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Zusammenfassung

Als Aktive Galaxienkerne (Active Galactic Nuclei - AGN) werden astronomische Ob-

jekte im Zentrum von Galaxien bezeichnet, deren Leuchtkraft durch die Akkretion von

Materie in ein massereiches Schwarzes Loch hervorgerufen wird. Die Leuchtkraft der

AGN kann die der umgebenden Galaxie um bis zu fünf Größenordnungen überschreiten.

Sie verändert sich auf Zeitskalen von Minuten bis Jahrzehnten. Die stärkste Variabi-

lität wird bei einer Untergruppe der AGN, den sogenannten Blazaren, beobachtet. Den

Ursprung dieser Variabilität zu verstehen verspricht neue Erkenntnisse über die Ener-

gieumwandlungsprozesse in der Nähe Schwarzer Löcher.

Dafür ist es zunächst notwendig, einen Weg zu finden, die Variabilität in AGN mathe-

matisch zu beschreiben. Physikalische Modelle der Strahlungsprozesse können dadurch

eingeschränkt werden. Einfache Beschreibungen wie die periodische Veränderlichkeit

können bereits ausgeschlossen werden. Darum konzentriert sich diese Arbeit auf statisti-

sche Prozesse und insbesondere auf den einfachsten Markow-Prozess mit Gedächtnis, der

sogenannte Ornstein-Uhlenbeck (OU) Prozess. Der OU-Prozess stellt die Lösung einer

stochastischen Differentialgleichung (OUDE) dar. Mit dem OU-Prozess können die un-

terschiedlichsten zeitlichen Variationen von Observablen von Modellsystemen beschrie-

ben werden. Beispiele dafür sind die Brownsche Bewegung, der Ohmsche Widerstand

eines elektrischen Leiters oder Börsenkurse.

Im Rahmen der Astrophysik wurde der OU-Prozess bereits erfolgreich eingesetzt, um

die Variabilität der Strahlung von AGN Akkretionsscheiben im optischen und Röntgen-

bereich des elektromagnetischen Spektrums zu modellieren Takata et al. (2018, 2019);

Kelly et al. (2011); Kelly et al. (2014). Da die Flußvariabilität im Bereich der Gamma-

strahlung am stärksten ausgeprägt ist, werden in dieser Arbeit AGN mit starker Gamma-

strahlung untersucht. Dies sind die sogenannten Blazare, in denen vom Schwarzen Loch

ein Plasmajet ausgeht, der innerhalb weniger Grad auf den Beobachter ausgerichtet ist.

Mit dem Fermi-LAT Observatorium wurden Zeitreihen der Flußdichte von Blazaren im

Gammastrahlenbereich über mehrere Jahre aufgezeichnet, die als Datenbasis dienen.

Zunächst wurde die OUDE als Generator für Zahlenreihen implementiert. Es wur-

de eine Methode entwickelt, um die optimalen Parameter der OUDE bestimmen, die

zur Erzeugung von Zahlenreihen mit den statistischen Eigenschaften der beobachteten

Lichtkuren von Blazaren geeignet sind. Als zusätzlicher Test der Güte der Beschreibung

wird die spektralen Leistungsdichte verglichen und gezeigt, dass im Rahmen der Fehler

eine sehr gute Übereinstimmung erzielt werden kann.



Abstract

Active galactic nuclei (AGN) are astronomical objects in the center of galaxies. They

are emitting light by the accretion of mass to a central supermassive black hole. The

luminosity of AGN can exceed that of the host galaxy up to five magnitudes and varies

on the scale of minuets to decades. The greatest variability can be observed from blazars,

sub type of AGN. Understanding the origin of this variability will help to improve the

knowledge of black hole physics, especially the energy transfers close it.

Therefore it is necessary to describe the variability in AGN mathematically. Trough

this it is possible to restrict the physical models of the radiation processes. Simple

descriptions like periodicity are already tested and excluded from this purpose. Therefore

this work will focus upon statistical processes, especially the simplest Markov-Processes

with memory, the so called Ornstein-Uhlenbeck (OU) process. The OU process is a

solution of a stochastic differential equation (OUDE). The OU process can model a

wide variety of time depended phenomena, such as Brownian motion, resistance in a

wire and some financial models.

In Astrophysics the OU process is already successfully used to describe the variability

of accretion discs in the optical and x-ray spectrum by Takata et al. (2018, 2019); Kelly

et al. (2011); Kelly et al. (2014). In this thesis AGN with strong γ-ray emissions are

explored, because the variability in the γ-ray spectrum is most pronounced. This are

the so called blazars, in which a plasma jet extrudes from the black hole within a few

degrees of the viewing angle. The Fermi/LAT satellite is recording time series of fluxes

for more then 10 years, this is used as the data base.

For this the OUDE is implemented as a generator to produce time series. Then a

method is developed, to find the optimal parameter of the OUDE, which can be used

to reproduce time series that imitate the light curves (LCs) of the observed blazars. As

an additional quality check the power spectrum density (PSD) is used to compare the

artificial and original LCs. With that it is shown that there is a good alignment within

error.



Chapter 1

Introduction

1.1 Active Galactic Nuclei

Active Galactic Nuclei (AGN) describe a galaxies with a supermassive black hole (SMBH)

in its center, which is accreting mass. The estimated mass of the SMBH ranges from

6 . log10

(
M

M�

)
. 10 (Vestergaard & Peterson 2006; Peterson et al. 2004). The accretion

process gives rise to a powerful non-thermal radiation, originating from a disc formed by

the accreting material as described by Shakura & Sunyaev (1973). Jets of plasma, which

are found in some galaxies, can be another source of radiation, as they are leaving the

galaxy perpendicular to the accretion disc and the galactic plane at highly relativistic

velocities. These jets emit radio radiation which overpowers the galaxies in the optical

spectrum (by a factor of 2-10). Thus, they are are called radio loud. The radiation, that

is emitted from the AGN, has a high luminosity ranging form 42 . log10

(
L

erg s−1

)
. 47

(Vestergaard & Peterson 2006; Peterson et al. 2004) and ranges over a wide band of

frequencies. The spectral energy distribution features two humps, shown in fig. 1.2,

dominated by different ways of emission. The low energy hump is likely caused by syn-

chrotron radiation. The the high energy regime can be explained by either leptonic,

hadronic or lepto-hadronic processes (Mannheim 1993).

1.1.1 Unification of AGN

There exists a multitude of different types of AGNs, that can be classified based on their

morphology and their spectrum of the source. All of these manifestations can be sum-

marized by one unified model, which has been introduced by Urry & Padovani (1995);

Antonucci & Barvainis (1990); Antonucci (1993). According to the unification paradigm

of AGNs, which today is considered the standard model of AGN, the appearance of the

3
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Figure 1.1: Visualisation of the unified model of AGN by Urry & Padovani (1995).
Graphic by Beckmann & Shrader (2012)

different manifestations are depended on the viewing angle, the luminosity and the radio

loudness, which itself is determined by the existence and extension of a jet. At the center

of an active galaxy a SMBH is located, onto which mass is accreting, forming a radiating

disc. The disc is surrounded by a torus of dust clouds blocking line of sight inside the

galactic plane. Therefore obstructing the broad line region (disc) for high inclinations.

1.1.2 Blazars

Because of their large amplitude variability, blazars are a prime candidate to examine

in this thesis. Blazars are a type of AGN that are described as a radio-loud AGN in the

standard model, with a small angle between the jet and the line of sight. In other words

the jet and its containing are moving towards the observer at relativistic speeds. Blazars

count to the most luminous types of AGNs, this is explained by Doppler boosting and

beaming of the relativistic jet. Blazars are commonly divided into two subgroups. The

BL Lac objects, that are characterised by a optical featureless continuum emission and

a variability on the time scale of minutes (Albert et al. 2007). The other class, has
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Figure 1.2: Characteristic spectrum of AGN shown by the example of Mrk 421 (Abdo
et al. 2011). The green and red line show two fits of 1-zone synchrotron self-Compton

models to Mrk 421.

a higher luminosity and an optical spectrum, which features emission lines as well as

thermal emission. This class is named Flat-Spectrum Radio Quasar (FSRQ). FSRQs

typically show a variability on longer time scales such as on weekly or monthly (Ulrich

et al. 1997), but the are exceptions known such as CTA 102 (Shukla et al. 2018).

The word Blazar is a composite of the words ’blazing’ and ’quasar’. The first em-

phasizes the luminous and beamed nature of the radiation, whereas the word ”quasar”,

which short for quasi stellar, describes the point source, so star-like, nature of the source

(Kreter 2018).

1.1.3 Spectra and Light Curves

The spectral energy distribution (SED) of blazars is characterised by two humps, as

shown in fig. 1.2. These two humps can be explained by different radiation processes.
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1.1.3.1 Synchrotron

The low-frequency hump is very well described by synchrotron radiation. According to

Rybicki & Lightman (1986), synchrotron radiation is emitted, when relativistic charged

particles are accelerated in a magnetic field ~B by Lorentz force. The Lorentz force in

the relativistic case is given by:

d

dt
(mγ~v) =

q

c

(
~v × ~B

)
. (1.1)

m is the proper mass of the particle, γ is the Lorentz factor, ~v the velocity of the

particle, ~B the magnetic field and q the charge of the particle. While the Lorentz factor

is given by:

γ =
1√

1− β2
(1.2)

where β = v
c . Assuming a helical path of motion for the charged particle, an energy

loss of that particle can be calculated by:

P = −2e4B2

3m2c3
β2γ2sin2 α (1.3)

with B = | ~B | and α being the pitch angle between ~v and ~B. The charge of protons

and electrons can be set as q = ±e respectively. For highly relativistic electrons that are

present in the jet β ≈ 1 is a good approximation. The radiated energy of a particle with

elementary charge is proportional to m−2 for the same γ. Thus, synchrotron radiation

emitted by protons is negligible in comparison to that emitted by electrons and positrons.

1.1.3.2 High Energy Emission

In comparison to the low-frequency hump it is not entirely clear which process causes the

emission in the x-ray and γ-ray. Both leptonic and hadronic models are able to describe

the data. Even though they are competing models, there are not mutually exclusive,

which is shown by the existence of lepto-hadronic models (Mannheim 1993).

Leptonic Model - Inverse Compton Scattering

Compton Scattering is a well known effect of photons interacting with free electrons, in

which the photons transfer energy to the electron. At highly relativistic electron speeds
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Figure 1.3: Scattering geometries in the observer’s frame K and in the electron rest
frame K ′ (Rybicki & Lightman 1986).

the opposite effect happens. In the inverse Compton scattering the highly relativistic

electrons transfer energy to the photons they are scattering with.

By following the summary from Rybicki & Lightman (1986) and using the relativistic

principle the inverse Compton scattering observed in the laboratory system (K) can be

described as Thompson scattering from the rest frame of the electron (K ′). Thompson

scattering describes low energy photons (hν � mc2) scattering elastically on electrons.

Therefore the photon energy in the rest frame of the electron needs to be calculated.

For that Doppler shift equations are being used

ε′ = εγ(1− β cos θ) (1.4a)

ε1 = ε′1γ(1 + β cos θ′1). (1.4b)

Using the equation for energy transfer by Compton scattering in the rest frame of the

electron, the posterior energy of the electron in the rest frame can be calculated by:

ε′1 =
ε′

1 + ε
mc2

(1− cos Θ)
(1.5a)

with Θ being

cos Θ = cos θ′1 cos θ′ + sin θ′ sin θ′1 cosφ′ − φ′1 (1.5b)

with φ′ and φ′1 being the azimuth angles of the incident photon angle and the scattered

photon angle in the rest frame of the electron.

For relativistic electrons that satisfy the condition γ2 − 1 � hν
mc2

, the photon energy

before the scattering, in the rest frame of the electron after the scattering and after the
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scattering in the frame of the observer, are approximately in the ratios.

1 : γ : γ2 (1.6)

Thus, inverse Compton scattering can convert low energy photons into photons with

γ2-times the energy and can therefore explain high energy radiation.

Hadronic Model - Shock acceleration

The Hadronic Model requires protons in the jet that get accelerated at the shock front

by the mechanism described by Fermi (1949). These highly relativistic protons can then

interact with either the ambient matter or photons originating from the accretion disk

or the dust torus (Sikora et al. 1987). This process is called pion photoproduction and

can be described by the following reaction diagram (Kreter 2018)

p+ γ → ∆+ →

π0 + p

π+ + n
. (1.7)

The next reaction diagrams show the further decay of the pions:

π0 → γ + γ

π+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe.

(1.8)

Assuming only decays of the leading order, the π0-process is two times more likely

than the π+-decay.

The interaction with ambient matter can be described as a proton-proton interaction

p+ p→

p+ p+ π0

p+ n+ π+
, (1.9)

with a similar proportion of π0 and π+ generated the same way as with the pion photo

production.

1.2 Nature of the Used Data

The data that used for this thesis is taken from the Fermi Large Area Telescope (LAT).

The Fermi/LAT is a γ-ray space telescope launched in June 2008. It is a pair conversion
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telescope sensible in an energy range from 20 MeV to over 300 GeV. The telescope has

a large field of view of 2.4 sr at 1 GeV and performs a scanning motion in its normal

mode of operation to cover most of the sky with an uniform exposure in 2 orbits. This

takes roughly 3 hours (Atwood et al. 2009).

For this thesis the flux values, for photons over 1 GeV of over 2000 extragalactic

sources, binned at 28-day were used. The data was originally binned and employed for

a coincidence analysis of a neutrino by IceCube Collaboration et al. (2018).

The data was prepocessed using the recommended process by the Fermi/LAT collab-

oration for point-sources and handed to the author in a binned format giving fluxes as

well as additional data. No single photon events were provided.

The data used in this thesis covers the time from August 2008 to October 2017 and

contains 460 FSRQs and 836 BL Lacs. The remaining sources also display blazar-like

behaviour, but remain mostly unclassified.

1.3 Problem Addressed in this Work

The successful implementation of one, multiple or infinite OU processes to describe

AGNs in the optical and x-ray spectrum by Kelly et al. (2011), Kelly et al. (2014)

and Takata et al. (2018, 2019), has lead to the question if such an implementation of

the OU process is also suitable to describe LCs in the γ-ray spectrum, which is known

for its high variability. Also the γ-ray radiation does not originate in the disk, as the

thermal dominated optical and x-ray emission does, but instead in the non-thermal jet

and thus can be used to explore the mechanisms at work inside of the jet. The used data

set from the Fermi/LAT presents itself as well suited for this, with a high number of

sources spanning over a long observation time, without any major gaps in the acquisition

process. This allows a analysis of the distribution of the whole population instead of

examining single sources. To be able to deal with a data set of this size efficiently, a

new method to extract the parameters of the OU process is developed.





Chapter 2

Methods

2.1 Mathematical Basis of the Ornstein-Uhlenbeck Pro-

cess

The mathematical basis on which the light curve generator of this thesis is build, is

the OUDE. It is a Stochastic-Differential-Equation (SDE) of first order, that was first

proposed by Uhlenbeck & Ornstein (1930). Its basis is the Brownian motion, as described

by Wiener. The difference is that the particle is not visualized in a vacuum anymore,

but in a medium, where friction is introduced. To mimic the behavior of Fermi LCs

at energies > 1 GeV and monthly binning, the characteristics, describing the shape

and signatures for characteristic time scales, regarding possible periodicity, have to be

understood. Abdo et al. (2010) found indication for a correlated noise behavior in

Fermi LCs. Timmer & Koenig (1995) showed that time sequences showing long term

variation with respect to the sampling time scale (time binning) feature slopes in the

power spectral density (PSD ∝ fβ) of β ∼ −2 (red noise). Time series showing short

time variability with respect to the sampling time show pink noise behavior (β ∼ −1)

instead. A process, capable of realizing this is the OU-process, see Uhlenbeck & Ornstein

(1930), described by the OUDE, a stochastic differential equation (SDE). The basis for

the OU process is the Brownian motion of particles exposed to friction by an ambient

medium. In the following a motivation for the OUDE will be discussed based on the

Wiener process. This requires a time dependent, random noise function Γ(t) for which

the necessary properties will be described. As the OUDE stands, solutions can be given

in a discrete form and the stationarity of the OU process around a given mean value can

be proven.

11
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2.1.1 Motivation of the SDE

The basic SDE for the Wiener process describing particles in vacuum undergoing Brow-

nian motion reads:

duW (t)

dt
= Γ(t). (2.1)

Where u(t) denotes the velocity of the particle and Γ(t) a white noise. The properties

of the white noise Γ(t) are detailed in Sec. 2.1.2., Uhlenbeck & Ornstein (1930) then

introduced a friction, which is directly proportional to the velocity:

duOU (t)

dt
= −θu(t) + Γ(t). (2.2)

Following Uhlenbeck & Ornstein (1930), the strength of the friction is described by a

friction coefficient θ. A friction term, being directly proportional to the velocity covers

a wide range of specific type of frictions, such as Stokes and Doppler friction (Uhlenbeck

& Ornstein 1930). While in this case θ is a scalar coefficient, this can in principle be

extended to more dimensions by introducing θ as a friction tensor instead.

Accounting for a velocity of the surrounding medium, µ, Eq.2.2 can be re-written as

du(t)

dt
= θ(µ− u(t)) + Γ(t). (2.3)

2.1.2 Properties of Γ(t)

Before solving the SDE, the properties of the in-homogeneity in Eq.2.3, Γ(t), will be

discussed. Γ(t) is defined to be white noise. Samples obtained from white noise are

completely uncorrelated and distributed in a way that their mean is 0:

〈Γ(t)〉 = 0 (2.4a)

〈Γ(t)Γ(t+ τ)〉 = δ(τ) (2.4b)

(Gillespie 1996b).

These requirements are satisfied by the normal distribution with a mean µ = 0 and a

variance σ, also written as

N(0, σ2). (2.5)
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Gillespie (1996b) summarizes further properties of the normal distribution, which are

listed in the following and used in the subsequent sections:

α+ βN(m,σ2) = N(α+ βm, β2σ2) (2.6a)

α+ βN(0, 1) = N(α, β2) (2.6b)

N(m1, σ
2
1) +N(m2, σ

2
2) = N(m1 +m2, σ

2
1 + σ2

2). (2.6c)

To solve the SDE the time infinitesimal of the normal distribution should be studied

first.

N(0, σ2)dt (2.7)

Let dt′ = dt
n , where n > 0 ∈ N and thus dt′ < dt, see Gillespie (1996b), then Eq.2.7 can

be re-written as the sum over n steps. Gillespie (1996b) gives following proof with an

arbitrary random distribution satisfying Eqs.2.6a-2.6c whereas here the focus is laid on

a Gaussian distribution for Γ(t):1

N(0, σ2
1) dt =

n∑
i=0

N(0, σ2
2) dt′. (2.8a)

Using 2.6c, 2.8a reads

N(0, σ2
1) dt = dt′ N

(
0,

n∑
i=0

σ2
2

)
(2.8b)

N(0, σ2
1) dt =

dt

n
N(0, nσ2

2) (2.8c)

and using 2.6a, 2.8c becomes

N(0, σ2
1) dt = dt N

(
0,
σ2

2

n

)
(2.8d)

=⇒ σ2
1 =

σ2
2

n
∀n. (2.8e)

For Eq.2.8e to be true, σ1 and σ2 need to be dependent on dt and dt′ respectively.

Ansatz:

σ2
1 =

σ′2

dt
;σ2

2 =
σ′2

dt′
(2.9a)

σ′2

dt
=

σ′2

n dt′
(2.9b)

σ′2

dt
=
nσ′2

n dt
(2.9c)

1Also a uniform distribution would suffice Eqs.2.6a-2.6c
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Hence, the distribution of Γ(t) is defined in such a way that its infinitesimal does not

change when the size of dt is varied:

Γ(t) = N

(
0,
σ2

dt
, t

)
(2.10a)

with N(t) = N(0, 1, t), follows:

Γ(t) =
σ√
dt
N(t) (2.10b)

Γ(t)dt = σN(t)
√
dt. (2.10c)

2.1.3 Solutions of the SDE

The time derivative of the velocity du
dt can be expressed as

du

dt
=

1

dt
(u(t+ dt)− u(t)) . (2.11)

Applying this to Eq.2.3 and solving for u(t+ dt), yields

u(t+ dt) = u(t) + θ(µ− u(t))dt+ Γ(t)dt. (2.12a)

Utilizing a normal distribution in the manner of Eq.2.10c for the noise term Γ(t) results

in following SDE:

u(t+ dt) = u(t) + θ(µ− u(t))dt+ σN(t)
√
dt. (2.12b)

To be calculated by a computer, a discrete formulation of the process is needed, that

equals or approximates a sampled continuous process, so that

uT = u(t = ∆t T ) ∀T ∈ N. (2.13)

If the sampling of time steps in the computation is smaller than the relevant time scales of

the considered process, the continuous SDE can be approximated by a discrete function

(dt→ ∆t� 1), which is proven in appendix C:

uT+1 = uT + θ∆t(µ− uT ) + σ
√

∆tNT . (2.14)

An exact updating formula, where ∆t � 1 is not necessary to hold, can be found

in the paper of Gillespie (1996a) and in the appendix C. Gillespie (1996a) introduces

exponential decay terms, ensuring uT to return back to µ in any given step.
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2.1.4 Stationarity of the OU-Process

For a process to be stationary in a wide sense, it has to fulfill the following criteria:

〈u(t)〉 = 〈u(t+ τ)〉 (2.15a)

〈u2(t)〉 <∞ ∀t. (2.15b)

〈u(t)u(t+ τ)〉 − 〈u(t)〉〈u(t+ τ)〉 = 〈u(τ)u(0)〉 − 〈u(τ)〉〈u(0)〉 ∀t ∀τ > 0 (2.15c)

Equation 2.15a states that the mean value is a constant function and thus independent

on the time step. Equation 2.15b gives a finite variance for all time steps and Eq.2.15c

states that the co-variance is only dependent on the difference between two time steps.

2.1.4.1 Rearrangement (to simplify the proofs)

uT is written as us·∆t = x(s), s ∈ N, so that the following calculations can be written

on the dependence on steps. At first the solution of the OU-Process is simplified for

statistical analysis:

x(s) = x(s− 1) + θ∆t(µ− x(s− 1)) + σ
√

∆tN(0, 1, (s ·∆t)− 1). (2.16a)

Then a closed expression of x(s) is needed that only depends on x(0) and the samples

of the normal distribution:

⇒ x(s) = (1− θ∆t)sx(0) +
s∑

k=1

[(1− θ∆t)s−k · (θ∆tµ+ σ
√

∆tN(0, 1, (k − 1) ·∆t))].

(2.16b)

That this equation satisfies the OUDE can be shown by induction. By definition the

initial case is fulfilled with

x(0) = x(0). (2.16c)

Thus the induction can be started:

x(s+ 1) = (1− θ∆t)x(s) + θ∆tµ+ σ
√

∆tN(0, 1,∆ts)

= (1− θ∆t)

[
(1− θ∆t)sx(0) +

s∑
k=1

(
(1− θ∆t)s−k(θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

)]
+θ∆tµ+ σ

√
∆tN(0, 1,∆ts)



16 Chapter 2 Methods

= (1− θ∆t)s+1x(0) + (1− θ∆t)
s∑

k=1

(
(1− θ∆t)s−k(θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

)
+θ∆tµ+ σ

√
∆tN(0, 1,∆ts)

= (1− θ∆t)s+1x(0) +
s∑

k=1

(
(1− θ∆t)s+1−k(θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

)
+θ∆tµ+ σ

√
∆tN(0, 1,∆ts)

= (1− θ∆t)s+1x(0) +
s+1∑
k=1

(
(1− θ∆t)s+1−k(θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

)
(2.16d)

At this point n is introduced as n = s− k. Therefore k = s− n. The start index of the

sum reads

k = 1 = s− n⇒ n = s− 1. (2.16e)

The end index becomes

k = s = s− n⇒ n = 0. (2.16f)

Because of the sum is associative, the start and end points of the sum can be inter-

changed:

⇒ x(s) = (1− θ∆t)sx(0) +

s−1∑
n=0

[(1− θ∆t)n · (θ∆tµ+ σ
√

∆tN(0, 1, ((s− n) ·∆t)− 1))].

(2.16g)

In the next step equation 2.6c is applied. All normal distributed independent variables

from 0 to ((s − n) · ∆t) − 1 are summed. For each new time step a new uncorrelated

variable is added. Thus, the sum equals a normal distribution at a specific time step,

e.g. the time the last step was added. Here for convenience of short equations the time

step that will be added next is chosen instead:

⇒ x(s) = (1− θ∆t)sx(0) +N

(
θ∆tµ

s−1∑
n=0

(1− θ∆t)n, σ2∆t
s−1∑
n=0

(1− θ∆t)2n, s ·∆t

)
.

(2.16h)

If one writes this as a single normal distributed variable using 2.6a, it becomes

⇒ x(s) = N

(
(1− θ∆t)sx(0) + θ∆tµ

s−1∑
n=0

(1− θ∆t)n, σ2∆t
s−1∑
n=0

(1− θ∆t)2n, s ·∆t

)
=̂N(Mean(x),Var(x), t).

(2.16i)
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2.1.4.2 Proof of the 1st Criterion

To proof the first criterion 2.15a, equation 2.17a is shown to be true for all s:

〈x(s)〉 !
= 〈x(s+ 1)〉 ∀s ∈ N. (2.17a)

Hence x(s) can be written as normal distributions 2.16i. The mean is the first argument

of N . Therefore 2.17a simplifies to:

(1− θ∆t)sx(0) + θ∆tµ

s−1∑
n=0

(1− θ∆t)n = (1− θ∆t)s+1x(0) + θ∆tµ

s∑
n=0

(1− θ∆t)n

(2.17b)

0 = [(1− θ∆t)s+1 − (1− θ∆t)s]x(0) + θ∆tµ(1− θ∆t)s (2.17c)

(1− θ∆t)s+1x(0)︸ ︷︷ ︸
LHS

= (x(0)− θ∆tµ)(1− θ∆t)s︸ ︷︷ ︸
RHS

. (2.17d)

From there can see, that this equation is satisfied for all s if

x(0) = µ⇒ RHS = (µ− θ∆tµ)(1− θ∆t)s = µ(1− θ∆t)s+1 = LHS|x(0)=µ . (2.17e)

If a system runs sufficiently long, the criterion of 2.17e loses its importance, because

after a sufficient amount of time a steady-state is reached, making the initial conditions

unimportant.

This implies that

µ = x(0) = 〈x(0)〉 = 〈x(s)〉. (2.17f)

2.1.4.3 Proof of the 2nd Criterion

For the proof of 2.15b it is again used that x(s) is normal distributed and that 〈d2〉 =

V ar(d) for some distribution d:

V ar(x(s)) = σ2∆t
s−1∑
n=0

(1− θ∆t)2n. (2.18a)

This, expression is required to be finite for all times. Hence a lower limit of s = 0 is

given and only the limit of s→∞ is analyzed:

V ar(x(s)) = lim
s→∞

σ2∆t
s−1∑
n=0

(1− θ∆t)2n = lim
s→∞

σ2∆t
s−1∑
n=0

[(1− θ∆t)2]n (2.18b)
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V ar(x(s))
geo. series

=


σ2∆t

1−(1−θ∆t)2 , (1− θ∆t)2 < 1

∞, (1− θ∆t)2 ≥ 1
(2.18c)

V ar(x(s)) =


σ2∆t

2θ∆t−θ2∆t2
, |1− θ∆t| < 1

∞, |1− θ∆t| ≥ 1
. (2.18d)

Thus this requirement for a stationary process is fulfilled for |1− θ∆t| < 1.

2.1.4.4 Proof of the 3rd Criterion

For the following proof it is necessary to express x(t+ τ), dependent on x(t) and inde-

pendent of x(0):

x(s+ τ) = (1− θ∆t)s+τx(0) +

s+τ∑
k=1

[
(1− θ∆t)s+τ−k · (θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t))

]
.

(2.19a)

Separating the one sum into two, so the first goes from index 1 to s and the second from

s+ 1 to s+ τ . It becomes

x(s+ τ) = (1− θ∆t)s(1− θ∆t)τx(0)+

s∑
k=1

[
(1− θ∆t)s−k(1− θ∆t)τ · (θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

]
+

s+τ∑
k=s+1

[
(1− θ∆t)s+τ−k · (θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t))

]

= (1− θ∆t)τ
(

(1− θ∆t)sx(0) +
s∑

k=1

[
(1− θ∆t)s−k(θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t)

])
︸ ︷︷ ︸

x(s)

+

s+τ∑
k=s+1

[
(1− θ∆t)s+τ−k · (θ∆tµ+ σ

√
∆tN(0, 1, (k − 1)∆t))

]

= (1− θ∆t)τ · x(s) +

τ∑
k=1

[
(1− θ∆t)τ−k · (θ∆tµ+ σ

√
∆tN(0, 1, (k + s− 1)∆t))

]
.

(2.19b)

The result is an explicit equation for x(s+ τ) based on x(s). Thus, it can be begun with

proofing the criterion of equation 2.15c:

〈x(s)x(s+ τ)〉 =
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〈
x(s)

(
(1− θ∆t)τx(s) +

τ∑
k=1

[
(1− θ∆t)τ−k(θ∆tµ+ σ

√
∆tN(0, 1, (k + s− 1)∆t))

])〉
.

(2.20a)

Multiplying x(s) in the sum and using the linearity of the expectation value, one yields:

〈x(s)x(s+ τ)〉 =
〈
(1− θ∆t)τx2(s)

〉
+

〈
τ∑
k=1

[
x(s)(1− θ∆t)τ−kθ∆tµx(s)

]〉
+〈

τ∑
k=1

(1− θ∆t)τ−kσ
√

∆tN(0, 1, (k + s− 1)∆t)

〉
.

(2.20b)

The linearity of the expectation value is used again to pull it into the sum and all scalars

out of it.

〈x(s)x(s+ τ)〉 = (1− θ∆t)τ
〈
x2(s)

〉
+

τ∑
k=1

[
(1− θ∆t)τ−kθ∆tµ 〈x(s)〉

]
+〈

τ∑
k=1

x(s)(1− θ∆t)τ−kσ
√

∆tN(0, 1, (k + s− 1)∆t)

〉 (2.20c)

At this point it is necessary to simplify the last summand.

AUX:

Replacing x(s) with its explicit form yields:〈
τ∑
k=1

x(s)(1− θ∆t)τ−kσ
√

∆tN(0, 1, (k + s− 1)∆t)

〉

=

〈
τ∑
k=1

[
s∑
i=1

[
(1− θ∆t)s(θ∆tµ+ σ

√
∆tN(0, 1, (i− 1)∆t))

]
·

(1− θ∆t)τ−kσ
√

∆tN(0, 1, (k + s− 1)∆t)

]〉
= S.

(2.20da)

The product inside the sum is expended inside the inner sum:

S =

〈
τ∑
k=1

s∑
i=1

[
(1− θ∆t)s+τ−kθ∆tσ

√
∆tN(0, 1, (k + s− 1)+

(1− θ∆t)s+τ−kσ2∆tN(0, 1, (i− 1)∆t)N(0, 1, (k + s− 1)∆t
]〉
.

(2.20db)
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Using linearity of the expectation values, the expectation value of each of the inner

summands is calculated separately:

S =

〈
τ∑
k=1

s∑
i=1

[
(1− θ∆t)s+τ−kθ∆tσ

√
∆tN(0, 1, (k + s− 1)

]〉
+〈

τ∑
k=1

s∑
i=1

[(1− θ∆t)s+τ−kσ2∆tN(0, 1, (i− 1)∆t)N(0, 1, (k + s− 1)∆t]

〉
.

(2.20dc)

Linearity of the expectation value is applied again to pull it inside the sum

S =
τ∑
k=1

s∑
i=1

[(1− θ∆t)s+τ−kθ∆tσ
√

∆t〈N(0, 1, (k + s− 1)〉]+

τ∑
k=1

s∑
i=1

[(1− θ∆t)s+τ−kσ2∆t〈N(0, 1, (i− 1)∆t)N(0, 1, (k + s− 1)∆t〉].
(2.20dd)

By definition the expectation value of the normal distribution is defined as 〈N(0, 1, t)〉 =

〈Γ(t)〉 = 0 (Eq. 2.4a) and the auto-correlation as 〈N(0, 1, t)N(0, 1, t + τ) = 〈Γ(t)Γ(t +

τ)〉 = δ(τ) (Eq. 2.4b). Thus, the first summand vanishes and the equation reads:

S =

τ∑
k=1

s∑
i=1

[(1− θ∆t)s+τ−kσ2∆tδ((k + s− 1)∆t− (i− 1)∆t)]. (2.20de)

(k + s − 1) − (i − 1) = k + s − i with k > 1 and i < s. Thus k + s − i > 0 ∀k, i.
⇒ δ((k + s− i)∆t) = 0 ∀k, i.

⇒

〈
τ∑
k=1

x(s)(1− θ∆t)τ−kσ
√

∆tN(0, 1, (k + s− 1)∆t)

〉
= 0 = S. (2.20df)

With that knowledge the main calculation can be continued:

〈x(s)x(s+ τ)〉 = (1− θ∆t)τ
〈
x2(s)

〉
+

τ∑
k=1

[
(1− θ∆t)τ−kθ∆tµ 〈x(s)〉

]
. (2.20e)

Using equation 2.17f it follows that

〈x(s)x(s+ τ)〉 = (1− θ∆t)τ
〈
x2(s)

〉
+

τ∑
k=1

[
(1− θ∆t)τ−kθ∆tµ2

]
. (2.20f)

Considering the relative autocovariance between two time steps, the following statement

needs to hold:

〈x(t1)x(t1 + τ〉 !
= 〈x(t2)x(t2 + τ〉. (2.20g)
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⇔ (1− θ∆t)τ 〈x2(t1)+〉
τ∑
k=1

[
(1− θ∆t)τ−kθ∆tµ2

]
=

(1− θ∆t)τ 〈x2(t2)+〉
τ∑
k=1

[
(1− θ∆t)τ−kθ∆tµ2

] (2.20h)

⇒ 〈x2(t1)〉 = 〈x2(t2)〉 (2.20i)

If t1 and t2 are sufficiently large and the difference t1 − t2 is constant, Eq.2.20i reads

⇒ lim
t1→∞

〈x2(t1)〉 = lim
t2→∞

〈x2(t2)〉 (2.20j)

Using equation 2.18a and 2.18c it becomes.

⇒ σ2∆t

1− (1− θ∆t)2
=

σ2∆t

1− (1− θ∆t)2
(2.20k)

2.1.5 Extraction of the Parameters

To describe light curves properly with the OU-Process, it is necessary to be able to

determine the parameters of the OUDE from a given time series. This means a unique

projection form the physical parameters to the OU parameters, (physical parameters)→
(µ, θ, σ), needs to be found. This allows to choose OU parameters based on physical

measurements to create artificial light curves that mimic the natural ones as close as

possible. For that reason, methods to determine µ, σ and θ from the time series of an

OU process are developed. In the following, a mathematical description of the methods

is given as well as its derivation. The method for determining µ and σ is described

first. From those the θ parameter can be derived. The parameter µ is extracted straight

forwardly from the time series by calculating the expectation value (mean).

2.1.5.1 Extraction of σ

To extract σ, data points where uT is close to the mean (within an ε environment) are

considered. Following Ansatz is used:

uT = µ+ ε. (2.5)

Then the SDE 2.14 reads:

uT+1 = uT + θ∆t(µ− (µ+ ε)) + σ
√

∆tN(t) (2.6)

⇒ uT+1 − uT = −θ∆tε+ σ
√

∆tN(t). (2.7)
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For an ε� σ
√

∆t
θ∆t the term with ε is negligible. It is therefore reduced to

uT+1 − uT = σ
√

∆tN(t) = N(0, σ2∆t, t). (2.8)

If a given set of uT is within the ε environment encompassing µ, the variance can be

calculated on both sides. For normal distributions its variance is its second argument,

like it is shown in equation 2.7, thus

V ar(uT+1 − uT ) = V ar(N(0, σ2∆t, t)) = σ2∆t. (2.9)

Therefore σ
√

∆t can be written in a closed expression as:

σ
√

∆t =

√√√√V ar

({
uT+1 − uT

∣∣∣∣∣uT − µ < ε <<
σ
√

∆t

θ∆t

})
(2.10)

2.1.5.2 Extraction of θ

With the values extracted for σ
√

∆t, θ∆t can be determined by utilizing the variance

of the complete time series. From the equations 2.18a and 2.18c follows that

V ar(u(t)) =


σ2∆t

1−(1−θ∆t)2 , (1− θ∆t)2 < 1

∞, (1− θ∆t)2 >= 1
. (2.11)

Hereafter stationary processes will be focused upon, so that

V ar(u(t)) =
σ2∆t

1− (1− θ∆t)2
(2.12)

1− θ∆t = ±

√
1− σ2∆t

V ar(uT )
= α. (2.13)

Because the variance is insensitive for the sign of the deviation from the mean, the sign

of α can not be determined by this method. Only the absolute |α| is known as

|α| =

√
1− σ2∆t

V ar(uT )
. (2.14)

Hence, another method is used to evaluate the sign. This other method is less precise

than the first method since it depends on data points sufficiently far from µ which in

most cases of time series are more scarce than the bulk of data points scattering close

to µ. However, the following method however is sensitive to the sign of α and can be

used in combination with the method shown above to pinpoint the value and sign of
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α. Therefore equation 2.14 is considered for large deviations of uT from µ and a small

σ. Such that the term with the normal distribution is small against the first two terms

with the reversion rate θ and vanishes:

uT+1 = uT + θ∆t(µ− uT ). (2.15a)

This is now rewritten in terms of α:

⇒ uT+1 = (1− θ∆t)uT + θ∆tµ = αuT + (1− α)µ (2.15b)

⇒ uT+1 = αuT + µ− αµ (2.15c)

⇒ uT+1 − µ
uT − µ

= α. (2.15d)

The α is averaged for all sufficiently large uT . The sign sensitive α can be calculated by

α± =

〈{
uT+1 − µ
uT − µ

∣∣∣∣N(t)� αuT + θ∆tµ

σ
√

∆t
.

}〉
(2.15e)

From these two methods the absolute and sign of α can be calculated separately. The

absolute value of the more precise method (Eq. 2.14) is used and the sign of the sign

sensitve method (Eq. 2.15e):

α = sign(α±) · |α|. (2.16)

θ∆t can now be calculated from this α, using the definition of α in equation 2.13:

θ∆t = 1− α. (2.17)

2.2 Implementation of the Algorithms

In the following section the implementation of the Ornstein-Uhlenbeck-Simulator as well

as the parameter extractor are explained. Both are designed as python 3 (version 3.7.3)

modules to be imported into other python programs or juypter notebooks. In both

modules numpy (version 1.17.2) was used, because its arrays handle large amount of

data more efficiently than default python lists.

2.2.1 Ornstein-Uhlenbeck-Simulator

The generation of random numbers, like the white noise needed for the UO process,

requires significant computing power. Generating multiple random numbers at once

can reduce the computing power needed for each random number. To make use of
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this feature and to reduce computational overhead, this implementation was designed

to calculate large numbers of Monte-Carlo-Simulations (MCS) at once. To have this

functionality and still be highly customizable by the user some of the parameters of the

main function can accept a variety of types as arguments.

For the implementation in python the numpy module is utilized. Numpy is used for

two reasons. On the one hand, python lists get highly inefficient when multiple (n)

lists are stacked inside of each other, the access time complexity is O(n), compared to

a multidimensional numpy array where it is O(1). Additionally, for all cases where the

type of the numpy array is not object, the memory used by the pyhton list is bigger.

While having the same space complexity (O(n)), each element requires an additional

pointer. Also, python lists stacked into each other cannot easily be generalized for

an arbitrary number of lists stacked into each other. While the depths of stacking

represents the number of axes2. On the other hand, numpy has high quality random

number generators that can generate numbers in high quantities directly into numpy

arrays.

The main function of the module is named ou generate and it is the only function

of the module that needs to be called by the user for basic functionality and most

advanced functionality. The mandatory parameters of that function are iterations,

theta, sigma, mu and x0.

• iterations is the number of time steps calculated per MCS. Its type is int.

• theta, sigma and mu are the parameters of the equation 2.14. Their type can

differ and either be an object of the type ndarray or with the attribute iter ,

so it can be converted into a ndarray. If it is either, after conversion, its shape

attribute needs to be equal to the optional parameter size. They can also be a

callable that can generate a ndarray with the shape size if given a size argument.

Or they can be a float.

• x0 are the start values. Its type can be None in addition to all the types theta,

sigma and mu can be. If it is None, values from a white noise distribution are used

to set the start values.

In addition to these mandatory parameters there are optional parameters, commonly

called ko-arguments, which always have a default value. The ko-arguments of the main

function are dt, noise generator, noise parameters, size and unpack.

2the length of one axis is its dimension
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• dt sets the ∆t value of the equation 2.14. It does not change the amount of time

steps, but the length of those steps. That means the total duration of the MCS is

given by iterations · dt. Default value is 1.

• noise generator is the function used for generation of the white noise. It needs to

take an argument named size and return a ndarray, with its shape equal size. It

can also take more arguments, then these must be specified in noise parameters.

Default value is numpy.random.standard normal.

• noise parameters will pass through arguments to the noise generator. Its type

needs to be dict. The keys need to be the name of the argument and the values

the corresponding arguments. The default value is {}.

• size is the value that determines how many MCS are generated at once. It also

changes dimensions of the output ndarray accordingly, so that its shape is size +

(iterations, ) ((iterations, ) is a tuple with iteration in its single entry).

The default value is (1, ).

• unpack specifies if the general n-dimensional structure of the output is discarded

for a one-dimensional ndarray of the size iterations. This parameter only has

an effect if size does equal (1, ) (tuple with only a single 1 in it). The default

value is True.

If called, the main function first checks if size is of the type tuple. Then it converts

theta, sigma and mu into numpy arrays, if they are not all given as floats. After that

conversion the array with the random numbers is generated and multiplied with
√
dt.

Therefore the function given in the argument noise generator is called. All arguments

passed in noise parameter are passed to this function as well as a size argument,

which is set to size + (iterations, ). This returns an n-dimensional numpy array

called noise, where the index of the last dimension denotes time and the other indices

denote a particular MCS. When this array is generated, the start values given in x0 are

copied in noise, for that the last index of noise, the one responsible for time, is set

to 0. The next step is the main loop. Therefore Numpy slicing is used to efficiently

calculate all MCS for an individual time step. To save memory, uT is written in the

noise array. To prevent collisions, uT+1 is stored at the same address as NT . After

uT+1 is calculated using NT , NT is overwritten with uT+1. This is possible because NT

is not needed any more.

Additionally to the main function ou generate, the module contains an Iterator

class, some wrapper functions and a function that is used to convert the parameters

mu, theta and sigma from different input types to the corresponding numpy arrays.
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The Iterator can be used to iterate over each index-tuple of a multidimensional array.

Therefore the initializer requires a size-argument. There the size of the array must be

given as a tuple. For numpy arrays this is stored in the shape attribute. Then, the initial-

ized object can be used as a generator in a for-loop. Multiple wrapper functions are pro-

vided, which can be used to make functions fulfill the requirements for in ou generate,

that do not fulfill them per se. There is wrap rename size to rename the size argument,

if it has another name in a function. wrap additional arguments makes it possible to

use more than only the size argument by saving values for the other parameters in the

wrapper. If a function is needed as parameter, that has no size argument, it can also be

wrapped by wrap no size, so that the given function is called once for each cell of the

returning array. There is also the wrapper wrap no size and additional arguments

that combines the last two capabilities. It is written separately, because it is not trivial

to chain the wrappers mentioned above together.

If seeds are required to make the generated time series reproducible, they can be set de-

pending on the argument given in noise generator. In the case that noise generator

is a number generator from the module numpy.random, as given in the default argu-

ment, the seed can be set by calling numpy.random.seed before calling ou generate.

This function takes zero or one arguments. If no argument is given, the seed is set to

default3. If an argument (int) is given, the seed is set to the number given. If the used

random generator supports getting a seed by an argument, this seed argument can be

passed through to the noise generator by noise parameters.

2.2.2 Parameter Analyser

2.2.2.1 Main Functions

The core of this module are the three functions that can calculate |α|, α± and σ
√

∆t.

These are called get alpha abs, get alpha pm and get sigma respectively. get sigma

and get alpha pm take a lower and upper limit instead of an ε. Although there are

functions provided to calculate these limits from a fixed ε or an ε, that is set by properties

of the time series.

The argument data that is used in all three main functions and some (all) of the

others, has always the same meaning and requirements. data contains the OU time

series that shall be analyzed. It needs to be an ndarray from the numpy module, with

only one dimension. data is always interpreted as a time series with equal stime steps.

Missing values can be given as numpy.nan to archieve constant time steps even with

data that is not spaced equally by default.

3usually dependent on the system time
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get sigma implements the equation 2.10 as executable code. Its parameters are data,

lower and upper.

• data is, as already described, an array of the OU time series.

• lower. If a value is above this value and below upper it is used to calculate σ.

• upper. See lower.

get alpha abs will be able to calculate equation 2.14 for the user when it is provided

with a data set and σ
√

∆t, provided by the parameters data and sigma.

• data is, as already described, an array of the OU time series.

• sigma is a parameter of equation 2.14 and will be used in the equation as σ
√

∆t.

get alpha pm is the implementation of the calculation of α± by the equation 2.15e.

get alpha pm requires the parameters data, mean, lower and upper.

• data is, as already described, an array of the OU time series.

• mean will be used as µ from equation 2.15e

• lower. If a value is below this value or above upper it will be used to calculate

α±.

• upper. See lower.

2.2.2.2 Limit Calculators

The following functions are used to calculate a mean, lower and upper limit that can

be used as parameters for the main functions. It was chosen to calculate these limits in

methods outside of the main methods, so that the user can change and try out different

methods of setting an ε. They all return a tuple of three elements that can be used as

mean, lower and upper (in this order) in the main functions. There are three predefined

methods of setting the limit.

set limit by std allows to set an ε symmetrical around the mean of the time series.

The ε is determined as a multiple of the standard deviation of the time series. This

method requires the two parameters data and sigma.

• data is, as already described, an array of the OU time series.
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• sigma describes to how many standard deviations around the mean ε is set to. Its

type is either int or float.

set limit by epsilon calculates the mean, lower and upper limit for an absolute

epsilon, given as a parameter. Its parameters are data and epsilon.

• data is, as already described, an array of the OU time series.

• epsilon is an absolute value. In its distance to the mean, the lower and upper

limits are set.

set limit by percentage of mean sets the lower and upper limit to be at a certain

percentage of the mean. This method is only recommended when the deviations from

the mean are much smaller than the mean. It needs the parameters data and percent.

• data is, as already described, an array of the OU time series.

• percent determines how far the limits are away from the mean,as a fraction of it.

2.2.2.3 Generic Application Functions

The following functions are programmed in a way that they can easily be used without

a deeper understanding of the details of the program. The goal of all of these functions

is to provide a good calculation of α and σ with only a few but significant parameters

that work over wide ranges of different time series.

all by std calculates a σ and a α from a given time series by only using two float as

arguments in addition to the time series itself. The parameters are data, sigma sigma

and sigma alpha.

• data is, as already described, an array of the OU time series.

• sigma sigma is equivalent to mσ from section 2.3.

• sigma alpha is equivalent to mα from section 2.3.

There are other generic application functions in this module, but they were mainly

used to explore different methods of how to set the ε-environment and are not recom-

mended for use.
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2.3 Calibration of the ε-Environment

Before the extraction program can be used to determine the parameters that are common

for the Fermi LCs, it is necessary to first find a suitable algorithm to set the ε parameters

of the equations 2.10 and 2.15e, introduced in section 2.1.5. In this context the quality

of the parameter extraction is tested as well (sanity check).

In addition to numpy, which is used for the modules listed above, further packages are

used for data reprocessing and visualisation of the results. These modules are:

• scipy 1.4.1

• matplotlib 3.1.3

• tqdm 4.42.1

• time (native module)

To avoid confusion, the ε of equation 2.10 that is used to calculate σ will be called εσ

and the ε of equation 2.15e that is used to calculate α± will be called εα.

2.3.1 Choosing the Method

The parameter space of µ and σ
√

∆t is not tightly restricted (µ ∈ R, σ ∈ R+), thus it

is not recommend to just set εσ and εα to a fixed value for all time series. If one did

so, it would be very likely that either all, too few or none, of the points are within the

ε boundary. Therefore a more sophisticated method needs to be found to set the ε by

properties of the time series that are easy to obtain.

One method that satisfies these requirements is to set ε as a multiple (factor) of the

standard deviation of the time series. This method is completely independent of µ

and thus works equally well over the complete parameter space of µ, while also scaling

with σ
√

∆t and α to ensure there are always data points inside or respectively outside

the ε-environment. These multiple of the standard deviation are be called mσ and mα

respectively.

As part of this work other methods are explored, but then discarded in favor of the

method using the standard deviation. These methods are suffering from the absence of

decoupling from µ or being biased by the time series (sample) size. Discarding these

methods is not only done on how they would behave on different parameters of µ and

σ, also on the basis of tests done similar to 2.3.2, but on a smaller scale, that shows the

presumed issues.
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Spearman R Person R Kendal-τ AVG

mσ 0.312 0.322 0.393 0.343±0.036

mα 1.00 1.60 1.84 1.48±0.36

Table 2.1: mσ and mα with the best result in respect to each statistical test and the
average

2.3.2 Evaluating the Best Parameters

For getting the best possible values for mσ and mα, a multitude of time series are gen-

erated with the OU-generator, which is described in sec 2.2.1 . Then, an ε-environment

for each time series is calculated for a multitude of mσ and mα. For each of these ε-

environments σ and θ are extracted using the program from sec. 2.2.2 and the algorithm

developed in sec. 2.1.5. For each (unique) combination of mσ and mα the extracted

values are then compared to those which are used to generate the time series using three

statistical tests. The results of these tests can be seen in Fig. 2.1.

The tests used to determine correlation between the extracted σ
√

∆t and θ∆t and

the given σ
√

∆t and θ∆t, those that are used to generate the time series, are correlation

coefficients by Spearman (Spearman R), Pearson (Pearson R) and Kendall (Kendall-τ).

For the generation of the OU time series, θ is drawn from N(5, 5), σ from N(0, 1) and

µ from N(0, 1). ∆t is set to 0.1. 100,000 time series are generated, but those where

2 > θ∆t > 0, are discarded as not stationary for all extractions and evaluations, so that

more then 80,000 time series remain. A seed was used, to assure that the results are

reproducible. The python code for the generation can be found in Appendix B.

2.3.3 Determination of the Maximum

To determine the best values for mσ and mα, the gradient in mσ direction is calculated

first. This gives a value for each unique combination of mσ and mα. For each mσ the

absolutes of all gradients (over all mα) are summed. The mσ for that this sum is the

lowest, is the best. Then, the gradients in mα direction are calculated for mσ that is

determined to be the best. The mα where the absolute of the gradient is the lowest, is

determined as the best mα.

This is done for all three statistical tests. The results for the best mσ and mα are

slightly different. Thus, the mean and standard error of mσ and mα are calculated from

the results of all tests.
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Figure 2.1: Quality of the extraction measured with different correlation coefficients,
between the extracted θ and the given θ, while mα and mσ are varied
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Figure 2.2: Density plot of the extracted σ
√

∆t, against the actual σ
√

∆t parameter
used to generate the time series.

2.3.4 Verification of the Extraction Method

To extract σ and α from the OU time series used for calibration, the optimized mσ =

0.343 and mα = 1.48 are applied. This sanity check ensures the validity of the extracted

parameters and functionality of the algorithm. Therefore the extracted σ
√

∆t are plotted

against the given ones used to generate the time series in fig. 2.2. The same was done

for θ∆t in fig. 2.3.

As one can see, the algorithm accomplishes its task. It is also apparent that its quality

degrades for θ∆t→ 1. This was expected, because the approximation of small ε breaks

at this point.

2.3.5 Error Estimation of the Method

To estimate the accuracy of the parameter extraction, a cone that encompasses 68%

of all data points is fitted to the data from section 2.3.4. For the estimation of the

θ∆t-error only θ∆t < 1 are used in the calculation. From the opening angle of the cone

a relative error of σ
√

∆t and θ∆t can be found. Due to the nature of the spread of the
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Figure 2.3: Density plot of the extracted θ∆t against the actual θ∆t parameter used
to generate the time series. The gap in the middle equals a α close to 0. In this case

assumption for the extraction breaks and the estimation gets less precise.

extraction it seems more useful to give a relative error than a absolute one. The relative

errors σθ∆t and σσ
√

∆t are calculated to the values in tab 2.2:

σθ∆t σσ
√

∆t

17.55 % 4.45%

Table 2.2: Relative Errors for σ
√

∆t and for θ∆t < 1

The constant relative error for θ∆t only makes sense for θ∆t < 1. For θ∆t > 1 the

absolute error can be calculated with

σabs,θ∆t = σθ∆t · (2− θ∆t). (2.18)

Using this equation is equivalent of fitting a cone with the same opening angle from the

other side.





Chapter 3

Results

For the extraction the OU-parameters and the subsequent simulations, not the fluxes

measured by the Fermi/LAT, will be used but instead their logarithm (base 10). There-

fore it is necessary to have a clear nomenclature that can distinguish between source

and logarithmic or expontionated data. In the nomenclature chosen, ”OU” and ”Fermi”

identify the source, while ”time series” is the data where OU-parameters are extracted

from or data can be generated as. ”LC” is 10 to the power of the time series. So in case

of Fermi they are the actual flux values measured by the Fermi/LAT. These relations

are shown clearly in in table 3.1.

3.1 Extraction of the Parameters

The extraction of the OU-parameters is done to all points of the Fermi time-series, where

the test statistic for the detected flux is greater or equal to 9 (TS ≥ 9). Furthermore,

if a time series has less than 38% significant data points left, it is discarded completely.

After this procedure 253 of the 2278 LCs remain.

OU Fermi

time series gen log10(flux)
light curve (LC) 10gen flux

Table 3.1: Clarification of nomenclature. While flux is the flux (in erg
s·cm2 ) measured

by the Fermi/LAT and gen are the numbers given by the OU-Generator described in
section 2.2.1

35
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3.2 Building a Random Number Generator

To generate OU-LCs that resemble the Fermi data, it is necessary to define random

number generators (RNG) that draw their numbers from the distributions that the

parameters extracted from the Fermi light curve have. To understand the distribution

of the Fermi-LCs, all extracted parameters µ, θ∆t, σ
√

∆t of all LCs fulfilling the test

statistic are plotted in a histogram which is shown in fig. 3.1. A normal distribution is

fitted over the histogram. The normal distributions are then numerically integrated, to

obtain the cumulative distribution function (CDF) for each parameter.

Base of the RNG is the basic numpy.random.random number generator that has a

uniform distribution between 0 and 1. To generate a random number with the wanted

distribution, a number is drawn from numpy.random.random. Then, it is calculated at

which value the CDF will reach that drawn number. That value is then returned as the

random number that has the desired probability density function (PDF).

3.3 Comparison of the Statistical Properties of Real and

Generated LCs

To check if the extraction of the parameters is successful, LCs generated with the dis-

tributions derived from the Fermi data are compared with those used to calibrate the

parameter extraction. This is done to make sure that the extraction does not simply

rebuild the distribution that was used for calibration, in the following called prior dis-

tribution. Therefore 100,000 time series were simulated for the distributions of µ, θ∆t,

σ
√

∆t extracted in figure 3.1.

To compare the two sets of LCs, the power spectrum density (PSD) is calculated

and compared for the LC originating from the prior distribution and the distribution

extracted from the Fermi data, in the following called posterior distribution.

PSDs are commonly used in AGN research to quantitatively describe the variability of

a source as it is done by Abdo et al. (2010). Going further, Timmer & Koenig (1995) even

build a random number generator to generate artificial X-ray data by a PSD power-law

slope.

The PSD can be approximated by the periodogram. The periodogram as it is defined

by Timmer & Koenig (1995) reads:

P (ω) =
1

n

n∑
t=0

|xte−iωt|2. (3.1)
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∆t extracted from the Fermi LCs
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fitted in section 3.2 (orange)

In this thesis the periodiogram was calculated by the algorithm of Lomb (1976) and

Scargle (1982). An implementation of this can be found in the scipy module for python.

To compare the PSDs a power law of the form ωβ is fitted to P (ω). The exponent β

that is obtained for each LC can now be compared.

The orange histogram of fig. 3.2 shows how well the OU process could replicate the

PSD of Fermi-LCs (green) once the distributions for the OU-parameters are calibrated.

To show that the adjustment of the OU-parameter distributions is successful and the

distribution of β is not an inherent property of the OU process, β of the distribution used

to calibrate mα and mσ, see section 2.3, is also calculated and plotted in comparison.

To have a more quantitative measure of how well the distributions are equal to each

other, the fist 4 central moments are compared to each other. For mean and variance the

implementation of the numpy module is used, for the skewness and kurtosis the scipy

module is used. The results for the central moments can be found in tab. 3.2. The means

of the two distributions can not be distinguished. The skewness of both distributions is

small. While the OUs are basically indistinguishable from 0, the Fermi-LCs are slightly

left leaning but with such a low value that it is still compatible with 0 and thus with
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central moment Fermi-LCs OU-LCs

mean -1.2 -1.1
variance 0.16 0.083
skewness -0.17 0.095
kurtosis -0.038 0.087

Table 3.2: Statistical properties of the distribution of β for the Fermi-LCs and the
OU-LCs build to imitate the Fermi-LCs. The distributions are shown in fig. 3.2 as

histograms.

each other. For the kurtosis both values are so low that they are compatible with 0

and with each other. The only parameter where there is a relevant difference in the two

distribution is the variance.

The slightly left leaning of the Fermi-LCs as well as the higher variance can both be

explained by the so called red noise leakage. In contrast to the computer generated OU-

LCs, the Fermi-LCs are not sampled equidistant. While there is a flux value given for

each month per LC, filtering the test-statistic yields LCs that are not sampled equidistant

anymore. Calculating the periodiogram for non equidistant sampled LCs comes with a

bias towards lower frequencies, this is called red noise leakage. If one calculates a power

law slope with these, this yields a lower β. While the Lomb-Scargle Algorithm used to

calculate the periodiogram is designed to reduce the red noise leakage, it can not be

eradicated completely.





Chapter 4

Summary and Outlook

In this thesis, a method to extract OU-parameters from a time series is described. After

showing that this method as well as its implementation work properly on mock data,

the method is employed to extract OU-parameters from gamma-ray data obtained with

the Fermi telescope. On the basis of 253 lightcurves satisfying the test-statistics require-

ments, distributions for each of the three parameters of the OU process are obtained.

Drawing random values from these distributions, a set of artificial Fermi-lightcurves is

generated. Using power spectral densities for the amplitude variations as a reference for

metric purposes, it is shown that within errors, the artificial lightcurves show the same

statistics as the original data.

Even though the results are promising in showing that a simple (3-parameter) de-

scription for the complex variability patterns found in Fermi-LAT lightcurves is possible,

further research needs to be done: This includes especially a closer look on data from

other energy ranges of the electromagnetic spectrum. The emission at different wave-

lengths may originate from different regions of the AGN governed by different stochastic

or correlated processes. Further studying the wavelength-dependent lightcurves may

thus help to resolve the physical processes at work in these powerful gamma-ray sources.

In particular, a comparison between the X-ray/optical lightcurves of accretion-disc

dominated AGN and the gamma-ray lightcurves of jet-dominated AGN may provide

important clues about the connection between disk and jet. Furthermore, other time

scales of variability, especially those that are more rapid than monthly, need to be inves-

tigated. Rather compact regions within the AGN seem to be involved in the gamma-ray

emission corresponding to length scales much shorter than a light-travel distance of one

month, given the reported shortes time scales of minutes for blazars. Such investigations

will help to discern the radiation processes giving rise to the gamma-ray variability of

blazars.
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Appendix A

Python Code of the Main

Modules

Formating of the python code can seem off, because it was formated to be easily read

in the source code. The formating was not changed here, so that the lines shown here

coincide with the source code lines.

In this Appendix, the main modules are shown. Their documentation can be found

in section 2.2.

If those modules contain a ”main” method (if name == ’ main ’:), they are

either left over for texting the validity of the module or to show case it. These modules

are not to be run as independent programs, but as modules to be included into other

programs.

1 import numpy as np

2

3

4 class DimensionError(Exception):

5 pass

6

7

8 # iterates over all indices of an n-dimensional array , which shape is given in

the ’size’ argument

9 class Iterator:

10

11 def __init__(self , size):

12 self.size = size

13 self.itlist = [0]* len(size)

14

15 def __iter__(self):

16 while self.itlist [-1] < self.size [-1]:

17 for i in range(len(self.size)):

18 if self.itlist[i] >= self.size[i]:

51
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19 self.itlist[i] = 0

20 self.itlist[i+1] += 1

21 yield tuple(self.itlist)

22 self.itlist [0] += 1

23

24

25 # converts multiple types into the type np.ndarray

26 def to_nparray(para , size , all_para_floats):

27 if callable(para):

28 para = para(size)

29 elif type(para) == np.ndarray:

30 if not para.shape == size:

31 raise DimensionError("shape of parameter is not equal to size")

32 elif hasattr(para , ’__iter__ ’):

33 para = np.array(para)

34 if not para.shape == size:

35 raise DimensionError("shape of parameter is not equal to size")

36 elif not all_para_floats:

37 para = np.full(size , para)

38 return para

39

40

41 # Main -function generates a MC simulated noise by the Ornstein -Uhlenbeck -SDE

42 def ou_generate(iterations , theta , sigma , mu, x0, dt=1, noise_generator=np.random

.standard_normal , noise_parameters ={}, size=(1, ), unpack=True):

43 # validation and preparation of the parameters

44

45 # size is forced into a tuple

46 if type(size) == int:

47 size = (size , )

48 size = tuple(size)

49

50 # check if all run parameters (theta , sigma , mu) are float if not make them

all to arrays

51 all_para_floats = isinstance(theta , (int , float)) and isinstance(sigma , (int ,

float)) and isinstance(mu , (int , float))

52 theta = to_nparray(theta , size , all_para_floats)

53 sigma = to_nparray(sigma , size , all_para_floats)

54 mu = to_nparray(mu , size , all_para_floats)

55

56 # theta is only used with dt , so it will be once resized here

57 theta = theta * dt

58 # mu is only used with theta , so this value is calculated once here

59 mu = theta * mu

60

61 # generate the noise and iter_size

62 noise_parameters[’size’] = size+(iterations , )

63 noise = noise_generator (** noise_parameters)

64 # iter_size is an iterator , that iterates over a slice of the size ’size ’. So

it can be used to iterate over the

65 # complete theta , sigma , mu arrays or over a slice , that represents one time

step , of the noise array

66 iter_size = tuple ([ slice(0, length , 1) for length in size])

67

68 # resize noise with time step length
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69 noise = noise*dt**0.5

70

71 # initialize start values in the noise array , where t=0 (last index = 0)

72 if x0 is None:

73 pass

74 elif callable(x0):

75 x0 = x0(size)

76 noise[iter_size +(0, )] = x0[iter_size]

77 elif type(x0) == np.ndarray:

78 if x0.shape == size:

79 noise[iter_size +(0, )] = x0[iter_size]

80 else:

81 raise DimensionError("parameter shape is not equal to size")

82 elif hasattr(x0 , ’__iter__ ’):

83 x0 = np.array(x0)

84 if x0.shape == size:

85 noise[iter_size +(0, )] = x0[iter_size]

86 else:

87 raise DimensionError("parameter shape is not equal to size")

88 else:

89 noise[iter_size +(0, )] = x0

90

91 # main iteration process

92 if all_para_floats:

93 for i in range(iterations -1):

94 noise[iter_size +(i+1, )] = noise[iter_size +(i, )] * (1-theta) + mu +

sigma*noise[iter_size +(i+1, )]

95 else:

96 for i in range(iterations -1):

97 noise[iter_size +(i+1, )] = noise[iter_size +(i, )] * (1-theta[

iter_size ]) + mu[iter_size] + sigma[iter_size ]*noise[iter_size +(i+1, )]

98

99 # discards the wrapping array in case size = (1, ) and feature is enables

100 if size == (1, ) and unpack:

101 return noise[0, 0: iterations]

102 else:

103 return noise

104

105

106 # These are wrappers , to make functions usable as arguments in ou_generate , that

do not full fill it prerequisites

107

108 # Use this if your function has no size argument , but also doesn’t need more

arguments.

109 # It works by calculating the function once per cell in an size shaped array ,

110 # saving the result in an array and returning that array.

111 def wrap_no_size(func):

112 def wrapper(size , *args , ** kwargs):

113 result = np.zeros(size , dtype=float)

114 for i in Iterator(size):

115 result[i] = func(*args , ** kwargs)

116 return result

117 return wrapper

118

119



54 Appendix A Python Code of the Main Modules

120 # This wrapper is useful , when the method has size , but also needs additional

arguments. This is not necessary ,

121 # when the noise function needs additional arguments , these can be given as

kwargs in noise_parameter

122

123 # sizepos is the position of size in args (if in args). Dummy value must be given

.

124 # If size not in args , sizepos needs to be set to -1

125 def wrap_additional_arguments(func , args , kwargs , sizepos =-1):

126 def wrapper(size):

127 if sizepos != -1:

128 args[sizepos] = size

129 else:

130 kwargs[’size’] = size

131 return func(*args , ** kwargs)

132 return wrapper

133

134

135 # This wrapper is useful when the function already has a size argument , but it is

named differently.

136 def wrap_rename_size(func , name):

137 def wrapper (*args , ** kwargs):

138 kwargs[name] = kwargs[’size’]

139 del kwargs[’size’]

140 return func(*args , ** kwargs)

141 return wrapper

142

143

144 # This combines the need of additional arguments and the lack of a size argument.

This was implemented ,

145 # because it is not trivial to wrap no_size and additonal_arguments into each

other.

146 def wrap_no_size_and_additional_arguments(func , args , kwargs):

147 def wrapper(size):

148 result = np.zeros(size , dtype=float)

149 for i in Iterator(size):

150 result[i] = func(*args , ** kwargs)

151 return result

152 return wrapper

Listing A.1: OU-Generator, file: ou generator.py

1 import numpy as np

2

3

4 # General:

5 # feed with np.array with flux only , non significant values , need to be set to np

.nan

6

7

8 # Some basic exceptions used (subject to change)

9

10 # This exception is thrown , if some values that shouldn ’t are NaN

11 class IsNANException(Exception):

12 pass
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13

14

15 # Implementation of the given formulas , from paper/thesis. Instead of a epsilon

an upper and lower limit are given

16

17

18 # returns a sigma*sqrt(dt) and the number of points used to calculate it

19 def get_sigma(data , lower , upper):

20 # positions of u_T , that are NOT NaN AND over lower AND under upper

21 pos = np.array ((~np.isnan(data))*(data > lower)*(data < upper), dtype=bool)

22 # discards last element (no u_T+1 would exist)

23 pos[-1] = False

24 # positions of u_T+1 (shift positions by +1)

25 pos1 = np.zeros(len(pos), dtype=bool)

26 pos1 [1:] = pos[:-1]

27 # calculates u_t+1 - u_t for all u_t

28 distance = data[pos1] - data[pos]

29 # discards all that are NAN

30 distance = distance [~np.isnan(distance)]

31 # if no points are left , no sigma can be calculated

32 if len(distance) == 0:

33 return np.nan , 0

34 # standard deviation is calculated and returned

35 return np.std(distance), len(distance)

36

37

38 def get_alpha_abs(data , sigma):

39 return np.sqrt(1-( sigma **2/np.var(data[~np.isnan(data)])))

40

41

42 def get_alpha_pm(data , mean , lower , upper):

43 # positions of u_T , that are NOT NaN AND (over lower OR under upper)

44 pos = np.array ((~np.isnan(data))*(( data < lower)+(data > upper)), dtype=bool)

45 # discards last element (no u_T+1 would exist)

46 pos[-1] = False

47 # positions of u_T+1 (shift positions by +1)

48 pos1 = np.zeros(len(pos), dtype=bool)

49 pos1 [1:] = pos[:-1]

50 # calculates all the alphas at once

51 alphas = (data[pos1] - mean)/(data[pos] - mean)

52 if len(alphas) == 0:

53 return np.nan

54 # calculates the mean of all alphas that are not NaN

55 return np.mean(alphas [~np.isnan(alphas)])

56

57

58 # auxiliary functions to easily calculate limits

59

60

61 # gets limits in terms of standard deviations form mean

62 # this is the method chosen to be used in the thesis/paper

63 def set_limit_by_std(data , sigma):

64 mean = np.mean(data[~np.isnan(data)])

65 std = np.std(data[~np.isnan(data)])

66 if mean == np.nan or sigma == np.nan or std == np.nan:
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67 raise IsNANException ()

68 return mean , mean - sigma * std , mean + sigma * std

69

70

71 # get limits form epsilon distance

72 def set_limit_by_epsilon(data , epsilon):

73 mean = np.mean(data[~np.isnan(data)])

74 if mean == np.nan:

75 raise IsNANException ()

76 return mean , mean - epsilon , mean + epsilon

77

78

79 def set_limit_by_percentage_of_mean(data , percent):

80 mean = np.mean(data[~np.isnan(data)])

81 if mean == np.nan:

82 raise IsNANException ()

83 return mean , mean * (1 - percent), mean * (1 + percent)

84

85

86 # calculates alpha and/or sigma directly , with use of the functions above

87

88

89 def sigma_by_percentage_of_mean(data , percent):

90 limits = set_limit_by_percentage_of_mean(data , percent)

91 return get_sigma(data , *limits [1:])

92

93

94 def alpha_by_std(data , sigma_para , sigma_std):

95 limits = set_limit_by_std(data , sigma_std)

96 return np.sign(get_alpha_pm(data , *limits)) * get_alpha_abs(data , sigma_para)

97

98

99 # calculates sigma and alpha by the method described in the thesis/paper (

sigma_sigma <=> m_\sigma , sigma_alpha <=> m_\alpha

100 def all_by_std(data , sigma_sigma , sigma_alpha):

101 limits_sigma = set_limit_by_std(data , sigma_sigma)

102 limits_alpha = set_limit_by_std(data , sigma_alpha)

103 sigma , n = get_sigma(data , *limits_sigma [1:])

104 return sigma , np.sign(get_alpha_pm(data , *limits_alpha))*get_alpha_abs(data ,

sigma), n

Listing A.2: Parameter extractor for σ and α, file: get para.py

1 import numpy as np

2

3

4 # PDF refers to probability density function

5 # CDF refers to cumulative distribution function

6

7

8 # Iterator class , used in random_array to iterate over a n-dimesional np array -

copied from ou_generator

9 # iterates over all indices of an array , which shape is given in the ’size’

argument

10 class Iterator:
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11

12 def __init__(self , size):

13 self.size = size

14 self.itlist = [0]* len(size)

15

16 def __iter__(self):

17 while self.itlist [-1] < self.size [-1]:

18 for i in range(len(self.size)):

19 if self.itlist[i] >= self.size[i]:

20 self.itlist[i] = 0

21 self.itlist[i+1] += 1

22 yield tuple(self.itlist)

23 self.itlist [0] += 1

24

25

26 # this is the main random generator

27 # cdf refers to an np.ndarray , that contains the numeric CDF (numeric integration

of the PDF)

28 # cdf[0] needs to be 0 and cdf[-1] needs to be 1

29 def random(cdf , min_limit , max_limit):

30 # draws random number from uniform distribution

31 ran = np.random.random ()

32 # gets the position where the cdf is the first time bigger then random value

33 over_ran = np.where(cdf > ran)[0][0]

34 # the value before that is the last where random is bigger

35 under_value = cdf[over_ran -1]

36 # calculates the "float position" ran would have , if cdf would be continuous

sampled

37 # last pos bigger then ran :: linear interpolation between the points

bigger and smaller then ran

38 float_pos = (over_ran -1) + (ran - under_value) / (cdf[over_ran] - under_value

)

39 # calculate a value from the "float position" (from the uniform sampling of

the CDF)

40 return min_limit + (max_limit - min_limit) * (float_pos / (len(cdf) -1))

41

42

43 # this is version uses the random function , but has a additional size argument. A

random number is generated for each

44 # cell of a size shaped array

45 def random_array(cdf , min_limit , max_limit , size):

46 result = np.zeros(size , dtype=float)

47 # calculates a random number for each cell in result

48 for i in Iterator(size):

49 result[i] = random(cdf , min_limit , max_limit)

50 return result

51

52

53 # if you only have a PDF , calculate a fitting CDF here

54 def cdf_by_pdf(pdf):

55 cdf = np.zeros(len(pdf)+1, dtype=float)

56 for i in range(len(pdf)):

57 cdf[i+1] = cdf[i] + pdf[i]

58 cdf [0] = 0

59 cdf[-1] = 1
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60 return cdf

61

62

63 if __name__ == "__main__":

64 # tests only

65 cdf = np.array ([0.0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])

66 print(random(cdf , 0, 1))

67 pdf = np.array ([0.1]*10)

68 print(cdf_by_pdf(pdf))

Listing A.3: Random number generator, file: random by cdf.py
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Python Code of the Scripts

As well as for Appendix A, the code shown is directly from the programs and thus not

specially formated.

This code here doesn’t have the module like nature of the code of Appendix A, even

if parts of it may be used as such. It is special tailored to the exact use case of the

situation and data. For that reason things like paths or the use of very specific data

structure, are coded directly into the program code. In most cases paths and other

variables are initialised in the ”main” (if name == ’ main ’:) and not set in the

functions themselves, so that it should be easy to change code, or use the program as a

module instead, even though it is not designed as such.

Might not be as well documented and commented as the main modules

1 import numpy as np

2 import ou_generator as ou

3 import time

4

5

6 """

7 The format used to save the np.array with the OU-time series is a 2d ndarray with

dtype=object.

8 Its shape is (amount , 4), where amount is the amount of time series saved in the

array.

9 In the second dimension the [time series , theta , mu , sigma] for each time series

is stored in this order.

10 """

11

12

13 """

14 While this is code is not written to be imported as a module and calling this as

one will generate the exact

15 time series used in the thesis/paper , one can shift all the non essential code

into a if __name__ == ’__main__ ’ clause.

59
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16 It might be easier to just copy the repack2 method into the program where it is

needed.

17 """

18

19

20 # set the amount , length and dt of the time series to generate

21 amount = 100000

22 length = 1190

23 dt = 0.1

24 seed = 982947937

25

26 # just renaming the fuction , so that one does not need to write np.random.normal

all the time

27 normal = np.random.normal

28

29

30 # not tested if order stays the same

31 # doesn ’t work , don’t use , use repack2 instead

32 def repack(theta , sigma , mu, noise):

33 dummyList = []

34 one_chain = slice(0, noise.shape[-1], 1)

35 for i in ou.Iterator(theta.shape):

36 #dummyList.append ([noise[i+(one_chain , )], theta[i], mu[i], sigma[i])

37 pass

38 return np.reshape(np.array(dummyList), theta.shape+(4, ))

39

40

41 # repacks the generated time series in the chosen format

42 def repack2(theta , sigma , mu, noise):

43 result = np.empty(theta.shape +(4, ), dtype=object)

44 for i in ou.Iterator(theta.shape):

45 one_chain = slice(0, noise.shape[-1], 1)

46 result[i+(0,)] = noise[i+(one_chain , )]

47 result[i+(1,)] = theta[i]

48 result[i+(3,)] = sigma[i]

49 result[i+(2,)] = mu[i]

50 return result

51

52

53 # generate parameters

54 # the parameters are generated out of function , so that they can be saved with

the generated numbers

55 np.random.seed(seed)

56 theta = normal(5, 5, amount)

57 sigma = normal(0, 1, amount)

58 mu = normal(0, 1, amount)

59

60 # for some manual checking (not required)

61 print(type(mu) == np.ndarray)

62

63 # generating ou_noise

64 print(’generating ou processes ’)

65 start = time.time()

66 # generates the ou -time series with the ou_generator module



Appendix B Python Code of the Scripts 61

67 generated = ou.ou_generate(length , theta , sigma , mu, None , dt=dt, size=(amount , )

)

68 print(’finished in {}s’.format(time.time()-start))

69 # some prints mean to mu parameter; sanity check if generator works and doesn’t

mess up order.

70 for i in range(len(mu)):

71 print(’mu: {}, <x>: {}’.format(mu[i], np.mean(generated[i])))

72 # repack to array form needed for next step

73 start = time.time()

74 print(’repackaging ’)

75 print(generated.shape)

76 # repacks it in the format used during the project

77 array = repack2(theta , sigma , mu , generated)

78 print(array.shape)

79 print(’finished in {}s’.format(time.time()-start))

80 print(’saving ’)

81 start = time.time()

82 # saves the array using the np module

83 np.save(’ouV4.npy’, array)

84 print(’finished in {}s’.format(time.time()-start))

85 print(’exit’)

Listing B.1: Generates the spezific time series used in 2.3.4, file: newBulk.py

1 import numpy as np

2 import get_para as gp

3 import os

4 from scipy.stats import ks_2samp as ks , spearmanr as sr, pearsonr as pr ,

kendalltau as kl

5 import tqdm

6

7

8 """

9

10 """

11

12

13 # data: [time series , theta , mu, sigma]

14

15 class QueueElement:

16

17 def __init__(self , name , alpha_func , sigma_func , alpha_paras , sigma_paras):

18 self.name = name

19 self.alpha_func = alpha_func

20 self.sigma_func = sigma_func

21 self.alpha_paras = alpha_paras

22 self.sigma_paras = sigma_paras

23

24

25 # this calculates sigma and alpha (2x) with given functions and given parameters

for one time series

26 def single_estimator(single_data , alpha_func , sigma_func , alpha_para , sigma_para ,

sigma_given):

27 # If the sigma or alpha parameters are iterable they will be unpack when

thrown into
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28 # the limit generating funtion. This allows for limit functions that use more

then one argument

29 if hasattr(sigma_para , ’__iter__ ’):

30 sig_limit = sigma_func(single_data , *sigma_para)

31 else:

32 sig_limit = sigma_func(single_data , sigma_para)

33 if hasattr(alpha_func , ’__iter__ ’):

34 alpha_limit = alpha_func(single_data , *alpha_para)

35 else:

36 alpha_limit = alpha_func(single_data , alpha_para)

37

38 # estimation of sigma

39 sigma_est = gp.get_sigma(single_data , *sig_limit [1:]) [0]

40 # estimation of alpha with estimated sigma

41 alpha_est = gp.get_alpha_abs(single_data , sigma_est) * np.sign(gp.

get_alpha_pm(single_data , *alpha_limit))

42 # estimation of alpha with given sigma

43 alpha_giv = gp.get_alpha_abs(single_data , sigma_given) * np.sign(gp.

get_alpha_pm(single_data , *alpha_limit))

44 # return values as tuple

45 return sigma_est , 1 - alpha_est , 1 - alpha_giv

46

47

48 # this calculates sigma and alpha (2x) with given functions and given parameters

for all time series

49 def estimator(data , alpha_func , sigma_func , alpha_para , sigma_para , dt):

50 # !!! the array cells at (0, x) are reserved for the parameters of the

functions !!!

51 estimation = np.zeros((data.shape [0] + 1, 3), dtype=float)

52 # sets the input values in the first cell

53 estimation [0, 0], estimation [0, 1], estimation [0, 2] = sigma_para , alpha_para

, alpha_para

54 # iterates over all times series

55 for i in tqdm.tqdm(range(data.shape [0]), desc=’time series ’, leave=False):

56 estimation[i + 1, 0], estimation[i + 1, 1], estimation[i + 1, 2] =

single_estimator(data[i, 0], alpha_func ,

57

sigma_func , alpha_para ,

58

sigma_para ,

59

data[i, 3] * np.sqrt(dt))

60 return estimation

61

62

63 # this calculates sigma and alpha (2x) for one function each over a given

parameter space for each.

64 # the results per parameter are saved and the match between the calculated and

given sigma and alphas are calculated

65 # with the functions given in test.

66 def one_function(data , path , name , alpha_func , sigma_func , alpha_paras ,

sigma_paras , dt , tests=[ks, sr , pr , kl],

67 test_names=None):

68 # sets standard names for standard tests

69 if test_names is None and tests == [ks , sr , pr , kl]:
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70 test_names = [’ks’, ’sr’, ’pr’, ’kl’]

71 statistics = np.empty((len(tests) + 1, len(alpha_paras) + 1, len(sigma_paras)

+ 1, 3), dtype=object)

72 # writes used tests and parameters in the 0th line of the array

73 for i in range(len(tests)):

74 statistics[i + 1, 0, 0, 0] = test_names[i]

75

76 for i in range(len(alpha_paras)):

77 statistics [0, i + 1, 0, 0] = alpha_paras[i]

78

79 for i in range(len(sigma_paras)):

80 statistics [0, 0, i + 1, 0] = sigma_paras[i]

81 # writes it’s own name in [0, 0, 0, 0]

82 statistics [0, 0, 0, 0] = name

83 # creates output dir if necessary

84 if not os.path.exists(f’{path }/{ name}’):

85 os.mkdir(f’{path }/{ name}’)

86 # main iteration over both parameter spaces

87 # for i in range(len(alpha_paras)):

88 for i in tqdm.tqdm(range(len(alpha_paras)), desc=’alpha’):

89 for k in tqdm.tqdm(range(len(sigma_paras)), desc=’sigma’, leave=False):

90 estimation = estimator(data , alpha_func , sigma_func , alpha_paras[i],

sigma_paras[k], dt)

91 np.save(f’{path }/{ name}/est -{name }#{i}-{k}.npy’, estimation)

92 for m in range(len(tests)):

93 # test quality of sigma

94 statistics[m + 1, i + 1, k + 1, 0] = tests[m](

95 np.abs(data[:, 3][~np.isnan(estimation [1:, 0])] * np.sqrt(dt)

),

96 estimation [1:, 0][~np.isnan(estimation [1:, 0])])

97 # test quality of theta

98 statistics[m + 1, i + 1, k + 1, 1] = tests[m](data[:, 1][~np.

isnan(estimation [1:, 1])] * dt,

99 estimation [1:, 1][~

np.isnan(estimation [1:, 1])])

100 statistics[m + 1, i + 1, k + 1, 2] = tests[m](data[:, 1][~np.

isnan(estimation [1:, 2])] * dt,

101 estimation [1:, 2][~

np.isnan(estimation [1:, 2])])

102 np.save(f’{path}/stat -{name}.npy’, statistics)

103

104

105 # this can execute one_function multiple times , so it is easier to queue multiple

functions with the same tests

106 def multiple_functions(data , path , dt, queue , tests =[ks , sr, pr, kl], test_names=

None):

107 # sets standard names for standard tests

108 if test_names is None and tests == [ks , sr , pr , kl]:

109 test_names = [’ks’, ’sr’, ’pr’, ’kl’]

110

111 for element in tqdm.tqdm(queue , desc=’functions ’):

112 one_function(data , path , element.name , element.alpha_func , element.

sigma_func , element.alpha_paras ,

113 element.sigma_paras , dt, tests=tests , test_names=test_names)

114



64 Appendix B Python Code of the Scripts

115

116 if __name__ == ’__main__ ’:

117 testqueue = [QueueElement(’test’, gp.set_limit_by_std , gp.set_limit_by_std ,

[1, 2, 3, 4], [0.05, 0.1, 0.5, 1])]

118 data = np.load("ouV4.npy", allow_pickle=True)

119 stableindices = np.where(np.array(np.where(data[:, 1] < 20, True , False) * np

.where(data[:, 1] > 0, True , False), dtype=bool))[0]

120 newdata = np.empty((len(stableindices), 4), dtype=object)

121 for i in range(newdata.shape [0]):

122 newdata[i, :] = data[stableindices[i], :]

123 del data

124 print(’data loaded and cleand sucessfully , starting the fun part’)

125 # the next line is for testing purposes only

126 # multiple_functions(newdata , ’./Extract ’, 0.1, testqueue)

127 # generates the queue for testing all methods (also the rejected) for a small

sampling in a chosen parameter space

128 queue1 = [QueueElement(’std -std’, gp.set_limit_by_std , gp.set_limit_by_std ,

[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4],

129 [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 1]),

130 QueueElement(’per -std’, gp.set_limit_by_percentage_of_mean , gp.

set_limit_by_std ,

131 [0.1, 0.2, 0.5, 1, 1.5, 2], [0.01 , 0.02, 0.05, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1]),

132 QueueElement(’std -per’, gp.set_limit_by_std , gp.

set_limit_by_percentage_of_mean ,

133 [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4], [0.02, 0.05, 0.1,

0.2, 0.5, 1]),

134 QueueElement(’per -per’, gp.set_limit_by_percentage_of_mean , gp.

set_limit_by_percentage_of_mean ,

135 [0.1, 0.2, 0.5, 1, 1.5, 2], [0.02 , 0.05, 0.1, 0.2,

0.5, 1]),

136 QueueElement(’max -max’, gp.set_limit_by_min_max , gp.

set_limit_by_min_max , [0.2, 0.5, 0.8],

137 [0.002 , 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3]) ,

138 QueueElement(’max -std’, gp.set_limit_by_min_max , gp.

set_limit_by_std , [0.2, 0.5, 0.8],

139 [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 1]),

140 QueueElement(’std -max’, gp.set_limit_by_std , gp.

set_limit_by_min_max , [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4],

141 [0.002 , 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3])

142 ]

143 # uncomment the following line to test the rejected methods

144 # multiple_functions(newdata , ’./Extract2 ’, 0.1, queue1 , tests=[sr , pr , kl],

test_names =[’spearmanr ’, ’personr ’, ’kendalltau ’])

145 # generates queue for std -std method only , this was found to be the best

method. For that reason a finer sampling

146 # was calculated , to find the maximum quality better.

147 queue_std = [QueueElement(’std -std -more’, gp.set_limit_by_std , gp.

set_limit_by_std , np.linspace (0.1, 3.5, 70 - 1),

148 np.linspace (0.01, 1.3, 129))]

149 # this starts the main calculation

150 multiple_functions(newdata , ’./Extract -std’, 0.1, queue_std , tests=[sr , pr ,

kl],
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151 test_names =[’spearmanr ’, ’personr ’, ’kendalltau ’])

152 print(’finished ’)

Listing B.2: This codes test multiple methods and parameters, to select and ε-

environment, file: best epsilon.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib.colors as colors

4

5

6 """

7 This program will get the maximum for each test. It also includes some plotting (

I know that isn’t a nice separation)

8 """

9

10

11 # repackaging into [test , alpha , sigma , extraction]

12 def get_2dmesh(d4array):

13 d2mesh = np.zeros(( d4array.shape [0] - 1, 3, d4array.shape [1] - 1, d4array.

shape [2] - 1))

14 zeroed = d4array [1:, 1:, 1:, :]

15 for i in range(zeroed.shape [0]):

16 for k in range(zeroed.shape [1]):

17 for m in range(zeroed.shape [2]):

18 for n in range(zeroed.shape [3]):

19 d2mesh[i, n, k, m] = zeroed[i, k, m, n][0]

20 return d2mesh

21

22

23 # calculates the minimum of an array in sigma direction , by summing over alpha

space

24 def get_sigma_minimum(mesh):

25 return np.argmin ([np.sum(mesh[:, i]) for i in range(mesh.shape [1]-1)])

26

27

28 def plot(raw_data , mesh , path , test_index , para_index , test , para):

29 plt.pcolormesh(raw_data[0, 0, 1:, 0], raw_data[0, 1:, 0, 0], mesh[i, k], cmap

=’RdBu’)

30 plt.xlabel(’$m_{\\ sigma}$’)

31 plt.ylabel(’$m_{\\ alpha}$’)

32 plt.title(f’extraction quality , tested with {test}’)

33 cbar = plt.colorbar ()

34 cbar.set_label(f’{test}’)

35 plt.savefig(f’{path}{ test_index }-{ para_index }.pdf’, dpi =300)

36 plt.close()

37

38

39 def plot_grad(raw_data , mesh , path , test , test_index , para , para_index):

40 print(mesh.shape)

41 plt.pcolormesh(raw_data[0, 0, 1:, 0], raw_data[0, 1:, 0, 0], mesh[test_index ,

para_index], cmap=’gist_yarg ’,norm=colors.LogNorm(vmin=1E-5,vmax =1E-1))

42 plt.xlabel(’$m_{\\ sigma}$’)

43 plt.ylabel(’$m_{\\ alpha}$’)

44 plt.title(f’gradient of the extraction quality , tested with {test}’)
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45 plt.colorbar ()

46 plt.savefig(f’{path}{ test_index }-{ para_index}-grad.pdf’, dpi =300)

47 plt.close()

48

49

50 if __name__ == ’__main__ ’:

51 raw_data = np.load(’stat -std -std -more.npy’, allow_pickle=True)

52 mesh = get_2dmesh(raw_data)

53

54 plt.pcolormesh(raw_data[0, 0, 1:, 0], raw_data[0, 1:, 0, 0], mesh[0, 0], cmap

=’RdBu’)

55 plt.show()

56

57 # calculate the absolutes gradients of all 3 tests in both (alpha and sigma)

direction

58 gradients = np.zeros(mesh.shape + (2,), dtype=float)

59 for i in range(mesh.shape [0]):

60 for k in range(mesh.shape [1]):

61 # gradient indizes: [test , parameter , x, y, direction]

62 gradients[i, k, :, :, 0], gradients[i, k, :, :, 1] = np.abs(np.

gradient(mesh[i, k]))

63 #print(gradients[0, 1, :, :, 0])

64 #plt.pcolormesh(raw_data[0, 0, 1:, 0], raw_data[0, 1:, 0, 0], gradients[1, 1,

:, :, 1], cmap=’gist_yarg ’,norm=colors.LogNorm(vmin=1E-5,vmax =1E-1))

65 #plt.show()

66

67 # gets sigma , where the gradient is as small as possible

68 # averaged over all tests , this is the best parameter for sigma

69 best_sigma = [get_sigma_minimum(gradients[i, 1, :, :, 1]) for i in range (3)]

70 best_sigma_values = [raw_data[0, 0, 1:, 0][i] for i in best_sigma]

71 print(best_sigma_values)

72 print(f’{np.mean(best_sigma_values)} {np.std(best_sigma_values)}’)

73

74 # for the best sigma (not the averaged , but for each test), the minimum of

the gradient in alpha direction is computed

75 # here also is averaged over all tests

76 best_theta = [np.argmin(gradients[i, 1, :, best_sigma[i], 0]) for i in range

(3)]

77 best_theta_values = [raw_data[0, 1:, 0, 0][i] for i in best_theta]

78 print(best_theta_values)

79 print(f’{np.mean(best_theta_values)} {np.std(best_theta_values)}’)

80

81 testlist = [’Spearmen -R’, ’Pearson -R’, ’Kendall -$\\tau$’]

82 paralist = [’$\\ sigma$ ’, ’$\\ theta$ ’, ’$\\ theta_{giv}$’]

83

84 # visulizes the results from above as plots

85 for i in range(len(testlist)):

86 for k in range(len(paralist)):

87 #plt.pcolormesh(raw_data[0, 0, 1:, 0], raw_data[0, 1:, 0, 0], mesh[i,

k], cmap=’RdBu ’)

88 #plt.show()

89 plot(raw_data , mesh , ’./’, i, k, testlist[i], paralist[k])

90

91 plot_grad(raw_data , gradients [:, :, :, :, 0], ’./0-’, testlist[i], i,

paralist[k], k)
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92 plot_grad(raw_data , gradients [:, :, :, :, 1], ’./1-’, testlist[i], i,

paralist[k], k)

Listing B.3: This gets the optimum parameter for each test (only one function) it

works with the files generated by best epsilon.py. In line 79, between the mean and

the standard deviation is a ± symbol in the python code, that can not be represented

correctly in LaTeX, while viewing code, file: get-min.py





Appendix C

Validity of the Updating Formula

For this calculation the exact updating forumula from Gillespie (1996a) is required. First

is shown that the updating formula is exact while not depending on the step size. To

show that the approximate updating formula (eq. 2.14) corresponds to a 1st order taylor

expansions for small ∆t it is required to show that the OUDE is fulfilled for infinitesimal

time steps.

The exact updating formula as given by Gillespie (1996a) is

x(t+ ∆t) = x(t)e−
∆t
τ +

[cτ
2

(
1− e

2∆t
τ

)] 1
2
N (C.1)

Gillespie (1996a) uses a different nomenclature (θ = 1/τ and σ =
√
c), the correspon-

dence to the parameters used here will be become apparent later. Also x is named X

and N(t) is named n.

First it is shown that the Eq.C.1 is exact. For this following expression must hold

x(t+ ∆t1 + ∆t2) = x(t+ ∆t3), (C.2)

where ∆t3 = ∆t1 + ∆t2. Therefore:

x(t+ ∆t1 + ∆t2) = x(t+ ∆t1)e−
∆t2
τ +

[cτ
2

(
1− e−

2∆t2
τ

)] 1
2
N2

!
= x(t+ ∆t3) (C.3)

(
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[cτ
2

(
1− e−

2∆t1
τ

)] 1
2
N1

)
e−

∆t2
τ +

[cτ
2

(
1− e−

2∆t2
τ

)] 1
2
N2

!
= x(t+ ∆t3)

(C.4)

x(t)e−

=∆t3︷ ︸︸ ︷
∆t1 + ∆t2

τ +e−
∆t2
τ

[cτ
2

(
1− e−

2∆t1
τ

)] 1
2
N1 +

[cτ
2

(
1− e−

2∆t2
τ

)] 1
2
N2

!
= x(t+∆t3)

(C.5)
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x(t)e−
∆t3
τ +

[cτ
2

(
e−

2∆t2
τ −e−

2

=∆t3︷ ︸︸ ︷
(∆t1 + ∆t2)

τ

)] 1
2
N1 +

[cτ
2

(
1− e−

2∆t2
τ

)] 1
2
N2

!
= x(t+∆t3)

(C.6)

Using the properties of the normal distributions of equations 2.6b and 2.6c, yields

x(t)e−
∆t3
τ +

[cτ
2

(
e−

2∆t2
τ − e−

2∆t3
τ + 1− e−

2∆t2
τ

)] 1
2
N3

!
= x(t+ ∆t3) (C.7)

x(t)e−
∆t3
τ +

[cτ
2

(
−e−

2∆t3
τ + 1

)] 1
2
N3

!
= x(t+ ∆t3) (C.8)

Because it is proven that eq. C.1 is exact, it is now required to show that it also fulfills

the OUDE. Therefore let ∆t→ 0, then

e−
∆t
τ = 1− ∆t

τ
+O(∆t2). (C.9)

Term of O(∆t2) or higher order are negligible, thus

e−
∆t
τ = 1− ∆t

τ
(C.10)

Therefore eq. C.1 becomes

x(t+ ∆t) = x(t)

(
1− ∆t

τ

)
+

[
cτ

2

(
1− 1 +

2∆t

τ

)] 1
2

N (C.11)

x(t+ ∆t) = x(t)
1

τ︸︷︷︸
θ

x(t)∆t+
√
c︸︷︷︸
σ

√
∆tN (C.12)

For ∆t → 0, ∆t = dt and for small ∆t, this is the approximate updating formula

found in 2.14.
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