of time-domain studies of plasmon-mediated strong light–matter coupling at ambient conditions.

M. Hensen, B. Huber, D. Friedrich, E. Krauss, S. Pres, P. Grimm, D. Fersch, J. Lüttig, V. Lisinetskii, B. Hecht & T. Brixner
Nano Letters, 19, 7, 4651-4658 (2019)

 

Reversible Mapping and Sorting the Spin of Photons on the Nanoscale: A Spin-Optical Nanodevice

The photon spin is an important resource forquantum information processing as is the electron spin inspintronics. However, for subwavelength confined optical excita-tions, polarization as a global property of a mode cannot be defined.Here, we show that any polarization state of a plane-wave photoncan reversibly be mapped to a pseudospin embodied by the twofundamental modes of a subwavelength plasmonic two-wiretransmission line. We design a device in which this pseudospinevolves in a well-defined fashion throughout the device reminiscentof the evolution of photon polarization in a birefringent medium andthe behavior of electron spins in the channel of a spinfield-effecttransistor. The significance of this pseudospin is enriched by the factthat it is subject to spin−orbit locking. Combined with optically active materials to exert external control over the pseudospinprecession, ourfindings could enable spin-optical transistors, that is, the routing and processing of quantum information withlight on a subwavelength scale.

E. Krauss, G. Razinskas, D. Köck, S. Grossmann & B. Hecht
Nano Letters, 19, 5, 3364-3369 (2019)
arxiv:1812.03721 (2018)

 

High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling

Helium ion milling of chemically-synthesized micron-sized gold flakes is performed to fabricate ultra-narrow nanoslit cavities with a varying length and width down to 5 nm. Their plasmon resonances are characterized by one-photon photoluminescence spectroscopy. The combination of fabrication based on single-crystalline gold and resonant modes with low radiative losses leads to remarkably high quality factors of up to 24. Multiple Fabry–Pérot-type resonances in the visible/near infrared spectral range are observed due to the achieved narrow slit widths and the resulting short effective wavelengths of nanoslit plasmons. These features make nanoslit cavities attractive for a range of applications such as surface-enhanced spectroscopy, ultrafast nano-optics and strong light–matter coupling.

K. Chen, G. Razinskas, H. Vieker, H. Gross, X. Wu, A. Beyer, A. Gölzhäuser & B. Hecht
Nanoscale. (2018), doi:10.1039/C8NR02160K

 

Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots

In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude. Control of such near-field light–matter interaction is essential for applications in biosensing, light harvesting and quantum communication and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

H. Groß, H. S. Heil, J. Ehrig, F. W. Schwarz, B. Hecht & S. Diez
Nature Nanotech. (2018), doi:10.1038/s41565-018-0123-1