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Zusammenfassung

Ziel dieser Arbeit war es mithilfe von Neutrinophysik, Einschärnkungen für Yukawakopp-
lungen in einem Links-Rechts Symmetrischen Modell zu �nden. Im Laufe dessen wurde
in der seltene Lepton Zerfall µ− → e−e+e− berechnet. In diesem Modell hat dieser Zerfall
tree-level Beiträge, die im Standrad Modell verboten sind, da sie einen Flavour-Changing
Neutral-Current darstellen. Um den Zerfall vollständig zu berechnen wurde zuerst ein
kompliziertes Phasenraum Integral bestimmt, welches unter der Näherung verschwinden-
der Elektronenmasse, ausgewertet wurde. Als die Zerfallsbreite, sowie das Verzweigungs-
verhältnis berechnet waren wurden Neutrinodaten benutzt um die Anzahl der Parameter
von denen das Verzweigungsverhältnis abhängig ist reduziert. Hierfür wurde der See-Saw
Mechanismus herangezogen. Es ergaben sich hierfür aufgrund quadratischer Gleichungen,
mehrere gültige Lösungen. Am Ende blieb ein Ausdruck für das Verzweigungsverältnis
stehen, der nur noch von drei Diagonaleinträgen einer Bidublett Yukawakopplung, sowie
tan β abhängt und vier Lösungen hat. Für diese vier Lösungen wurden Datensätze be-
rechnet und es wurde mit Hilfe experimenteller Zwangsbedingungen abgeschätzt welcher
Bereich des Parameterraums vom Experiment aus- oder eingeschlossen ist.





Abstract

The goal of this thesis was to �nd means to link neutrino physics with rare lepton de-
cays, in order to �nd constraints for Yukawa couplings in a Left-right-symmetric model.
Therefore, the decay µ− → e−e+e− was computed. In this model, it is realised at tree
level, which is not allowed in the SM, as this would be a FCNC. In order to compute the
decay width and branching ratio, a rather complicated phase space integration needed
to be evaluated. This integral was computed in the limit of vanishing electron masses,
as it would otherwise lead to a highly complicated integration. Afterwards, the see-saw
mechanism was used to constrain the Yukawa couplings and in the end, the �nal form for
the branching ratio was only dependant on three diagonal entries of a bidoublet Yukawa
coupling and tan β. Additionally, it turned out that quadratic equations led to four dif-
ferent solutions of the branching ratio. These have been used to compute datasets for
the branching ratio and experimental bounds have been used to �nd out which regions
have been ruled out by the experiment and which regions were not.
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1. Introduction

The neutrino has always been highly elusive - both in its nature and its theoretical con-
cept - to the extent that back when Wolfgang Pauli proposed it in 1930, he even felt the
need to apologize for it, with the words: "I have done a terrible thing, I have postulated a
particle that cannot be detected." [14] Since then, many discoveries about its nature have
been made, but at the same time more questions have been raised than answered. We
know now, that the solar models for neutrino emission are in fact correct as solar neutri-
nos did not vanish on their way to earth. They simply changed their �avour. Together
with the same discovery for atmospheric neutrinos, the concept of neutrino oscillation
which proved that - contrary to standard model (SM) assumptions - neutrinos indeed
have a non-zero mass, was developed. For this discovery the Nobel Prize in Physics was
awarded to Takaaki Kajita and Arthur B. McDonald in 2015 [15, 7].
So far, working this newly gained knowledge into the standard model has not led to

an overhauled, self-consistent theory beyond the standard model (BSM), supported by
experiments. Various loose ends remain that the current state of research simply cannot
yet tie up. Apart from some steps in the right direction, like measurements of the mixing
angles in the so-called PMNS -matrix for example, major questions still require research.
The nature of the masses - Dirac or Majorana - as well as the hierarchy of the mass
spectrum or the status of lepton CP symmetry, to mention only a few, are still unknown.
An pathway for BSM physics lies in the chirality of SM neutrinos.
Standard model neutrinos are realized in left-handed leptonic SU(2)L doublets. A sce-

nario to generate masses within the so-called see-saw mechanism proposes a right-handed
heavy partner for the SM neutrino. Incidentally, the right-handed charged leptons can be
realised in SU(2)R doublet, as opposed to singlets in the SM. Unfortunately, the scale at
which it takes place, is the the scale of grand uni�ed theories (GUT) at roughly 1015 GeV,
barring it from direct experimental testing with current devices [7]. But that does not
imply that current means of research are incapable of producing further insight. There
is in fact another way to tackle the subject of neutrino masses and that is rare lepton
decay. In the course of this thesis the Left-Right symmetric model (LRM ), a model that
allows massive right handed neutrinos will be used to compute the tree level amplitude
of the µ→ e−e−e+ decay, for which the SM only provides loop level decays. As Yukawa
couplings for charged leptons are the same as for neutrinos, when inserted into the for-
mula for the decay, data from neutrino physics can be used to constrain the parameters
of the model [2].
Hence, the goal of this thesis is to �nd a means to combine neutrino data with the

µ→ 3e decay in order to �nd constraints for the Yukawas. Chapter 2 will provide a brief
introduction to neutrino oscillation and the see-saw mechanism. The following chapter
will brie�y explain the foundations of the LRM, which are crucial to the understanding
of the computation of tree level decay in Chapter 4. In Chapter 5, the neutrino data will
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1. Introduction

be rewritten and inserted into the rare muon decay. Finally, that form will be used to
compute plots as functions of several input parameters, to determine whether the con-
�guration of these parameters produces a branching ratio supported by the experimental
bounds.
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2. Neutrino Physics

Several pioneering discoveries concerning neutrinos have been made in the recent past,
giving insight into BSM physics, to which this chapter seeks to give a brief introduction
(for more Information, see Ref. [15]).

2.1. Neutrino Oscillation

As they are leptons, neutrinos appear in three di�erent generations, just as their charged
leptonic counterparts, which are called �avour states | να〉 (with α = e, µ, τ). How-
ever, these are di�erent from their mass eigenstates | νi〉 (with i = 1, 2, 3) as they are
transformed by a unitary Matrix U in the following way:

| νi〉 = Uiα | να〉 and | να〉 = U−1
αi | νi〉 (2.1)

U is also known as the Pontecorvo-Maki-Nakagawa-Sakata matrix or in short PMNS
matrix. Note that both �avour and mass eigenstates are assumed to form a basis. In
order to obtain the vacuum transition amplitude, the time evolution will be applied to
the mass states:

| νk(t)〉 = exp (−iEk · t) | νk〉 (2.2)

together with the unitarity of U and eq. (2.1) yields

Aνα→νβ := Aαβ = 〈νβ | να(t)〉 (2.3)

=
3∑

k=1

U∗αkUβk exp (−iEk · t) .

Therefore, the transition probability Pαβ is

Pαβ = A∗αβ · Aαβ =
∑
k,j

U∗αkUβkUαjU
∗
βj︸ ︷︷ ︸

:=Jαβkj

exp (−i(Ek − Ej) · t) (2.4)

In the reasonable limit of ultra-relativistic neutrinos (mν = O(eV )), Ek yields

Ek =
√
~p2 +m2

k ≈ E +
m2
k

2E
. (2.5)

Which in turn inserted into eq. (2.4) becomes
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2. Neutrino Physics

Pαβ = δαβ − 4
∑
k>j

ReJαβkj sin2

(
∆m2

kjL

4E

)
︸ ︷︷ ︸

CP conserving

+ 2
∑
k>j

ImJαβkj sin2

(
∆m2

kjL

2E

)
︸ ︷︷ ︸

CP violating

wherein L is the distance between detector and source, commonly referred to as base-
line, ∆m2

kj = m2
k−m2

j the squared di�erence between two mass eigenstates and δαβ is the
Kronecker delta. Note that the �rst braced term is CP conserving whereas the second
braced term violates CP . It is important to understand that the observed oscillation
only depends on the di�erences of the squared masses, implying that it is impossible
to determine both the o�set and the hierarchy of the mass spectrum via oscillation.
There are two hierarchies, called normal hierarchy if m1 < m2 < m3, and inverted if
m3 < m1 < m2.

m

m1

m2

normal hierarchy
m3

Solar

Atmospheric

m3

m2

inverted hierarchy
m1

Solar

Atmospheric

Figure 2.1.. Schematic neutrino mass eigenstates for both hierarchies.

The mixing matrix can be parametrized as

UPMNS =

 1 0 0
0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

Atmospheric mixing

·

 c13 0 s13e
−δcp

0 1 0
−s13e

−δcp 0 c13


︸ ︷︷ ︸

Reactor mixing

·

 c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar mixing

·

 1 0 0

0 expi
α21

2 0

0 0 expi
α31

2

 (2.6)

whith sij = sin θij, cij = cos θij and δCP as a CP phase and α21 and α31 are Majorana
phases. The names atmospheric for θ23, reactor for θ13 and solar mixing angle for θ12
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2.2. See-Saw Mechanism

have historic reasons. Current results for the mixing angles and ∆m2 are given in table
2.1

Parameter Best-�t value

∆m2
21 (7.53± 0.18) · 10−5eV2

∆m2
32 (2.44± 0.06) · 10−3eV2

sin2 (θ12) 0.304± 0.014
sin2 (θ23) 0.514+0.055

−0.056

sin2 (θ13) (2.19± 0.12) · 10−2

Table 2.1.. Experimental best-�t values for neutrino oscillation data in a normal hierarchy. Data
taken from Ref [9].

2.2. See-Saw Mechanism

Experimentally, not much is known about neutrino masses, yet there is a concept to
explain the mass generation in theory. There are two distinct classes of masses, allowed
in an electroweak Lagrangian and that is either Dirac or Majorana [1]. A Dirac mass
term is of the form

LD =−mD

(
νLNR +NRνL

)
, (2.7)

and a Majorana mass term is of this form:

LM =− 1

2
mL
M

(
νLν

c
L + νcLνL

)
− 1

2
mR
M

(
NRN

c
R +N c

RNR

)
. (2.8)

It is now possible to express the neutrino �elds in a left handed vector nL like this:

nL =

(
νL
N c
R

)
, and ncL =

(
νcL NR

)
(2.9)

With this de�nition, the mass matrix M can be introduced.

LM+D = LM + LD = −1

2
ncLMnL + h.c., (2.10)

with

M =

(
mL mD

mT
D mR

)
. (2.11)

This matrix has two positive mass eigenstates:
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2. Neutrino Physics

m1,2 =

∣∣∣∣12
(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)∣∣∣∣ . (2.12)

The see-saw mechanism is based on the notion that the right handed neutrino �eldNR is of
a heavy mass. However, mD is of the electroweak scale and thusmD � mR. Furthermore,
νL possesses non-zero isospin and hypercharge which is why the left handed Majorana
term is forbidden by SM gauge symmetries. So, as a consequence mL = 0. Which is why
the eigenstates are

m1 ≈
m2
D

mR

m2 ≈ mR

(see also Ref. [1]). Thus, the right handed neutrino has to be at a mass scale where
new physics kicks in ΛBSM = mR and the mass of the very light neutrino is thus highly
suppressed with mD/ΛBSM . In fact, in order to satisfy experimental bounds for neutrino
masses, ΛBSM has to be close to the GUT scale. This also explains the name see-saw : The
heavy right handed particle pushes the light left-handed mass up, like in a real see-saw
[6, 7, 3].
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3. LRM

Left right symmetric extensions of the SM feature this gauge group

SU(3)C × SU(2)L × SU(2)R × U(1)B−L (3.1)

(see also Ref. [2, 3]). Note, that in this gauge group the charge of the U(1) group is
not the unphysical Y hypercharge, as in the SM, but B − L. That is: Baryon number
B minus lepton number L. Incidentally, contrary to the SM charge, this is an actual
physical quantity. The electric charge Q can be obtained by:

Q = T3L + T3R +
B − L

2
(3.2)

In the following discussion, only the leptonic part of the Lagrangian will be examined

LLRM,L = Y1LLφLR + Y2LLφ̃LR +
1

2
YLLL∆LL

c
L +

1

2
YRLR

c∆RLR + h.c. (3.3)

with leptonic SU(2) doublets:

LL =

(
νL
lL

)
∼ (1, 2, 1,−1);LR =

(
NR

lR

)
∼ (1, 1, 2,−1) (3.4)

Note, that both LL and LR hold for all three generations e, µ and τ , but - for the sake of
simplicity - only one generation will be assumed. The corresponding charges according
to the gauge groups in eq. (3.1) are given in brackets. Furthermore Y1, Y2, YL, YR denote
Yukawa couplings. Generally, these are 3 × 3 matrices, but in the simpli�ed case with
only one �avour, which will be examined, these are scalars. φ is a Higgs bidoublet and
φ̃ = iτ2φiτ2 and ∆L,∆R denote Higgs triplets.
The following de�nitions are according to Ref. [3]. The triplet ∆R

∆R =

(
δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
∼ (1, 1, 3, 2) (3.5)
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3. LRM

acquires a vacuum expectation value (VEV )

〈∆R〉 =

(
0 0
vR√

2
0

)
, (3.6)

breaking SU(2)R × U(1)B−L → U(1)Y . This can only be achieved with vR much greater
than the scale of the electroweak symmetry breaking. The SU(2)L triplet is:

∆L =

(
δ−L /
√

2 δ−−L
δ0
L −δ−L /

√
2

)
∼ (1, 3, 1, 2), (3.7)

which also acquires a VEV

〈∆L〉 =

(
0 0
vL√

2
0

)
. (3.8)

The VEV vL should be reasonably small in order to allow left handed neutrino masses of
O(eV).
The Higgs bidoublet φ is for both SU(2) groups:

φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
∼ (1, 2, 2, 0), (3.9)

The numbers in brackets denote the charges with the corresponding gauge groups accord-
ing to eq. (3.1). Additionally it acquires a vacuum expectation value

〈φ〉 =

(
v2√

2
0

0 v1√
2

)
(3.10)

at the scale v =
√
v2

2 + κ2
1 = 174GeV (see Ref. [2]). Together with the �rst step of

symmetry breaking, this results in the breaking of

⇒ SU(2)L × SU(2)R × U(1)B−L → U(1)Q. (3.11)

If we now return to the Lagrangian of eq. (3.3) and only consider the neutrino part of it,
namely

Lν,N = Y1νLφNR + Y2νLφ̃NR +
1

2
YLνL∆Lν

c
L +

1

2
YRNR

c∆RNR + h.c., (3.12)

and apply the symmetry breaking scheme from above,

⇒ LSB =
1√
2
Y1νLv2NR +

1√
2
Y2νLv1NR +

1

2
YLνL

c vL√
2
νL +

1

2
YRNR

c vR√
2
NR + h.c.

=
1√
2

(Y1v2 + Y2v1)νLNR +
1

2
√

2
YLvLνL

cνL +
1

2
√

2
YRvRNR

cNR + h.c., (3.13)
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this yields a mass matrix like in eq. (2.10)

⇒ M̂ =

( √
2vLYL

1√
2
(Y1v2 + Y2v1)

1√
2
(Y1v2 + Y2v1)

√
2vRYR

)
. (3.14)

Thus, the Dirac masses in the LRM are:

mD =
1√
2

(v2Y1 + v1Y2) . (3.15)

Therefore, the masses for the charged leptonic counterparts are:

ML =
1√
2

(v1Y1 + v2Y2) , (3.16)

resulting in a form of the neutrino masses in the form of

mν = mL −mD(mR)−1mT
D, (3.17)

which will be used later in Chapter 5 and is commonly referred to as the see-saw formula
[2].

9





4. Calculating The Decay

4.1. Transition Amplitudes

The rare decay of µ− → e−e−e+ is only feasible in the SM on loop level, as a tree level
decay would be a FCNC [4]. In the LRM, however, the decay is possible at tree level.
In order to obtain the tree level decay width, the amplitudes for the decay have to be
calculated. In a �rst step, consider the full Lagrangian.

L = Y1LPRφL+ Y †1 LPLφ
†L+ Y2LPRφ̃L+ Y †2 LPLφ̃

†L+
1

2
YLLPR∆LL

c +
1

2
Y †LL

cPL∆†LL

+
1

2
YRL

cPR∆RL+
1

2
Y †RLPL∆†RL

c

⇒ 1

2
YR L

cPR∆RL︸ ︷︷ ︸
LTCPR∆RL

+
1

2
Y †L L

cPL∆LL︸ ︷︷ ︸
LTCPL∆†LL

The Leptonic �elds L and L are of this form (see Ref. [11]):

L =

∫
d3p

(2π)3
√

2E(p)

∑
s

(
aspu

s(p)e−ipx + asc†p vs(p)eipx
)

L =

∫
d3p

(2π)3
√

2E(p)

∑
s

(
a†pu

s(p)eipx + acsp v
s(p)e−ipx

)
.

Considering these two possible Feynman diagrams for the decay. The left diagram in
�gure 4.1 involves a neutral Higgs particle, whereas the right one involves a doubly
charged Higgs scalar.

p1 p2

p3

p4

p1 p3

p2

p4

Figure 4.1.. left: neutral decay channel ⇒M1 right: doubly charged decay channel ⇒M2.

In order to calculate the amplitudes for these decays, consider
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4. Calculating The Decay

M1 ⇒ 〈0 |a(p2)ac(p3)a(p4)T

∫
dx(Y1LPRφL+ Y †1 LPLφ

†L+ Y2LPRφ̃L+ Y †2 LPLφ̃
†L)∫

dy(Y1LPRφL+ Y †1 LPLφ
†L+ Y2LPRφ̃L+ Y †2 LPLφ̃

†L)a†(p1) | 0〉.

The amplitudes are acquired by evaluating all the contractions. Note, that since the mass
eigenstates are mixings of the elecroweak states, one gets e�ective couplings for the four
neutral scalar states and the two Pseudoscalars in the form of:

Ỹi = Y1Oi1 + Y2Oi2 + YLOi3 + YROi4 with i ∈ {1, 2, 3, 4} (4.1)

and

Ỹ ′i = Y1O
′
i1 + Y ′2Oi2 + YLO

′
i3 + YRO

′
i4 with i ∈ {3, 4}, (4.2)

with both O and O′ being orthogonal matrices for scalars in eq. (4.1) and pseudoscalars
in eq. (4.2). In eq. 4.2, i is only either 3 or 4, because the last two columns of O′ are
reserved for the pseudoscalar Higgs Bosons (see Appendix A.1). Keeping this in mind,
the amplitudes for the scalar decay channel are as follows:

MS =
4∑
i=1

i
Ỹ eµ
i Ỹ ee

i

−m2
i

(ue(p2)(PL)uµ(p1)) (ue(p4)(PL)ve(p3))

+
4∑
i=1

i
Ỹ eµ
i (Ỹ ee

i )∗

−m2
i

(ue(p2)(PL)uµ(p1)) (ue(p4)(PR)ve(p3))

+
4∑
i=1

i
(Ỹ µe

i )∗Ỹ ee
i

−m2
i

(ue(p2)(PR)uµ(p1)) (ue(p4)(PL)ve(p3))

+
4∑
i=1

i
(Ỹ µe

i )∗(Ỹ ee
i )∗

−m2
i

(ue(p2)(PR)uµ(p1)) (ue(p4)(PR)ve(p3))

12



4.1. Transition Amplitudes

as well as for the pseudoscalar channel:

MP = −
2∑
i=1

i
Ỹ ′

eµ

i Ỹ
′ee
i

−m2
Ai

(ue(p2)(PL)uµ(p1)) (ue(p4)(PL)ve(p3))

+
2∑
i=1

i
Ỹ ′

eµ

i (Ỹ ′
ee

i )∗

−m2
Ai

(ue(p2)(PL)uµ(p1)) (ue(p4)(PR)ve(p3))

+
2∑
i=1

i
(Ỹ ′

µe

i )∗Ỹ ′
ee

i

−m2
Ai

(ue(p2)(PR)uµ(p1)) (ue(p4)(PL)ve(p3))

−
2∑
i=1

i
(Ỹ ′

µe

i )∗(Ỹ ′
ee

i )∗

−m2
Ai

(ue(p2)(PR)uµ(p1)) (ue(p4)(PR)ve(p3))

For the doubly charged decay channel, the following holds:

M2 =〈0 | a(p2)ac(p3)a(p4)T

∫
dx

(
1

2
YRL

TCPR∆RL+
1

2
Y †LL

TCPL∆†LL

)
∫
dy

(
1

2
YRL

TCPR∆RL+
1

2
Y †LL

TCPL∆†LL

)
a†(p1) | 0〉

=i
Y eµ
L Y ee

L

−mL
−−2

(
ve(p3)T (CPL)uµ(p1)

) (
ue(p2)(CPL)ue(p4)T

)
+ i

(Y µe
R )∗(Y ee

R )∗

−mR
−−2

(
ve(p3)T (CPR)uµ(p1)

) (
ue(p2)(CPR)ue(p4)T

)

Finally, there is another Feynman graph with switched out-states in the neural decay
channel:

p1

p2

p4

p3

Figure 4.2.. neutral scalar decay channel with switched out-statesM3.

For this part, it is important to note, that only p2 and p4 have to be switched. However,
since switching two fermions, results in a change of sign, one ends up with the following

13



4. Calculating The Decay

amplitude in the scalar case:

MS̃ =−
4∑
i=1

i
Ỹ eµ
i Ỹ ee

i

−m2
i

(ue(p4)(PL)uµ(p1)) (ue(p2)(PL)ve(p3))

−
4∑
i=1

i
Ỹ eµ
i (Ỹ ee

i )∗

−m2
i

(ue(p4)(PL)uµ(p1)) (ue(p2)(PR)ve(p3))

−
4∑
i=1

i
(Ỹ µe

i )∗Ỹ ee
i

−m2
i

(ue(p4)(PR)uµ(p1)) (ue(p2)(PL)ve(p3))

−
4∑
i=1

i
(Ỹ µe

i )∗(Ỹ ee
i )∗

−m2
i

(ue(p4)(PR)uµ(p1)) (ue(p2)(PR)ve(p3)) ,

as well as for the Pseudoscalars:

MP̃ = +
2∑
i=1

i
Ỹ ′

eµ

i Ỹ
′ee
i

−m2
Ai

(ue(p4)(PL)uµ(p1)) (ue(p2)(PL)ve(p3))

−
2∑
i=1

i
Ỹ ′

eµ

i (Ỹ ′
ee

i )∗

−m2
Ai

(ue(p4)(PL)uµ(p1)) (ue(p2)(PR)ve(p3))

−
2∑
i=1

i
(Ỹ ′

µe

i )∗Ỹ ′
ee

i

−m2
Ai

(ue(p4)(PR)uµ(p1)) (ue(p2)(PL)ve(p3))

+
2∑
i=1

i
(Ỹ ′

µe

i )∗(Ỹ ′
ee

i )∗

−m2
Ai

(ue(p4)(PR)uµ(p1)) (ue(p2)(PR)ve(p3)) .

Therefore, the full amplitude is as follows:

M =M1 +M2 +M3

=MS +MP +M2 +MS̃ +MP̃ .

In order to obtain the decay width, the squared amplitudes have to be computed. Note,
that after evaluating the traces, several terms proportional to me or higher orders of me,
remain. Yet, these contributions are negligible, as me � mµ. Hence, the value of the
squared amplitudes in the limit of me → 0 is

|M |2 =

[
2∑
i=1

(
(Ỹ ′

eµ

i )∗(Ỹ ′
ee

i )∗

mAi
2

(
Y µe
R Y ee

R

mR
−−2 +

Y eµ
L Y ee

L

mL
−−2

)
+
Ỹ ′

eµ

i Ỹ
′ee
i

mAi
2

(
(Y µe

R )∗(Y ee
R )∗

mR
−−2 +

(Y eµ
L )∗(Y ee

L )∗

mL
−−2

))

+
4∑
i=1

(
(Ỹ eµ

i )∗(Ỹ ee
i )∗

mi
2

(
Y µe
R Y ee

R

mR
−−2 +

Y eµ
L Y ee

L

mL
−−2

)
+
Ỹ eµ
i Ỹ ee

i

mi
2

(
(Y µe

R )∗(Y ee
R )∗

mR
−−2 +

(Y eµ
L )∗(Y ee

L )∗

mL
−−2

))
· (2p1p2p3p4 − 2p1p4p2p3)]
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4.1. Transition Amplitudes

+ (2p1p3p2p4)

[(
(Y eµ

L )∗(Y ee
L )∗

mL
−−2

Y eµ
L Y ee

L

mL
−−2 +

Y µe
R Y ee

R

mR
−−2

(Y µe
R )∗(Y ee

R )∗

mR
−−2

)
(4.3)

+
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i Ỹ
′ee
i (Ỹ ′

µe

j )∗(Ỹ ′
ee

j )∗

m2
Ai
m2
Aj

+
(Ỹ ′

eµ

i )∗(Ỹ ′
ee

i )∗Ỹ ′
eµ

j Ỹ
′ee
j

m2
Ai
m2
Aj

)

+
4∑
i=1

2∑
j=1

(
−(Ỹ eµ

i )∗(Ỹ ee
i )∗

m2
i

Ỹ ′
eµ

j Ỹ
′ee
j

m2
Aj

−
(Ỹ ′

eµ

j )∗(Ỹ ′
ee

j )∗

m2
Aj

Ỹ eµ
i Ỹ ee

i

m2
i

−
Ỹ ′

µe

j Ỹ
′ee
j

m2
Aj

(Ỹ µe
i )∗(Ỹ ee

i )∗

m2
i

− Ỹ µe
i Ỹ ee

i

m2
i

(Ỹ ′
µe

j )∗(Ỹ ′
ee

j )∗

m2
Aj

)

+
4∑
i=1

4∑
j=1

(
Ỹ eµ
i Ỹ ee

i (Ỹ µe
j )∗(Ỹ ee

j )∗

m2
im

2
j

+
(Ỹ eµ

i )∗(Ỹ ee
i )∗Ỹ eµ

j Ỹ ee
j

m2
im

2
j

)]

+ (2p1p2p3p4 + 2p1p4p3p2)

[
4∑
i=1

4∑
j=1

(
(Ỹ eµ

i )∗Ỹ ee
i Ỹ eµ

j (Ỹ ee
j )∗

m2
im

2
j

+
Ỹ µe
i (Ỹ ee

i )∗(Ỹ µe
j )∗Ỹ ee

j

m2
im

2
j

)

+
2∑
i=1

4∑
j=1

(
(Ỹ ′

eµ

i )∗Ỹ ′
ee

i

m2
Ai

Ỹ eµ
j (Ỹ ee

j )∗

m2
j

+
Ỹ ′

µe

i (Ỹ ′
ee

i )∗

m2
Ai

(Ỹ µe
j )∗Ỹ ee

j

m2
j

+
(Ỹ eµ

j )∗Ỹ ee
j

m2
j

Ỹ ′
eµ

i (Ỹ ′
ee

i )∗

m2
Ai

+
Ỹ µe
j (Ỹ ee

j )∗

m2
j

(Ỹ ′
µe

i )∗Ỹ ′
ee

i

m2
Ai

)

+
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i (Ỹ ′
ee

i )∗(Ỹ ′
µe

j )∗Ỹ ′
ee

j

m2
Ai
m2
Aj

+
(Ỹ ′

eµ

i )∗Ỹ ′
ee

i Ỹ
′eµ
j (Ỹ ′

ee

j )∗

m2
Ai
m2
Aj

)]

Note, that this rather lengthy expression, only contains three di�erent combinations of
scalar products remain:

2p1p2p3p4 + 2p1p4p3p2 (4.4)

2p1p3p2p4 (4.5)

2p1p2p3p4 − 2p1p4p3p2. (4.6)

These can be expressed by Mandelstam variables, in order to perform phase space inte-
gration.
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4. Calculating The Decay

4.2. Rewriting The Traces

Consider a two-particle scattering process, the Mandelstam variables s, t and u are de�ned
as follows [11]:

p1

p2

p3

p4

Figure 4.3.. two-particle scattering process where p1 and p2 are the in-states and p3 and p4 are
out-states.

s = (p1 + p2)2 = (p3 + p4)2 (4.7)

t = (p1 − p3)2 = (p2 − p4)2 (4.8)

u = (p1 − p2)2 = (p2 − p3)2 (4.9)

To obtain the Mandelstam variables s̄, t̄ and ū in a three-particle scattering process,
crossing symmetry can be used:

p1 p2

p3

p4

Figure 4.4.. Three-particle scattering process where p1 is the in-state and p2, p3 and p4 are out-
states.

s̄ := (p2 + p3)2 = (p1 − p4)2

t̄ := (p3 + p4)2 = (p1 − p2)2

ū := (p2 + p4)2 = (p1 − p3)2

16



4.2. Rewriting The Traces

These equations can be applied to eliminate the scalar products and express them as
combinations of s̄, t̄ and ū.

s̄ = (p1 − p4)2 = p2
1 + p2

4 − 2p1p4 = m2
µ +m2

e − 2p1p4 = 2m2
e + 2p2p3

t̄ = (p1 − p2)2 = p2
1 + p2

2 − 2p1p2 = m2
µ +m2

e − 2p1p2 = 2m2
e + 2p3p4

ū = (p1 − p3)2 = p2
1 + p2

3 − 2p1p3 = m2
µ +m2

e − 2p1p3 = 2m2
e + 2p2p4,

rearranging these expressions yields

p1p2 = 1/2(m2
µ +m2

e − t̄)
p1p3 = 1/2(m2

µ +m2
e − ū)

p1p4 = 1/2(m2
µ +m2

e − s̄)
p2p3 = 1/2(s̄− 2m2

e)

p3p4 = 1/2(t̄− 2m2
e)

p2p4 = 1/2(ū− 2m2
e)

and also, the following equation holds. With this ū can be eliminated

ū = m2
µ + 3m2

e − s̄− t̄.

Now, after letting me → 0

p1p2 = 1/2(m2
µ − t̄) (4.10)

p1p3 = 1/2(m2
µ − ū) (4.11)

p1p4 = 1/2(m2
µ − s̄) (4.12)

p2p3 = 1/2s̄ (4.13)

p3p4 = 1/2t̄ (4.14)

p2p4 = 1/2ū (4.15)

ū = m2
µ − s̄− t̄ (4.16)

remains. Inserting these expressions in eq. (4.5) to eliminate the scalar products yields

2p1p3p2p4 =
1

2

(
(m2

µ − ū)ū
)

=
1

2

(
−ū2 +m2

µū
)

=
1

2

(
−(m2

µ − s̄− t̄)2 +mµ(m2
µ − s̄− t̄)

)
=

1

2

(
−s̄2 − t̄2 +m2

µ(s̄+ t̄)
)
. (4.17)
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4. Calculating The Decay

Furthermore, inserting these expressions in eq. (4.4) yields

2p1p2p3p4 + 2p1p4p3p2 =
1

2

(
(m2

µ − t̄)t̄+ (m2
µ − s̄)s̄

)
=

1

2

(
−s̄2 − t̄2 +m2

µ(s̄+ t̄)
)
, (4.18)

and eq. (4.5)

2p1p2p3p4 − 2p1p4p3p2 =
1

2

(
(m2

µ − t̄)t̄− (m2
µ − s̄)s̄

)
=

1

2

(
t̄2 − s̄2 +m2

µ(t̄− s̄)
)

(4.19)

Conveniently, (4.17) has the same result as (4.18), so only two di�erent integrals are left
to compute. Now we need to perform the integration.

4.3. Phase Space Integration

In general, the di�erential decay width for a three particle decay process is given as (see
Ref. [5])

dΓ =
|M |2

2mµ

(
d3p2

(2π)32E2

)(
d3p3

(2π)32E3

)(
d3p4

(2π)3E4

)
(2π)4 δ4(p1 − p2 − p3 − p4)

=
1

8(2π)5mµ

d3p2

E2

d3p3

E3

d3p4

E4

δ4(p1 − p2 − p3 − p4).

The integrated decay width is thus:

⇒ Γ =
1

8(2π)5mµ

∞∫
−∞

d3p2d
3p3d

3p4δ
4(p1 − p2 − p3 − p4)

1

E2E3E4

|M |2. (4.20)

The following computation will be in large parts analogous to Ref. [13]. Note, that the
following expressions are equal to 1:

1 =

(mµ −me)2∫
4m2

e

ds̄ δ
(
s̄− (p2 + p3)2

)

1 =

(mµ −me)2∫
4m2

e

dt̄ δ
(
t̄− (p3 + p4)2

)
.
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4.3. Phase Space Integration

inserting these into the above equation, as well as using δ(q2 −m2)Θ(q0)d4q = d3q
(2π)3E(q)

yields

⇒ Γ =
1

8(2π)5mµ

∞∫
−∞

d4p2d
4p3d

4p4Θ (p20) Θ (p30) Θ (p40) δ4(p1 − p2 − p3 − p4)δ
(
p2

2 −m2
e

)

δ
(
p2

3 −m2
e

)
δ
(
p2

4 −m2
e

)(mµ −me)2∫
4m2

e

ds̄

(mµ −me)2∫
4m2

e

dt̄ δ
(
t̄− (p3 + p4)2

)
δ
(
s̄− (p2 + p3)2

)
|M |2

=
1

8(2π)5mµ

(mµ −me)2∫
4m2

e

ds̄

(mµ −me)2∫
4m2

e

dt̄|M |2I, (4.21)

where I is de�ned as:

I =

∞∫
−∞

d4p2d
4p3d

4p4Θ (p20) Θ (p30) Θ (p40) δ4(p1 − p2 − p3 − p4)δ
(
p2

2 −m2
e

)
δ
(
p2

3 −m2
e

)
δ
(
p2

4 −m2
e

)
δ
(
t̄− (p3 + p4)2

)
δ
(
s̄− (p2 + p3)2

)
note that d4p3 gets consumed by δ4

⇒ I =

∞∫
−∞

d4p2d
4p4Θ (p20) Θ (p10 − p20 − p40) Θ (p40) δ

(
p2

2 −m2
e

)
δ
(
(p1 − p2 − p4)2 −m2

e

)
δ
(
p2

4 −m2
e

)
δ
(
t̄− (p3 + p4)2

)
δ
(
s̄− (p2 + p3)2

)
. (4.22)

When computing I, consider the µ resting frame

p1 =

(
mµ

~0

)
.

Switching to the following frame facilitates these expressions:

(p2 + p3)2 = (p1 − p4)2 = m2
µ +m2

e − 2p10p40

p2
3 = (p1 − p2 − p4)2 = m2

µ + (p2 + p4)2 − 2p10(p20 + p40)

= m2
µ + 2m2

e − 2(~p2 · ~p4)− 2p10(p20 + (p40)

(p3 − p4)2 = (p1 − p2)2 = m2
µ +m2

e − 2p10p20,
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4. Calculating The Decay

with the new de�nitions:

| ~p2 | := p

| ~p4 | := q

(~p2 ~p4) := pq cosα

⇒I =

∞∫
−∞

d4p2Θ(p20)δ
(
p2

2 −me

)
δ
(
t̄−m2

µ −m2
e + 2p10p40

)
Θ(p10−p20−p40)
↪→ p10 − p20∫

0

dp40δ
(
s̄−m2

µ −m2
e + 2p10p40

)Θ(p40)
↪→∞∫
0

dq q2 δ

(
q +

√
p40 −m2

e

)(
q −

√
p40 −m2

e

)︷ ︸︸ ︷
(p4

2
0 − q2︸ ︷︷ ︸
p2

4

−m2
e) ·2π

−1∫
1

d (cosα) δ
(
m2
µ +m2

e − 2p10(p20 + p40)− 2pq cosα
)
. (4.23)

The 2π stems from integrating over the azimuth angle. Evaluating these Integrals is can
be achieved by applying this expression:

δ (g(x)) =
∑
i

δ(x− xi)
| g′(xi) |

. (4.24)

In the case of the distributions in eq. (4.23), this results in the following form

δ
(
−q2 − (p2

40 −m
2
e)
)
⇒g(q) = −

(
−q2 − (p2

40 −m
2
e)
)

=

[
(q −

√
p2

40 −m2
e)(q +

√
p2

40 −m2
e)

]
g′(q) = −2q

⇒ δ
(
p4

2
0 − q2 −m2

e

)
=

[
δ(q −

√
p2

40 −m2
e) + δ(q +

√
p2

40 −m2
e)
]

2
√
p2

40 −m2
e

. (4.25)

Since the lower limit of the integral along dq is 0,
∞∫
0

dqδ(q−
√
p2

40 −m2
e) will vanish. Now,

what remains is this:

⇒ I = π

∞∫
−∞

d4p2Θ (p20) δ
(
p2

2 −m2
e

)
δ
(
t̄−m2

µ −m2
e + 2p10p40

)
p10 − p20∫

0

dp40δ
(
s̄−m2

µ −m2
e + 2p10p40

) ∞∫
0

dq
q

p

1

2
√
p4

2
0 −m2

e

δ

(
q −

√
p4

2
0 −m2

e

)
.
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4.3. Phase Space Integration

Likewise with eq. (4.24), the following holds:

δ
(
m2
µ +m2

e − 2p10(p20 + p40)− 2pq cosα
)

= δ (g(cosα)) =
δ (cosα− 0)

2pq
=
δ (cosα)

2pq
.

This consumes the d cosα Integral and renders q2 ⇒ q
p
. Also,

⇒ δ
(
s̄−m2

µ −m2
e + 2p10p40

)
= δ (g(p40)) =

δ (p40)

2p10

. (4.26)

⇒ consumes the p40 integration and gives 1
2p10

as

∞∫
0

dq
q

p

1

2
√
p4

2
0 −m2

e

δ

(
q −

√
p4

2
0 −m2

e

)
=

√
p4

2
0 −m2

e

2p
√
p4

2
0 −m2

e

=
1

2p
.

⇒ I = π

∞∫
−∞

d4p2Θ(p20)δ
(
p2

2 −m2
e

)
δ
(
t̄−m2

µ −m2
e + 2p10p40

) 1

2p10

1

2p

=
π

4p10

∞∫
−∞

dp20δ
(
t̄−m2

µ −m2
e + 2p10p40

)
︸ ︷︷ ︸

analogus to (4.26)

⇒ 1
2p10

· 4π︸︷︷︸
soild angle

·
−∞∫
0

dp
p2

p
δ
(
p2

2 − p2 −m2
e

)
︸ ︷︷ ︸

analogus to (4.25)

Inserting this into the above eq. (4.21) yields

⇒ I =
π2

2p1
2
0

∞∫
0

dp
p

2
√
p2

2
0 −m2

e

δ

(
p−

√
p2

2
0 −m2

e

)

=
π2

4p1
2
0

√
p2

2
0 −m2

e√
p2

2
0 −m2

e

=
π2

4p1
2
0

⇒ Γ =
1

8(2π)5mµ

π2

4p1
2
0

∫
ds̄dt̄|M |2. (4.27)

Note, that in the muon resting frame p1
2
0 = m2

µ, which leaves us with the expression for
the decay width only dependent on an integration along two Mandelstam variables.
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4. Calculating The Decay

⇒ Γ =
1

8(2π)5

π2

4m3
µ

∫
ds̄dt̄|M |2. (4.28)

So far, the limits are not identi�ed.

Evaluating Integration Limits

In order to �nd the limits of the t̄ and the s̄ integral, consider the system where ~p1 = ~p4

holds. Here, we introduce the following rede�nitions

| ~p2 |:=p
| ~p4 |:=q
~p2 ~p4 =pq cosα,

which enables us to return to eq. (4.22) and rewrite it as follows:

⇒ I =

∞∫
−∞

d4p2d
4p4Θ (p10 − p20 − p40) Θ (p40) δ

(
p2

2 −m2
e

)
δ
(
(p1 − p2 − p4)2 −m2

e

)
δ
(
p2

4 −m2
e

)
· δ
(
s̄− (p1 − p4)2) δ (t̄− (p1 − p4)2

)
=

∞∫
−∞

d4p4Θ (p40) δ
(
p2

4 −m2
e

)
δ
(
s̄− (p1 − p4)2

)
I ′.

By way of the above de�nitions, one can obtain the following expression:

I ′ =

∞∫
−∞

dp20δ
(
m2
µ +m2

e − 2p10p20 − 2p10p40 + 2p20p40 + 2q2
)

Θ(p20)Θ (p10 − p20 − p40)

∞∫
0

dpp2δ
(
p2

2
0 − p2 −m2

e

)
· 2π

1∫
−1

d(cosα)δ
(
t̄−m2

µ −m2
e + 2p10p20 − 2pq cosα

)
.
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4.3. Phase Space Integration

In case | t̄−m2
µ −m2

e + 2p10p20 |≤ 2pq, with eq. (4.24), one can obtain

δ
(
t̄−m2

µ −m2
e − 2p10p40 − 2pq cosα

)
=
δ(cosα)

2pq

⇒ I ′ =

∞∫
−∞

δ
(
m2
µ +m2

e − 2p10p20 − 2p10p40 + 2p20p40 − 2q2
)

∞∫
0

dpp2 π

pq
δ
(
p2

2
0 − p2 −m2

e

)
Θ (p20) Θ (p10 − p20 − p40) .

With another application of eq. (4.24) one can also obtain:

δ
(
m2
µ +m2

e − 2p10p40 + 2q2 − 2p20(p10 − p40)
)

=
δ (p20)

2(p10 − p40)
.

The integral along dp20 can now be consumed by above δ, as well as the integration along
dp can be performed analogous to (4.25):

I ′ =

∞∫
∞

dp20δ
(
m2
µ +m2

e − 2p10p20 + 2p20p40 − 2p10p40 + 2q2
)

·
∞∫

0

dp
p

q
πδ
(
p2

2
0 − p2 −m2

e

)
Θ (p20) Θ (p10 − p20 − p40)

=
π

2q(p10 − p40)

∞∫
0

dp
p

2
√
p20 −m2

e

δ
(
p−

√
p20 −m2

e

)
Θ (p20) Θ (p10 − p20 − p40)

=
π

4q(p10 − p40)
Θ (p20) Θ (p10 − p20 − p40) . (4.29)

This only holds if

p2 = p2
2
0 −m2

e (4.30)

p20 =
1

2 (p10 − p40)

(
m2
µ +m2

e − 2p10p40 + 2q2
)
. (4.31)

Thus I ′ = 0, and also if

p40 =
−1

2p10

(
s̄−m2

µ −m2
e − 2q2

)
(4.32)

⇒ I =

∞∫
−∞

d4p4Θ (p40) δ
(
p2

4 −m2
e

)
δ
(
s̄−m2

µ −m2
e + 2p10p40

)
I ′.
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4. Calculating The Decay

Inserting eq. (4.29) into above equation yields:

⇒ I =
π

2(p10 − p40)
· 4π

∞∫
0

dp40

∞∫
0

dqq2δ
(
p4

2
0 − q2 −m2

e

)
Θ (p20) Θ (p40)

Θ (p10 − p20 − p40) δ
(
s̄−m2

µ −m2
e + 2p20p40

)︸ ︷︷ ︸
consumes p20 integral, yields 1

2p20

⇒ I =
π2

2p10

∞∫
0

dq2 δ
(
p4

2
0 − q2 −m2

e

)︸ ︷︷ ︸
δ(−(q2+m2

e−p4
2
0))

Θ (p20) Θ (p40) Θ (p10 − p20 − p40)
1

p10 − p40

.

Thus, the δ is giving this constraint:

p4
2
0 − q2 −m2

e = 0. (4.33)

Additionally, with the de�nition of p1 according to the chosen frame:

p1 =

(
p10

~q

)
⇒ p2

1 = m2
µ = p1

2
0 − q2

⇒ p1
2
0 = q2 +m2

µ, (4.34)

and with eq. (4.32), (4.33) and (4.34) the following can be computed as

p4
2
0 − q2 −m2

e = 0

⇔ p4
2
0 =

1

4
(
q2 +m2

µ

) (s̄−m2
µ −m2

e − 2q2
)

⇔ q2 =
1

4s̄

[
s̄2 − 2s̄

(
m2
µ +m2

e

)
+
(
m4
µ +m4

e − 2m2
em

2
µ

)]
⇔ q2 =

1

4s̄

[
s̄2 − 2s̄

(
m2
µ +m2

e

)
+
(
m2
µ −m2

e

)2
]
. (4.35)

Including the de�nitions from before, one can simplify:

p1
2
0 = q2 +m2

µ

=
1

4s̄

[
s̄2 − 2s̄

(
m2
µ +m2

e

)
+
(
m2
µ −m2

e

)2
]

+m2
µ

=
1

4s̄

[
s̄2 + 2s̄2m2

µ − 2s̄m2
e +m4

µ +m4
e − 2m2

em
2
µ

]
=

1

4s̄

[(
s̄+m2

µ −m2
e

)2
]

⇒ p10 =
1

2
√
s̄

(
s̄+m2

µ −m2
e

)
. (4.36)
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4.3. Phase Space Integration

Inserting this result for p10 into eq. (4.32) yields

⇒ p40 =
−1

2 1
2
√
s

(
s̄+m2

µ −m2
e

) (s̄−m2
µ −m2

e − sq2
)

=
−
√
s(s̄−m2

µ −m2
e − 2q2)(

s̄+m2
µ −m2

e

) .

Applying eq. (4.35) into the above equation gives the following result for p40:

⇒ p40 =
−1

2
√
s

(
s̄−m2

µ +m2
e

)
. (4.37)

Upon inserting this into eq. (4.31), one �nds

p20 =
1

2 (p10 − p40)

(
m2
µ +m2

e − 2p10p40 + 2q2
)

(4.38)

p20 =

(
m2
µ +m2

e −
−2(s̄+m2

µ−m2
e)(s̄+m2

e−m2
µ)

4s̄

)
+ 2q2

2 1
2
√
s̄

(
s̄+m2

µ −m2
e + s̄+m2

e −m2
µ

)
⇒ p20 =

√
s̄

2
. (4.39)

Inserting eq. (4.30) again into eq. (4.39) gives the following result

p2 =
s̄

4
+m2

e, (4.40)

which in combination with eq. (4.35) yields,

⇒ 2pq = 2

√
s̄

4
+m2

e

√
1

4s̄

[
s̄2 − 2s̄

(
m2
µ +m2

e

)
+
(
m2
µ −m2

e

)2
]
.

We de�ne λ as

λ [x, y, z] : = x2 + y2 + z2 − 2 (xy + xz + yz) ,

in order to rewrite the expression from above in the following form:

⇒ 2qp =

√
λ
[
s̄, m2

e,m
2
µ

]
s̄

( s̄
4
−m2

e

)
. (4.41)
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4. Calculating The Decay

This can be used to end this rather lengthy computation and �nd the integration limits
using the inequality.

| t̄−m2
µ −m2

e + 2p10p20 | ≤ 2pq

⇒| t̄− 1

2
m2
µ −

3

2
m2
e +

1

2
| ≤

√
λ
[
s̄, m2

e,m
2
µ

]
s̄

( s̄
4
−m2

e

)
.

Finally, with the di�erent cases of the inequality, we end up with:

s̄min = 4me

s̄max =
(
m2
µ −m2

e

)
t̄min = m2

µ +m2
e −

1

2

(
s̄+m2

µ −m2
e

)
−

√
λ
[
s̄, m2

µ,m
2
e

]
s̄

( s̄
4
−m2

e

)
t̄max = m2

µ +m2
e −

1

2

(
s̄+m2

µ −m2
e

)
+

√
λ
[
s̄, m2

µ,m
2
e

]
s̄

( s̄
4
−m2

e

)
.

Note, that me → 0 has yet to be applied. Otherwise, the s̄ integration leads to elliptic
integrals whose evaluation turns out to be rather non-trivial. Fortunately, this is not the
case here. After letting me → 0 yields:

t̄min = −

√(
m2
µ − s̄

)2

4
+

1

2

(
m2
µ − s̄

)
= 0 (4.42)

t̄max = +

√(
m2
µ − s̄

)2

4
+

1

2

(
m2
µ − s̄

)
=
(
m2
µ − s̄

)
(4.43)

s̄min = 0 (4.44)

s̄max = m2
µ. (4.45)

Eventually we have all the tools to integrate the decay width

Γ =
1

32 (2π)5

π2

m3
µ

s̄max∫
s̄min

ds̄

t̄max∫
t̄min

dt̄|M |2. (4.46)

26



4.4. Evaluating Integrals

4.4. Evaluating Integrals

With these limits, both integrals that need to be evaluated are:

I(1) =

∫ s̄max

s̄min

ds̄

∫ t̄max

t̄min

dt̄
1

2

(
−s̄2 − t̄2 +m2

µ(s̄+ t̄)
)

=
m8
µ

12

I(3) =

∫ s̄max

s̄min

ds̄

∫ t̄max

t̄min

dt̄
1

2

(
t̄2 − s̄2 +m2

µ(t̄− s̄)
)

=

∫ s̄max

s̄min

ds̄
1

6
(m2

µ − s̄)(5m4
µ − 13m2

µs̄− 4s̄2)

=
1

6
(5m8

µ − 9m8
µ + 3m8

µ +m8
µ)

= 0.

This implies that, in the limit of me → 0, the contribution from interference with doubly
charged and neutral scalars vanishes. Inserting these results into eq. (4.3) yields the
following:∫

|M |2 =
m8
µ

12

[
(Y eµ

L )∗(Y ee
L )∗

mL
−−2

Y eµ
L Y ee

L

mL
−−2 +

Y µe
R Y ee

R

mR
−−2

(Y µe
R )∗(Y ee

R )∗

mR
−−2

+
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i Ỹ
′ee
i (Ỹ ′

µe

j )∗(Ỹ ′
ee

j )∗

m2
Ai
m2
Aj

+
(Ỹ ′

eµ

i )∗(Ỹ ′
ee

i )∗Ỹ ′
eµ

j Ỹ
′ee
j

m2
Ai
m2
Aj

)

+
4∑
i=1

4∑
j=1

(
Ỹ eµ
i Ỹ ee

i (Ỹ µe
j )∗(Ỹ ee

j )∗

m2
im

2
j

+
(Ỹ eµ

i )∗(Ỹ ee
i )∗Ỹ eµ

j Ỹ ee
j

m2
im

2
j

)

+
4∑
i=1

4∑
j=1

(
(Ỹ eµ

i )∗Ỹ ee
i Ỹ eµ

j (Ỹ ee
j )∗

m2
im

2
j

+
Ỹ µe
i (Ỹ ee

i )∗(Ỹ µe
j )∗Ỹ ee

j

m2
im

2
j

)

+
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i (Ỹ ′
ee

i )∗(Ỹ ′
µe

j )∗Ỹ ′
ee

j

m2
Ai
m2
Aj

+
(Ỹ ′

eµ

i )∗Ỹ ′
ee

i Ỹ
′eµ
j (Ỹ ′

ee

j )∗

m2
Ai
m2
Aj

)]

+
m8
µ

12

[
2∑
i=1

4∑
j=1

(
(Ỹ ′

eµ

i )∗Ỹ ′
ee

i

m2
Ai

Ỹ eµ
j (Ỹ ee

j )∗

m2
j

+
Ỹ ′

µe

i (Ỹ ′
ee

i )∗

m2
Ai

(Ỹ µe
j )∗Ỹ ee

j

m2
j

+
(Ỹ eµ

j )∗Ỹ ee
j

m2
j

Ỹ ′
eµ

i (Ỹ ′
ee

i )∗

m2
Ai

+
Ỹ µe
j (Ỹ ee

j )∗

m2
j

(Ỹ ′
µe

i )∗Ỹ ′
ee

i

m2
Ai

)
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+
4∑
i=1

2∑
j=1

(
−(Ỹ eµ

i )∗(Ỹ ee
i )∗

m2
i

Ỹ ′
eµ

j Ỹ
′ee
j

m2
Aj

−
(Ỹ ′

eµ

j )∗(Ỹ ′
ee

j )∗

m2
Aj

Ỹ eµ
i Ỹ ee

i

m2
i

−
Ỹ ′

µe

j Ỹ
′ee
j

m2
Aj

(Ỹ µe
i )∗(Ỹ ee

i )∗

m2
i

− Ỹ µe
i Ỹ ee

i

m2
i

(Ỹ ′
µe

j )∗(Ỹ ′
ee

j )∗

m2
Aj

)]
.

The last bracket is still worrisome, as it describes non-vanishing interaction between
scalar and pseudoscalar particles. However, in the limit of real Yukawa couplings and
additionally renaming summation indices, these parts cancel each other out.∫
|M |2 =

m8
µ

12

[
Y eµ
L Y ee

L

mL
−−2

Y eµ
L Y ee

L

mL
−−2 +

Y µe
R Y ee

R

mR
−−2

Y µe
R Y ee

R

mR
−−2

+ 2
4∑
i=1

4∑
j=1

(
Ỹ eµ
i Ỹ ee

i Ỹ eµ
j Ỹ ee

j

m2
im

2
j

+
Ỹ µe
i Ỹ ee

i Ỹ µe
j Ỹ ee

j

m2
im

2
j

)

+2
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i Ỹ
′ee
i Ỹ

′µe
j Ỹ

′ee
j

m2
Ai
m2
Aj

+
Ỹ ′

eµ

i Ỹ
′ee
i Ỹ

′eµ
j Ỹ

′ee
j

m2
Ai
m2
Aj

)]

+
m8
µ

12


2∑
i=1

4∑
j=1

 Ỹ ′
eµ

i Ỹ
′ee
i

m2
Ai

Ỹ eµ
j Ỹ ee

j

m2
j

− Ỹ ′
eµ

i Ỹ
′ee
i

m2
Ai

Ỹ eµ
j Ỹ ee

j

m2
j︸ ︷︷ ︸

=0

+
Ỹ ′

µe

i Ỹ
′ee
i

m2
Ai

Ỹ µe
j Ỹ ee

j

m2
j

− Ỹ ′
µe

i Ỹ
′ee
i

m2
Ai

Ỹ µe
j Ỹ ee

j

m2
j︸ ︷︷ ︸

=0

+
Ỹ eµ
j Ỹ ee

j

m2
j

Ỹ ′
eµ

i Ỹ
′ee
i

m2
Ai

−
Ỹ eµ
j Ỹ ee

j

m2
j

Ỹ ′
eµ

i Ỹ
′ee
i

m2
Ai︸ ︷︷ ︸

=0

+
Ỹ µe
j Ỹ ee

j

m2
j

Ỹ ′
µe

i Ỹ
′ee
i

m2
Ai

−
Ỹ µe
j Ỹ ee

j

m2
j

Ỹ ′
µe

i Ỹ
′ee
i

m2
Ai︸ ︷︷ ︸

=0


 .

Thus, the total decay-width in the limit of real Yukawa couplings as well as me → 0,
takes this rather concise form:

Γ =
m5
µ

3 · 212 π2

[(
Y eµ
L Y ee

L

mL
−−2

)2

+

(
Y µe
R Y ee

R

mR
−−2

)2

+2
4∑
i=1

4∑
j=1

(
Ỹ eµ
i Ỹ ee

i Ỹ eµ
j Ỹ ee

j

m2
im

2
j

+
Ỹ µe
i Ỹ ee

i Ỹ µe
j Ỹ ee

j

m2
im

2
j

)

+2
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i Ỹ
′ee
i Ỹ

′µe
j Ỹ

′ee
j

m2
Ai
m2
Aj

+
Ỹ ′

eµ

i Ỹ
′ee
i Ỹ

′eµ
j Ỹ

′ee
j

m2
Ai
m2
Aj

)]
. (4.47)
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4.4. Evaluating Integrals

The �rst two addends are the contributions solely from the doubly charged decay channel
for either the left or the right triplets, the �rst double sum is the contribution from the
scalar neutral decay channel and the last double sum from pseudoscalar decay channel.
Note, that Interference between either of these channels vanishes.
And with this, it appears rather simple to compute the branching ratio (BR) for the
µ→ 3e decay in the following way:

BR =
Γ

Γtot
, (4.48)

with Γtot as the total decay width. And so, the �nal form is

BR =
m5
µ

3 · 212 π2 · Γtot

[(
Y eµ
L Y ee

L

mL
−−2

)2

+

(
Y µe
R Y ee

R

mR
−−2

)2

+2
4∑
i=1

4∑
j=1

(
Ỹ eµ
i Ỹ ee

i Ỹ eµ
j Ỹ ee

j

m2
im

2
j

+
Ỹ µe
i Ỹ ee

i Ỹ µe
j Ỹ ee

j

m2
im

2
j

)

+2
2∑
i=1

2∑
j=1

(
Ỹ ′

µe

i Ỹ
′ee
i Ỹ

′µe
j Ỹ

′ee
j

m2
Ai
m2
Aj

+
Ỹ ′

eµ

i Ỹ
′ee
i Ỹ

′eµ
j Ỹ

′ee
j

m2
Ai
m2
Aj

)]
. (4.49)

BR is now written as a function of the bidoublet and triplet Yukawa couplings.
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5. Connection To Neutrino Physics

Now that the branching ratio for the µ→ 3e process has been obtained, the next step is
to take neutrino physics into account. Slightly rearranging eq. (3.17) back from Chapter
3, one ends up with:

M =

(
αYRvR mD

mD YRvR

)
, (5.1)

with α = vL
vR
. Furthermore, in the course of this thesis, the assumption YL = YR has

been made. With the given results for the PMNS Matrix and the observed ν masses
(see Ref. [9]), the �avour diagonal mass matrix mν can be computed. In the course of
this computation, a value for m1 = m2/100 has been assumed in order to avoid numeric
hickups that might arise for m1 = 0, as well as a normal hierarchy with m1 < m2 < m3.
Additionally, both the CP violation and the Majorana Phases have been set to zero for
this calculation.

mν = UPMNS · diag(m1,m2,m3) · (UPMNS)T .

In order to determine the requested Coupling YR

mν = αYRvR −mD(YRvR)−1mD

⇒ m
−1/2
D mνm

−1/2
D = αm

−1/2
D YRvRm

−1/2
D −m1/2

D (YRvR)−1m
1/2
D .

This equation is (according to Ref. [12]) of the form

B = αA− A−1,

and with R as the diagonalization matrix that diagonalizes both A and B yields:

⇒ B = RBDR
−1

A = RADR
−1

⇔ A−1 = RA−1
D R−1

⇒ RBDR
−1 = R(αAD − A−1

D )R−1

⇔ BD = (αAD − A−1
D ).

Note that this is a quadratic equation that provides 8 di�erent solutions for AD, as every
dimension yields two possible solutions. The di�erent solutions for AD have the following
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5. Connection To Neutrino Physics

signs for their eigenvalues:

AD1 →

 +
+
+

 , AD2 →

 +
+
−

 , AD3 →

 +
−
+

 , AD4 →

 +
−
−

 ,

AD5 →

 −+
+

 , AD6 →

 −+
−

 , AD7 →

 −−
+

 , AD8 →

 −−
−

 .

It is worthwhile to take a closer look at these Eigenvalues, as it appears that the solutions
1-4 have the exact opposite signs from solutions 5-8, even if in a deviant order. Keep in
mind though, that a these Eigenvalues do not necessarily have the same modulus, but are
only identical in three to four signi�cant digits. Within the scope of this computation,
however, this turns out to be irrelevant. As a consequence, these solutions can be re-
garded as just having an overall phase factor of −1, which is from a quantum mechanics
point-of-view exactly the same, meaning that only 4 solutions need be computed.
These diagonal matrices AD can now be transferred to the desired Triplet Yukawa Cou-
pling YR

⇒ YRvR =m
1/2
D Am

1/2
D

=m
1/2
D RADR

−1m
1/2
D . (5.2)

Inserting this value for the triplet coupling into eq. (4.1) and (4.40) yields the di�erent
Yukawas in the neutral scalar and pseudoscalar channel, respectively. Now that the
triplet coupling YR is expressed as a function of mD, which in turn is a function of
the bidoublet Yukawas Y1 and Y2, BR is also expressed as a function of the bidoublet
Yukawas. Furthermore, as the charged lepton masses

mL =
1√
2

(v1Y1 + v2Y2)

are known, Y2 is dependent of Y1 and thus only one bidoublet Yukawa coupling remains
as an input for BR. However, the VEVs are still an issue, yet they as well may be
constrained. As the mass of the W -Boson obeys the condition (See Ref. [3])

mW =
g2

2

√
v2

1 + v2
2, (5.3)

where g2 is the gauge coupling, v1 and v2 can be expressed as

tan β =
v1

v2

. (5.4)
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These VEVs can be parametrized as:

v1 = tan β · v2 (5.5)

v2 =
2mW

g2

√
1 + tan2 β

. (5.6)

Thus, by the bidoublet Yukawa Y1 and tan β alone, BR can be computed.
Finally, only one more assumption has been made and that is Y1 and Y2 are diagonal
matrices.

Y1 = diag (Y 111, Y 122, Y 133) . (5.7)

So, BR turns out to be depending on four parameters: tan β, Y 111, Y 122 and Y 133.

BR =
m5
µ

3 · 212 π2 · Γtot

[((
1

mL
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)
+
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Ỹ eµ
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·
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2
j

+
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·
Ỹ ′
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ee

i (tan β, Y 111, Y 122, Y 133)

m2
Ai
m2
Aj

·
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ee
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+
Ỹ ′
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ee
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·
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)]
. (5.8)

All other model parameters can be found in the appendix A.1.
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6. Discussion

With this algorithm, it is possible to derive contourplots for di�erent values of tan β
with �xed input-values for any one of the three couplings Y 111, Y 122, Y 133. These plots
can then be used to determine which regions of the phase space can be rejected, as the
branching ratio would be too high for the µ→ 3e decay channel. In the following �gures,
the regions of accepted data will be displayed in dark blue colours, and the rejected
regions in red and yellow colours. Note that the axes do not denote the values of the
couplings Y 111, Y 122 or Y 133 but their logarithms log10 [Y 111] etc.. Also the contours
display log10 [BR] instead of the branching ratio in its original state.
The experimental bound for this decay is BR < 10−12 [9] and will be the threshold for

the accepted dataset and displayed as a red line in the following plots. The range for the
Yukawas was [10−9, 10−2] for the whole dataset.

6.1. First Solution

The �rst solution with only positive Eigenvalues for the triplet Yukawas gives the follow-
ing results for di�erent values of tan β.

Fixed Y133

Comparing �gures 6.1a, 6.1b and 6.1c only results in a slightly larger region of rejection,
as well as a rather tiny new region at about Y 111 = Y 122 = 10−2 for tan β = 0.5. Apart
from that, no huge di�erences can be encountered for values between tan β = 0.1 and
tan β = 0.9, in this dataset.
For the values tan β > 1 the regions of rejection drastically increase in size. For

tan β = 1.1 this region starts with values of Y 111 ≥ 10−5.1 for almost all values of Y 122,
except for Y 122 ≈ 10−2.2 where this region is slightly narrowed. Also, for Y 111 ≤ 10−5.5

and Y 122 ≥ 10−2.2, another small region of rejection appears. For larger values of tan β,
these two regions increase in size and almost cut the accepted region in two pieces for
tan β = 10, forming a bottleneck at around Y 111 = 10−5.5 and Y 122 = 10−3.8.
Note, that the plotted region grows slightly smaller for tan β > 1. Starting with �gure

6.1d, the top right corner in the plot features a white space, growing larger with increasing
tan β. Additionally, in �gure 6.1f (tan β = 10) for example, the plotted region has its lim-
its for the abscissa at about Y 111 = 10−2.9, as well as for the ordinate at Y 122 = 10−2.5.
These regions feature complex-valued results for the couplings. Since before in chapter 4
the limit of only real couplings has been set, technically, these values exceed the domain
of Γ. Hence, with the form from Chapter 4, as YR ∈ C, no sensible result for BR can

35



6. Discussion

-8 -7 -6 -5 -4 -3 -2

-8

-7

-6

-5

-4

-3

-2

Log10[Y111]

L
o
g
10
[Y
12
2]

Log10[BR]

-19.5
-18.2
-16.9
-15.6
-14.3
-13.0

Log10[BR]

-11.960

-11.895

-11.830

(a) Contourplot with tanβ = 0.1.

-8 -7 -6 -5 -4 -3 -2

-8

-7

-6

-5

-4

-3

-2

Log10[Y111]

L
o
g
10
[Y
12
2]

Log10[BR]

-20.8
-19.2
-17.6
-16.0
-14.4

Log10[BR]

-11.88

-11.76

-11.64

(b) Contourplot with tanβ = 0.5.

-8 -7 -6 -5 -4 -3 -2

-8

-7

-6

-5

-4

-3

-2

Log10[Y111]

L
o
g
10
[Y
12
2] Log10[BR]

-18.69
-17.80
-16.91
-16.02
-15.13

(c) Contourplot with tanβ = 0.9.
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(e) Contourplot with tanβ = 5.
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(f) Contourplot with tanβ = 10.

Figure 6.1.. First solution: In all of the plots above Y 133 = 10−5 is a �xed value. The axes
show log10 [Y 111] and log10 [Y 122] and the contours denote values of log10 [BR] as
well. The dark blue colours indicate accepted regions within the parameter space
while the red and yellow colours indicate rejected regions. The red border contour
outlines the values for BR = 10−12. Note the slightly larger region of rejection in
6.1b as well as the rather small region of rejection in the top right corner, whereas
the whole of �gure 6.1c is accepted. Figures 6.1d, 6.1e and 6.1f each display two
separate regions of rejection increasing in size. Additionally, in these three �gures,
the plotted region grows smaller in size, as the values for Y 111 and Y 122 exceed
the domain of BR.36
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(a) Contourplot with tanβ = 0.1. The part
displaying dependence of Y 122 has been
zoomed in.
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(c) Contourplot with tanβ = 10. The part
displaying dependence of Y 122 has been
zoomed in.

(d) Plot for log10 [BR] as a function of
log10 [Y 111]. Both Y 133 and Y 122 are con-
stant at 10−5 for di�erent values of tanβ.
The orange line indicating BR = 10−12

separates the accepted from the rejected re-
gion of the parameter space.

Figure 6.2.. First solution: In all of the plots above Y 133 = 10−5 is a �xed value, yet in contrast
to �gure 6.1, certain parts of the plots have been zoomed in. In �gure 6.2d, various
values of tanβ have been used to compute BR with both Y 122 and Y 133 given a
constant value.
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6. Discussion

be given and another form, including complex-valued couplings, is required. However,
as can for example be seen in �gure 6.2c, the part that exceeds the domain is rejected
already. Implementing a formula for BR with YR ∈ C therefore appears to be redundant.
As there are no fundamental changes happening between tan β = 0.1 and tan β = 0.9

as well as between tan β = 1.1 and tan β = 10, these plots will be left out in the following
discussion. However, the plots not featured in this chapter can be found in the Appendix.
Moreover, since some plots feature large parts, where BR is more or less independent of
one parameter, in the following, parts of the parameter space that do not exhibit depen-
dence of both plotted variables will be broken down to one-dimensional curves and the
regions that do exhibit dependence of both variables will be magni�ed.

Fixed Y122

The plots in �gure 6.3 show the log10 [BR] for a �xed value of Y 122 = 10−5 as well as a
function of Y 111 and Y 133.

For 0.1 < tan β < 0.9 no region is rejected in this dataset as BR lies well below 10−12.
However, for 1.1 < tan β < 10 a region of rejection starts at about the same value as
in �gures 6.1d and 6.1f. Yet, these appear to be independent of Y 133. Also, like for
a �xed Y 111 in �gure 6.1, for values of Y 111 > 10−2.9 and tan β = 10 the domain is
exceeded. Note that the case of Y 122 = const. also features parts that are independent
of one variable. Setting Y 133 to a constant value does not give a di�erent result than
�gure 6.2d, which is why there is no such plot.

Fixed Y111

For a �xed value of Y 111 = 10−7, as well as variable Y 122 and Y 133, for the same four
values of tan β as shown in �gure 6.3, can be seen in �gure 6.5.

For values of tan β ≤ 0.9, all points of the parameter space lie well within the bounds.
Only for tan β ≥ 1.1 regions of rejection appear, which are independent of Y 133 and start
at the same values of Y 122 as they did in �gure 6.1d or 6.1f, respectively. Similarly, for
the same values as for Y 122 in �gure 6.1, the domain is exceeded.

In total, for YR being a positive de�nite matrix, it is save to say, that Y 133 has little
to no impact on BR and thus cannot be constrained. However, Y 111 and Y 122 can be
constrained. Readout values for the minimal and maximal rejected region that can be
found in the Appendix. As a rule of thumb, it can be observed in �gures 6.2d and 6.6d:

Y 111max ∈ ] 10−5.6, 10−4.6 [

Y 122max ∈ ] 10−3.2, 10−2.2 [ .
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6.1. First Solution
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(b) Contourplot with tanβ = 0.9.
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(c) Contourplot with tanβ = 1.1.
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(d) Contourplot with tanβ = 10.

Figure 6.3.. First solution: In all four plots Y 122 = 10−5 is a �xed value. The x-axis and the
colouring are the same as in �gure 6.1, yet the y-axis denotes log10 [Y 133]. As in
�gures 6.3a and 6.3b only dark blue colours are shown, no parts of the parameter
space are rejected. Yet in �gure 6.3c a region of rejection starts at about Y 111 =
10−4.8. In 6.3d rejection starts at about Y 111 = 10−5.6. Also, white regions appear
in both plots at the top right, where Yukawas exceed domain.
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(a) Contourplot with tanβ = 0.1. The part
displaying dependence of Y 133 has been
zoomed in.
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(b) Contourplot with tanβ = 1.1. The part
displaying dependence of Y 133 has been
zoomed in

Figure 6.4.. First solution: Both plots have the same �xed value of Y 122 = 10−5 and the parts
showing dependence of Y 133 are zoomed in, similarly to �gure 6.2. Note that setting
Y 133 = const. for parts independent of Y 133 does not yield a di�erent Plot than
�gure 6.2d.

6.2. Second Solution

Fixed Y133

The second solution where the �rst two Eigenvalues of the triplet Yukawas are positive,
while the third one is negative, give the following results for the branching ratio. Figure
6.7 displays contourplots for log10 [BR] as a function of Y 111 and Y 122 with Y 133 = 10−5

�xed at the same value as in �gure 6.1.

Fixed Y122

The plots in �gure 6.8 show the log10 [BR] for a �xed value of Y 122 = 10−5 as a function
of Y 111 and Y 133 just like in �gure 6.3.

Fixed Y111

The plots in �gure 6.9 show the log10 [BR] for a �xed value of Y 111 = 10−7 as well as a
function of Y 122 and Y 133. similarly to �gure 6.5.

As in the section before, precise parameters drawn from the �gures can be found in the
Appendix. But some features worth discussing may be observed here. The dependence
of Y 133 appears higher for this solution than in the positive de�nite case, even tough
�gures 6.8 and 6.9 displays rather large regions where BR is either independent of Y 133
or does not even approach the threshold of BR = 10−12.
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(c) Contourplot with tanβ = 1.1.
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(d) Contourplot with tanβ = 10.

Figure 6.5.. First solution: In all four plots Y 133 = 10−5 is a �xed value. The x-axis denotes
log10 [Y 122] and the y-axis denotes log10 [Y 122]. The colouring is the same as in
the �gures from before.
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(a) Contourplot with tanβ = 0.1. The part
displaying dependence of Y 133 has been
zoomed in.
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(b) Contourplot with tanβ = 0.9. The part
displaying dependence of Y 133 has been
zoomed in.
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(c) Contourplot with tanβ = 1.1. The part
displaying dependence of Y 133 has been
zoomed in.

(d) Plot for log10 [BR] as a function of
log10 [Y 122]. Y 111 = 10−7 and Y 133 =
10−5 are constant. For di�erent values of
tanβ. The orange line indicating BR =
10−12 separates the accepted from the re-
jected region of the parameter space.

Figure 6.6.. First solution: In all of the plots above Y 111 = 10−7 is a �xed value, yet in contrast
to �gure 6.1, certain parts of the plots have been zoomed in. In �gure 6.2d, various
values of tanβ have been used to compute BR with both Y 122 and Y 133 given a
constant value.
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(b) Contourplot with tanβ = 1.1.
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(c) Contourplot with tanβ = 10. (d) Multiple curves for di�erent values of tanβ
with Y 133 and Y 122 as a �xed value once
more. The orange line divides the dataset
in accepted and rejected regions.

Figure 6.7.. Second solution: Axes and colouring display the same as in �gure 6.1, also again
Y 133 = 10−5 as a �xed value. Parts that appear to be independent of Y 122 have
been magni�ed and a plot featuring di�erent curves of BR similar to 6.2d has been
added.
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(b) Contourplot with tanβ = 0.9.
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(c) Contourplot with tanβ = 1.1.
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(d) Contourplot with tanβ = 10.

Figure 6.8.. Second solution: In both plots Y 122 = 10−5 is a �xed value. Axes and colouring
display the same as in �gure. Regions independent of Y 133 have been magni�ed.
6.3.
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(b) Contourplot with tanβ = 0.9.
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(c) Contourplot with tanβ = 1.1.
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(d) Contourplot with tanβ = 5.

(e) Like before, several values of tanβ were
used to compute log10 [BR] as a function
of log10 [Y 122]. The orange horizontal line
denotes BR = 10−12.

Figure 6.9.. Second solution: In all plots Y 111 = 10−7 is a �xed value. Axes and colouring are
analogous to �gure 6.3 .
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6.3. Third Solution

The third solution where the �rst two Eigenvalues of the triplet Yukawas are positive,
while the third one is negative, give the following results:

Fixed Y133

Figure 6.10 displays contour plots for log10 [BR] as a function of Y 111 and Y 122 with
Y 133 = 10−5 �xed at the same value as in �gure 6.1.

Fixed Y122

The plots in �gure 6.11 show the log10 [BR] for a �xed value of Y 122 = 10−5 as a function
of Y 111 and Y 133 just like in �gure 6.3.

Fixed Y111

The plots in �gure 6.12 show the log10 [BR] for a �xed value of Y 111 = 10−7 as a function
of Y 122 and Y 133 just like in �gure 6.5.

Again, the branching ratio for the third solution of YR is for a wide array of parameters
independent of Y 133. It is also noteworthy that a "bubble" can be found in �gure 6.10a
at log10 [Y 111] = −4.8 and log10 [Y 122] = −4.4. Additionally two other bubbles can
be found in its vicinity. Detailed numbers can be found in the appendix. Apart from
that, concise form of constraints can be obtained, for tan β < 1, BR(Y 111) seems to
be monotonously increasing, apart from a few valleys. But − especially when regarding
�gure 6.11d − no clear rule for their behaviour can be found for other cases.

6.4. Fourth Solution

The fourth solution, where the �rst two Eigenvalues of the triplet Yukawas are positive,
while the third one is negative, show the following results:

Fixed Y133

Figure 6.13 displays contour plots for log10 [BR] as a function of Y 111 and Y 122 with
Y 133 = 10−5 �xed at the same value as in �gure 6.1.

Fixed Y122

The plots in �gure 6.14 show the log10 [BR] for a �xed value of Y 122 = 10−5 as a function
of Y 111 and Y 133 just like in �gure 6.3.
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(b) Contourplot with tanβ = 0.9.
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(d) Contourplot with tanβ = 10.

(e) Multiple curves for di�erent values of tanβ
at �xed Y 133 = 10−5 and Y 122 = 10−6.
The orange line divides the dataset in ac-
cepted and rejected regions.

Figure 6.10.. Third solution: Axes and colouring display the same as in �gure 6.1, also again
Y 133 = 10−5 as a �xed value. Parts that appear to be independent of Y 122 have
been magni�ed and a plot featuring di�erent curves of BR similar to 6.2d has been
added.
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Figure 6.11.. Third solution: In all four plots Y 122 = 10−5 is a �xed value. Axes and colouring
display the same as in �gure 6.1. Parts that appear to be independent of Y 133
have been magni�ed.
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(d) Contourplot with tanβ = 10.

(e) Like before, several values of tanβ were
used to compute log10 [BR] as a function
of log10 [Y 122]. The orange horizontal line
denotes BR = 10−12.

Figure 6.12.. Third solution: In all plots Y 111 = 10−7 is a �xed value. Axes and colouring are
analogous to �gure 6.3 .
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(d) Contourplot with tanβ = 10.

(e) Multiple curves for di�erent values of tanβ
at �xed Y 133 = 10−5 and Y 122 = 10−6.
The orange line divides the dataset in ac-
cepted and rejected regions.

Figure 6.13.. Fourth solution: In all plots Y 133 = 10−5 is a �xed value. Axes and colouring
display the same as in �gure 6.1.
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(c) Contourplot with tanβ = 1.1.
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(d) Contourplot with tanβ = 10.

Figure 6.14.. Fourth solution: In all plots Y 122 = 10−5 is a �xed value. Axes and colouring
display the same as in �gure 6.3 .
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Fixed Y111

The plots in �gure 6.15 show the log10 [BR] for a �xed value of Y 111 = 10−7 as a function
of Y 122 and Y 133 just like in �gure 6.3.
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(c) Contourplot with tanβ = 10. (d) Like before, several values of tanβ were
used to compute log10 [BR] as a function
of log10 [Y 122]. The orange horizontal line
denotes BR = 10−12.

Figure 6.15.. Fourth solution: In all plots Y 111 = 10−7 is a �xed value. Axes and colouring
display the same as in 6.5. Figure 6.15d displays curves with also Y 133 = 10−5.

Once more, the branching ratio for the fourth solution of YR turns out to be independent
of Y 133 for wide ranges of the parameter space. It is also noteworthy that "a bubble" can
be found once more in �gure 6.13a at log10 [Y 111] = −4.8 and log10 [Y 122] = −4.3, with
an additional one in its vicinity. Apart from BR(Y 111) in the case of Table 6.0.β < 1,
which once again seems to be monotonously increasing, save for some valleys, no clear
rule can be observed. Detailed numbers can be found in the appendix.
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6.5. tan β = 1

6.5. tan β = 1

Closer attention should be paid to the case of tan β = 1. With the de�nitions of the
charged lepton masses and the Dirac neutrino masses, the following holds

√
2mL =Y1v1 + Y2v2 | ·v1√
2mD =Y2v1 + Y1v2 | ·(−v2)

⇔
√

2mLv1 =Y1v
2
1 + Y2v2v1

−
√

2mDv2 =− Y1v1v2 − Y2v
2
2

=⇒
√

2 (mLv1 −mDv2) =Y1

(
v2

1 − v2
2

)
mD =mL

v1

v2

− Y1
(v2

1 − v2
2)√

2v2

. (6.1)

Note that for tan β = 1, with eq. (5.5) v1 = v2 and thus

mD =mL.

This implies that YR is independent of Y1 and Y2, which, however, does not necessarily
render BR independent. Because of the mixing between the bidoublet and triplet cou-
plings, according to eq. (4.1) and (4.2), some contributions (for example the ones from
the doubly-charged channel) may well be constant, yet the neutral contributions are not.
Figure 6.16 displays curves for all four solutions at constant Y 122 = Y 133 = 10−5.

Figure 6.16.. log10 [BR] as a function of log10 [Y 111] with the other Yukawas set to constant
values for all four solutions. For most parts of the parameter region, no changes
in BR can be observed.

It turns out that BR appears to be independent of Y 122 and Y 133, which is why just a
table containing constant values will be presented.
Thus, for tan β = 1 only the �rst two solutions proof acceptable within in the whole
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6. Discussion

Solution 1 Solution 2 Solution 3 Solution 4
BR 7.56 · 10−20 1.30 · 10−15 7.35 · 10−13 7.95 · 10−13

Table 6.1.. Branching ratio for all four solutions at Y 111 = 10−7, Y 122 = Y 133 = 10−5.

dataset, whereas the other solutions are very close to the threshold and need to be
rejected for Y 111 ≈ 10−2.5.
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7. Summary

In the course of this thesis, after a short overview of neutrino physics and the left-right
symmetric model, the branching ratio of the muon decay µ− → e−e+e− has been com-
puted in said model. Contrary to the SM, where this decay is forbidden at tree level,
there is in fact an allowed tree level amplitude including scalar and pseudoscalar decay
channels. After evaluating a phase space integral, the �rst assumption had to be made,
which is me → 0. As me/mµ < 0.5%. This limit appears both reasonable and sim-
pli�es the calculation drastically, as the integration would otherwise be elliptic and it
would de�nitely go way beyond the scope of a master's thesis in physics. After the phase
space integration, integrals along the Mandelstam variables s̄ and t̄ had to be evaluated.
Quite surprisingly, the interference between charged and neutral scalars turned out to
be exactly zero, once the integral was evaluated, leaving us with the conclusion, that
no interference between di�erently charged decay channels is possible in the given limit.
Interference between scalars and pseudoscalars in turn are excluded as the limit of real
Yukawa couplings has been set. Thus, a �nal expression for the BR, as a function of the
bidoublet and triplet Yukawas has been computed.
After this Chapter, the Yukawa couplings for the triplet have been rewritten, using the

see-saw formula in order to express them in terms of the bidoublet couplings. Note, that
in the course of this calculation, quadratic equations had to be solved leading to eight
di�erent solutions for YR. However, as two solutions each are − up to three signi�cant
digits − equivalent up to a phase of −1, these are degenerated. Therefore only four
di�erent solutions remain. After expressing the bidoublet VEVs as a combination of the
W-mass mW and tan β, the �nal expression for the branching ratio was only dependent of
tan β and the Y1 coupling, which has been assumed to be diagonal. Further assumptions
are, that YL = YR, a normal neutrino mass hierarchy and as an o�set for the neutrino
mass scale m1 = m2/100.
After the numeric implementation of the function BR, several slices have been cut for

all four solutions through the parameter space. The analysed data range for the Yukawas
was [10−9, 10−2] at tan β ∈ {0.1, 0.9, 1, 1.1, 10}. Unofrtunately, no concise restrictions for
the discussed parameters can be obtained from these observations, as they merely rep-
resent values of a function of four parameters, with two of them each set to a constant
value. What could be observed, however, was that BR tended to be independent of
Y 133, for most parts in all of the four solutions. In the discussed plots, the BR(Y 111) of
solutions 1 and 2 for tan β < 1 appeared to be monotonously increasing and independent
of Y 122 and Y 133. For tan β = 1 all solutions remained independent of Y 122 and Y 133
and only the region around ] 10−3, 10−2 [ shows dependence of Y 111. In solutions 3 and 4
at tan β < 1, BR(Y 111) (Y 122, Y 133 =const.) appears to be monotonously increasing,
apart from a few valleys. Note, that the limit of real Yukawas lead to an exclusion of some
regions in the parameter space. Nonetheless, these regions were mostly already in the
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7. Summary

regions where BR was already above the threshold of 10−12. Otherwise, a new function
for BR would have to be implemented, including complex couplings and therefore terms
were scalars and pseudoscalars mix. This would not only go beyond the scope of this
thesis, but it would fail to provide additional insight, as these regions are small and most
of them already excluded.
Of course, these results are not highly reliable and only an indication for the behaviour

of BR. More reliable results can be obtained in a more scrupulous analysis of the pa-
rameter space, by analysing all four dimensions parameter space, by an evaluation of
BR with the same increment in every dimension. This way, the regions that prove to be
independent of Y 133 and Y 122 could be localized for instance, and, judging from these
results, other tendencies might be proven.
Furthermore, as mentioned before, there are several assumptions being made in the

course of these computations. Allowing for a model where YL 6= YR and allowing Y1, Y2

to have o�-diagonal entries would yield more robust information. However, such a pro-
cedure would require more time and e�ort as there would be more parameters needed to
compute results.
It would also be helpful to analyse the nature of the four di�erent solutions of the

triplet Yukawas. It may be possible to �nd means to identify, if there were solutions
among these turning out to be artefacts without any physical relevance.

If everything proceeds according to schedule, the topic of µ → 3e will experience
lower experimental bounds, as the The Mu3e Experiment will start with data taking in
2017, according to their o�cial website [10]. This may provide more insight and reliable
results, which may then be used to re�ne the constraints for the Yukawa couplings in the
LRM.
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A. Appendix

A.1. Model Parameters

mL−− 9.24233270 · 103 GeV
mR−− 4.25333898 · 103 GeV
mh1 1.26657427 · 102 GeV
mh2 4.25132117 · 103 GeV
mh3 8.07069133 · 103 GeV
mh4 9.91873826 · 103 GeV
mAh1 4.42666964 · 103 GeV
mAh2 7.25109486 · 103 GeV

O


−9.46425275 · 10−1 −3.22903090 · 10−1 3.57667108 · 10−3 −3.39075847 · 10−9

−2.58792992 · 10−9 −2.91542729 · 10−9 2.11662686 · 10−11 1
−3.22922841 · 10−1 9.46360471 · 10−1 −1.10768797 · 10−2 1.92357792 · 10−9

−1.91938567 · 10−4 1.16384277 · 10−2 9.99932253 · 10−1 1.22694316 · 10−11


O′


−9.46218815 · 10−1 3.23407809 · 10−1 8.79448169 · 10−3 3.34022321 · 10−9

−8.36536934 · 10−3 2.71691536 · 10−3 −9.99961319 · 10−1 −1.25537675 · 10−11

−2.53465532 · 10−9 2.91124141 · 10−9 4.16683037 · 10−11 −1
3.23419193 · 10−1 9.46255783 · 10−1 −1.34629340 · 10−4 1.93501723 · 10−9


Table A.1.. Higgs masses and mixing parameters [8]. Note that the third and fourth column of

R′ are required to calculate Ỹ ′i
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A. Appendix

A.2. Readout Parameter Range

minimum maximum

log10 [Y 111] ∈ ]− 9.0,−2.2 [ ]− 9.0,−2.0 [
log10 [Y 122] ∈ ]− 9.0,−4.2 [ ]− 9.0,−2.0 [

∪ ]− 2.6,−2.1 [
log10 [Y 133] ∈ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

Table A.2.. for tanβ < 1 in the �rst solution, where all Eigenvalues are positive.

min part1 min part2 max part1 max part 2

log10 [Y 111] ∈ ]− 9.0,−5.5 [ ]− 5.6,−5.4 [ ]− 9.0,−4.4 [ ]− 5.5,−4.0 [
log10 [Y 122] ∈ ]− 9.0,−3.1 [ ]− 3.2,−2.0 [ ]− 9.0,−2.2 [ ]− 2.4,−2.0 [
log10 [Y 133] ∈ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

Table A.3.. for tanβ > 1 �rst solution. Minimum/maximum Areas consist of two parts

min part 1 min part 2 min part 3

log10 [Y 111] ∈ ]− 9.0,−4.9 [ <
(
−0.7

2.6

)
log10 [Y 122]− 3.7 <

(
0.4
1.7

)
log10 [Y 133] + 4.0

log10 [Y 122] ∈ ]− 9.0,−4.6 [ ]− 4.6,−2.0 [ −5.0
log10 [Y 133] ∈ ]− 9.0,−3.7 [ −5.0 ]− 3.7,−2.0 [

Table A.4.. Solution 2 min part tanβ < 1. In two columns, one coordinate is approximated by
a linear function each.
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A.2. Readout Parameter Range

max 1 max2

log10 [Y 111] ∈ ]− 9.0,−4.1 [ <
(

2.4
1.1

)
log10 [Y 122]− 3.6 · 10−2

log10 [Y 122] ∈ ]− 9.0,−3.0 [ ]− 9.0,−3.0 [
log10 [Y 133] ∈ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

Table A.5.. maximum for tanβ < 1 for Solution 2.

max 1 max 2

log10 [Y 111] ∈ ]− 9.0,−4.3 [ ]− 5.5,−2.2 [
log10 [Y 122] ∈ ]− 9.0,−2.2 [ ]− 2.2,−2.0 [
log10 [Y 133] ∈ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

Table A.6.. maximum for tanβ > 1 for solution 2

max part 1 max part 2 max part 3 max part 4

log10 [Y 111] ∈ ]− 5.9,−5.5 [ ]− 9.0,−5.5 [ ]− 5.6,−3.3 [ <
(

3
5

)
log10 [Y 133]− 4.34

log10 [Y 122] ∈ ]− 9.0,−3.2 [ ]− 3.4,−3.2 [ ]− 3.1,−2.5 [ -5
log10 [Y 133] ∈ -5 −5 −5 ]− 2.6,−2.1 [

max part 5 max part 6 max part 7 max part 8

log10 [Y 111] ∈ ]− 5.6,−5.4 [ ]− 5.9,−5.6 [ -7 -7
log10 [Y 122] ∈ -5 -5 ]− 3.4,−3.2 [ <

(
2
3

)
log10 [Y 133]− 1.73

log10 [Y 133] ∈ ]− 2.1,−2.0 [ ]− 9.0,−2.6 [ ]− 9.0,−2.5 [ ]− 2.5,−2.2 [

Table A.7.. maximum for tanβ > 1 for solution 2

max part 1 max part 2 max part 3 max part 4

log10 [Y 111] ]− 9.0,−4.9 [ ]− 5.2,−4.9 [ < −1
5
< log10 [Y 122] + 6.3 ]− 9.0,−5.2 [

∪ ]− 9.0,−5.4 [
log10 [Y 122] ]− 9.0,−5.0 [ ]− 5.0,−4.6 [ ]− 4.8, 3.8 [ -5
log10 [Y 133] -5 -5 -5 ]− 9.0,−4.0 [

max part 5 max part 6 max part 7 max part 8

log10 [Y 111] ]− 9.0,−5.4 [ < −2
9

log10 [Y 111]− 6.1 < −1
6

log10 [Y 122]− 4.9 ]− 5.1,−4.9 [
log10 [Y 122] -5 -5 ]− 3.8,−2.0 [ -5
log10 [Y 133] ]− 9.0,−2.0 [ ]− 4.0,−3.1 [ -5 ]− 9.0,−2.0 [

Table A.8.. tanβ < 1 max accepted Solution 3.

max part 9 max part 10

log10 [Y 111] -7 ]− 9.0,−5.4 [
log10 [Y 122] ]− 9.0,−2.0 [ -5
log10 [Y 133] ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

Table A.9.. tanβ < 1 max are teil 2 solution3
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A. Appendix

min part 1 min part 2 min part 3

log10 [Y 111] ]− 9.0,−5.4 [ ]− 5.4,−5.3 [ −7
log10 [Y 122] ]− 9.0,−3.0 [ > 10 · log10 [Y 111]− 51 ]− 9.0,−2.0 [
log10 [Y 133] −5 −5 ]− 9.0,−2.0 [

Table A.10.. minimum tanβ < 1 Solution3

max part 1 max part 2 max part 3 max part 4

log10 [Y 111] ]− 6.4,−3.8 [ ]− 3.1,−2.0 [ ]− 7.0,−6.4 [ ]− 3.8,−3.6 [
log10 [Y 122] ]− 9.0,−2.6 [ ]− 9.0,−2.5 [ > −3 log10 [Y 111]− 28.5 > 2 log10 [Y 111] + 4.1
log10 [Y 133] -5 -5 -5 -5

max part 5 max part 6 max part 7 max part 8

log10 [Y 111] ]− 9.0,−4.4 [ ]− 4.4,−2.2 [ ]− 3.6,−3.2 [ ]− 3.9,−3.5 [
log10 [Y 122] ]− 2.5,−2.0 [ > − log10 [Y 111]− 0.5 > −5

4
log10 [Y 111]− 7.0 ]− 3.1,−2.5 [

log10 [Y 133] -5 -5 -5 -5

max part 9

log10 [Y 111] ]− 3.5,−3.3 [
log10 [Y 122] ]− 9.0,−3.2 [
log10 [Y 133] -5

Table A.11.. tanβ > 1 max solution3

min part 1 min part 2 min part 3 min part 4 min part 5

log10 [Y 111] ]− 9.0,−5.5 [ ]− 5.6,−5.4 [ ]− 3.9,−3.1 [ ]− 5.4,−3.9 [ ]− 4.2,−3.9 [
log10 [Y 122] ]− 3.2,−2.0 [ ]− 9.0,−3.2 [ ]− 9.0,−3.2 [ ]− 3.4,−3.2 [ ]− 3.9,−3.4 [
log10 [Y 133] -5 -5 -5 -5 -5

min part 6 min part 7 min part 8 min part 9

log10 [Y 111] ]− 4.1,−3.9 [ ]− 6.4,−3.8 [ ]− 3.4,−3.5 [ ]− 3.2,−2.0 [
log10 [Y 122] > − log10 [Y 111] + 8.0 −5 −5 −5
log10 [Y 133] -5 ]− 9.0,−2.0 [ ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

min part 10 min part 11 min part 12 min part 13

log10 [Y 111] ]− 6.5,−6.4 [ ] 10−5.6, 10−5.3 [ ] 10−3.9, 10−3.2 [ −7
log10 [Y 122] −5 −5 −5 ] 10−2.6, 10−2.0 [
log10 [Y 133] > − 1

12
log10 [Y 111]− 6.7 ] 10−9.0, 10−2.0 [ ] 10−9.0, 10−2.0 [ ] 10−9.0, 10−2.0 [

min part 14

log10 [Y 111] −7
log10 [Y 122] ] 10−3.2, 10−2.0 [
log10 [Y 133] ] 10−9.0, 10−2.0 [

Table A.12.. tanβ > 1 min solution 3
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min part 1 min part 2 min part 3 min part 4 min part 5

log10 [Y 111] ]− 9.0,−5.0 [ ]− 9.0,−6.5 [ ]− 5.1,−5.0 [ ]− 9.0,−5.5 [ ]− 5.1,−4.9 [
log10 [Y 122] ]− 9.0,−5.0 [ ]− 5.0,−2.0 [ ]− 5.0,−4.6 [ −5 −5
log10 [Y 133] −5 −5 −5 ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

min part 6 min part 7

log10 [Y 111] −7 ]− 9.0,−4.3 [
log10 [Y 122] ]− 9.0,−2.0 [ ]− 2.5,−2.0 [
log10 [Y 133] ]− 9.0,−2.0 [ −5

Table A.13.. min tanβ < 1 Solution4

min part 1 min part 2

log10 [Y 111] ]− 9.0,−5.5 [ ]− 6.1,−3.2 [
log10 [Y 122] ]− 9.0,−2.0 [ ]− 9.0,−3.1 [
log10 [Y 133] −5 −5

Table A.14.. max tanβ < 1 Solution4

min part 1 min part 2 min part 3 min part 4

log10 [Y 111] ]− 6.1,−3.3 [ ]− 6.2,−3.5 [ ]− 6.6,−6.2 [ ]− 6.2,−6.1 [
log10 [Y 122] ]− 3.1,−2.7 [ ]− 2.7,−2.4 [ > −1

2
log10 [Y 111]− 0.8 > −4 log10 [Y 111]− 27.5

log10 [Y 133] −5 −5 −5 −5

min part 5 min part 6

log10 [Y 111] ]− 4.3,−3.5 [ ]− 3.5,−3.3 [
log10 [Y 122] < −1

2
log10 [Y 111]− 4.3 < − log10 [Y 111]− 6.0

log10 [Y 133] −5 −5

min part 7 min part 8

log10 [Y 111] ]− 3.3,−3.1 [ ]− 6.1,−3.1 [
log10 [Y 122] < − log10 [Y 111]− 6.2 −5
log10 [Y 133] −5 ]− 9.0,−2.0 [

Table A.15.. min tanβ > 1 Solution4
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max part 1 max part 2 max part 3 max part 4 max part 5

log10 [Y 111] ]− 5.6,−4.1 [ ]− 5.6,−4.2 [ ]− 5.6,−4.5 [ ]− 5.7,−5.5 [ ]− 5.5,−5.1 [
log10 [Y 122] ]− 9.0,−4.1 [ ]− 4.1,−3.6 [ ]− 3.6,−3.3 [ ]− 3.3,−2.7 [ ]− 3.3,−3.1 [
log10 [Y 133] −5 −5 −5 −5 −5

max part 6 max part 7 max part 8

log10 [Y 111] ]− 5.6,−5.5 [ ]− 6.3,−5.7 [ ]− 6.3,−5.5 [
log10 [Y 122] ]− 2.7,−2.5 [ < log10 [Y 111]− 3.3 < −1

4
log10 [Y 111]− 7.1

log10 [Y 133] −5 −5 −5

max part 9 max part 10 max part 11 max part 12

log10 [Y 111] ]− 3.6,−3.3 [ ]− 4.3,−4.1 [ ]− 5.6,−4.1 [ ]− 5.6,−4.4 [
log10 [Y 122] < −2

3
log10 [Y 111]− 6.7 < − log10 [Y 111]− 8.2 −5 −5

log10 [Y 133] −5 −5 ]− 9.0,−2.0 [ ]− 9.0,−2.0 [

max part 13 max part 14

log10 [Y 111] ]− 5.6,−4.4 [ −7 ]− 5.1,−4.4 [
log10 [Y 122] −5 ]− 3.2,−2.7 [ < −2

7
log10 [Y 111]− 4.6

log10 [Y 133] ]− 2.1,−2.0 [ ]− 9.0,−2.0 [ −5

Table A.16.. max tanβ > 1 Solution4. Also linear approximations have been made here.

A.3. Additional Plots
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Figure A.1.. Contourplots for tanβ = 0.5 and 5 in the second solution.
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Figure A.2.. Contourplots for tanβ = 0.5 and 5 in the third solution.
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Figure A.3.. Contourplots for tanβ = 0.5 and 5 in the fourth solution.
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