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The success of models of coupled two-leg spin ladders in describing the magnetic excitation spectrum of
La2−xBaxCuO4 has been widely interpreted as evidence for bond-centered stripes. Here, we determine the
magnetic coupling induced by the charge stripes between bond- or site-centered spin stripe modeled by two- or
three-leg ladder, respectively. We find that only the site-centered models order. We further report excellent
agreement of a fully consistent analysis of coupled three-leg ladders using a spin-wave theory of bond opera-
tors with the experiment.
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I. INTRODUCTION

The mechanism of superconductivity in the presence of
local antiferromagnetism in copper oxides is considered an
outstanding problem in contemporary physics.1,2 The materi-
als are described by mobile charge carriers �holes� doped
into a quasi-two-dimensional spin-1/2 antiferromagnet.3 In-
elastic neutron-scattering experiments have revealed a mag-
netic resonance peak4,5 and, in some compounds, periodic
modulations in the spin and charge density �stripes�.6–12

Tranquada et al.13 found that the magnetic excitation spec-
trum of stripe-ordered La1.875Ba0.125CuO4 looks similar to
disordered YBa2Cu3O6+x �Ref. 5� or Bi2Sr2CaCu2O8+� �Ref.
14� and observed that the data are consistent with bond-
centered stripes modeled by two-leg ladders. This experi-
ment, and its interpretation, is considered of key importance
for the field of high-temperature superconductivity. The rea-
son these findings are so vigorously discussed is that they
may provide the decisive hint as to within which framework
these conceptionally simple yet inscrutable systems are to be
understood, and hence ultimately lead to a complete theory.

At present, there is no consensus with regard to such a
framework, but instead a fierce competition among different
schools of thought. One of these schools8,9,11,12 attributes the
unusual properties of the doped, two-dimensional antiferro-
magnets to their propensity to form stripes or their proximity
to a quantum critical point �QCP� at which stripe order sets
in. The resulting picture is highly appealing. Static stripes
have been observed7,10 only in certain compounds, most no-
tably La2−xSrxCuO4 at a hole doping concentration x= 1

8 and
are known to suppress superconductivity. On the other hand,
the mere existence of stripes would impose an effective one
dimensionality and hence provide a framework to formulate
fractionally quantized excitations. This one dimensionality
would be roughly consistent with an enormous body of ex-
perimental data on the cuprates, including the electron spec-
tral functions seen in angle-resolved photoemission spectros-
copy. The charge carriers, the holons, would predominantly
reside in the charge stripes, as they could maximize their
kinetic energy in these antiferromagnetically disordered re-
gions. In the spin stripes, by contrast, the antiferromagnetic
exchange energy between the spins would be maximized, at
the price of infringing on the mobility of the charge carriers.
Most importantly, the spin stripes would impose a coupling

between the charge stripes, which would yield an effective,
pairwise confinement between the low-energy spinon and
holon excitations residing predominantly in the charge
stripes. The mechanism of confinement would be similar to
that of coupled spin chains or spin ladders.15–17 The holes
would be described by spinon-holon bound states, and the
dominant contribution to the magnetic response measured in
Tranquada’s as well as all other neutron-scattering experi-
ments would come from spinon-spinon bound states.

The similarity of the “hour-glass” spectrum shown in
Fig. 4b of Tranquada et al.13 �which is reproduced for com-
parison in Fig. 1�b�� and the “elephants trousers” observed
by Bourges et al.5 �see Fig. 3 of their manuscript� provides
the most striking evidence in favor of the picture advocated
by this school, which attributes the anomalous properties of
generic, disordered CuO superconductors to the formation of
dynamic �rather than static� stripes, which fluctuate on time
scales slow compared to the energy scales of most experi-
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FIG. 1. �Color online� Comparison of dispersions resulting from
different theories with experimental data. �a� Superpositions of cuts
along �kx ,�� and �� ,ky� for the lowest mode of the SWT with J
=140 meV and J�=0.07J for site-centered stripes described in the
text �red� superimposed with the experimental data obtained by in-
elastic neutron scattering �Ref. 13� �black�. �b� The neutron data,
with a triplon dispersion of a two-leg ladder superimposed �red
line�, reproduced from Tranquada et al. �Ref. 13�. �Reprinted by
permission from Macmillian Publishers Ltd: Nature 429: 534–538,
©2005.�
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mental probes. This picture received additional support by
Xu et al.,18 who observed that the magnetic response of
La1.875Ba0.125CuO4 at higher energies is independent of tem-
perature while the stripe order melts at about Tst�54 K.
Measurements on “untwinned” samples of YBa2Cu3O6.6,
where one would expect the dynamical stripes to orient
themselves along one of the axis, however, exhibit a strong
anisotropy in the response only at energies below the
resonance19 while the response is fourfold rotationally sym-
metric at higher energies.20 This may indicate that the forma-
tion of stripe correlations, be it static or dynamic, is a low-
energy phenomenon while the high-energy response probes
itinerant antiferromagnets at length scales on which the
stripes are essentially invisible. Another extremely appealing
feature of the experiment by Tranquada et al.13 is that it
immediately suggests a model of ferromagnetically coupled
two-leg ladders, as the upper part of the measured spectrum
agrees strikingly well with the triplon �or spinon-spinon
bound state� mode of isolated two-leg ladders �see Fig. 1�b��.
The experiment hence appears to point bond-centered rather
than site-centered stripes �i.e., stripes as depicted in Fig. 2�a�
rather than Fig. 2�b�� and thereby to resolve a long outstand-
ing issue within the field of static stripes.

This interpretation received support by theoretical
studies.21–23 Vojta and Ulbricht21 used a bond operator
formalism24 to study a spin-only model of coupled two-leg

ladders �as depicted in Fig. 2�a�� with J� =J, took into ac-
count a bond-boson renormalization of J, and assumed a
value J� for the ferromagnetic �FM� coupling between the
ladders which is large enough to close the spin gap of the
ladders, i.e., to induce long-range magnetic order. Within
their approximations, a value of J�=−0.06J is sufficient. This
value is not consistent with previous studies,25–27 but as no
method to calculate or even estimate the true J� induced by
charge stripes was available, it did not seem a problem at the
time. The spectrum they obtained agrees well with experi-
mental data measured by Tranquada et al.13 and hence ap-
peared to justify their assumptions a posteriori. They con-
cluded in favor of bond-centered stripes. This conclusion
was independently strengthened by Uhrig et al.,22 who used
the method of continuous unitary transformations to study a
model of ferromagnetically coupled two-leg ladders and ob-
served that the critical value of Jc� can be significantly re-
duced if a cyclic exchange term Jcyc on the ladders is
included.28 They likewise fine-tuned J� to the QCP where the
gap closes and long-range magnetic order ensues and re-
ported good agreement with experiment. Seibold and
Lorenzana29,30 calculated the magnetic response for a range
of dopings within the time-dependent Gutzwiller approxima-
tion and found good agreement with the measured data for
both bond- and site-centered stripe models.

II. NUMERICAL EVALUATION OF INTERLADDER
COUPLINGS

The first question we wish to address here is whether the
key assumption that J� is large enough to induce order is
valid. There exist several estimates for the critical value Jc�
required if the coupling between isotropic ladders is antifer-
romagnetic. Gopalan et al.25 found Jc��0.25J in a simple
mean-field treatment of bond bosons. Quantum Monte Carlo
�QMC� calculations by Tworzydło et al.26 yielded Jc�
=0.30�2�J, a value subsequently confirmed by Dalosto and
Riera.27 We have redone the mean-field calculation of Go-
palan et al.25 for FM couplings Jc��0 and find that within
this approximation, the absolute value of Jc� is independent of
the sign of the coupling. QMC calculations by Dalosto and
Riera,27 however, indicate that the true value is at least Jc=
−0.4J �see Fig. 6b of their article�. The physical reason why
a significant coupling between the ladders is required to in-
duce magnetic order is that the individual two-leg ladders
possess a gap of order ��J /2. As a cyclic exchange term
Jcyc�0.25J reduces this gap by a factor of two,28 we would
expect that Jc� would likewise be reduced by a factor of two.
We hence conclude that a FM coupling of at least somewhere
between Jc�=−0.2J and −0.4J is required, depending on the
strength of a possible cyclic exchange term.

The explicit calculation of the ferromagnetic coupling in-
duced by the charge stripes between the spin stripes we de-
scribe below, however, yields J�=−0.05J. The coupling is
hence insufficient to induce order in a model of bond-
centered stripes.

For a model of site-centered stripes described by antifer-
romagnetically coupled three-leg ladders, as shown in
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|c−3/2〉

|a−1/2〉 |b̃−1/2〉 |c̃−1/2〉

|a1/2〉 |b1/2〉 |c1/2〉

|c3/2〉

−3
2

−1
2

+1
2

+3
2

a†0 c†0

b†1
a†1 c†1

c†−1

c†2

S = 1
2

S = 1
2

S = 3
2

antisym. sym. sym.
Sz

c

FIG. 2. Models of spin stripes: �a� bond-centered stripes mod-
eled by two-leg ladders and �b� site-centered stripes modeled by
three-leg ladders. �c� Definition of bosonic creation operators in the
eight-dimensional Hilbert space spanned by a rung on sublattice A
of the ladders shown in �b�.
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Fig. 2�b�, the critical coupling required for long-range order-
ing to set in is by contrast Jc�=0. The reason is simply that
there is no need to close a gap, as the three-leg ladders are
individually gapless.15 A conventional spin-wave analysis for
such a spin-only model of three- and four-leg ladders was
performed by Yao et al.,31 who found that their approxima-
tion agrees reasonable well with the experimental data if they
take J�=0.05J and J�=−0.09J for coupled three- and four-
leg ladders, respectively. The calculation we present in the
following, however, singles out J�=0.07J for the antiferro-
magnetic coupling between spin stripes modeled by three-leg
ladders.

To determine the effective coupling J� between the two-
and three-leg ladders representing bond- or site-centered
stripe, respectively, we have exactly diagonalized 16-site
clusters of itinerant spin-1/2 antiferromagnets described by
the �nearest-neighbor� t-J model3 with J=0.4t, two holes,
and periodic boundary conditions �PBCs�, in which the
stripes are localized through a staggered magnetic field B in
the gray shaded areas shown in Figs. 3�a� and 3�b�. We then
compare the ground-state energies we obtain for clusters
with the unfrustrated PBCs shown in Fig. 3 with the ground-
state energies we obtain for clusters with frustrated PBCs, in
which the 16-site unit cells shown on the right are shifted by
one lattice spacing to the top, such that sites 15 and 1, 16 and
2, etc., are nearest neighbors. We then consider spin-only
Heisenberg models of two- and three-leg ladders �consisting
of only the sites in the shaded areas in Figs. 3�a� and 3�b��
subject to the same staggered field B and couple them ferro-
magnetically or antiferromagnetically by J�, respectively, as
indicated. We again compare the ground-state energies for

unfrustrated PBCs, where J� couples sites 6 and 1, 7 and 2,
etc., for the two-leg ladders shown in Fig. 3�a�, with frus-
trated PBCs, where J� couples sites 7 and 1, 8 and 2, etc.
Finally, we determine J� such that the difference in the
ground-state energies between frustrated and unfrustrated
PBCs in the t-J clusters matches this difference in the spin-
only ladder models.

With B=0.225J and B=0.170J for the bond- or site-
centered stripe models we obtain J�=−0.051J and J�
=0.071J, respectively. The values for B are chosen such that
the magnetic localization energy Emag=−B�i�−1�iSi

z is equal
for both types of stripes, and such that the mean value of the
staggered magnetization 	−S1

z +S5
z
 in the t-J cluster for the

site-centered stripe matches the value we obtain in the spin-
wave theory �SWT� of three-leg ladders described below. We
estimate the error resulting from finite-size corrections and
the use of a nearest-neighbor t-J model to be of order
�0.01J.
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FIG. 3. Finite-size geometries with unfrustrated periodic bound-
aries for �a� bond-centered and �b� site-centered stripe models. The
spin stripes are localized by a staggered magnetic field B as indi-
cated by the signs in the gray shaded areas.

FIG. 4. �Color online� Constant energy slices of the neutron-
scattering intensity �+−�k ,�� for the lowest mode of the SWT with
J=140 meV and J�=0.07J. We have replaced the � functions in
frequency by Lorentzians with half width �=0.05J and averaged
over both stripe orientations �i.e., horizontal and vertical�.
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III. SPIN-WAVE THEORY OF THREE-SITE RUNGS

In the remainder of this paper, we will show, albeit not in
full detail, that a fully consistent SWT of bond operators
representing the eight-dimensional Hilbert spaces on each
rung of the three-leg ladders agrees perfectly with the experi-
mental data if and only if the correct, calculated value J�
=0.07J is used for the coupling. This discussion will com-
plete our argument showing that the experiment by Tran-
quada et al.13 provides evidence for site-centered, and not
bond-centered, stripes.

To begin with, consider a single rung on sublattice A with
three spins s1, s2, and s3, as indicated in Fig. 2�b�. Diagonal-

ization of the Hamiltonian ĤA=J�ŝ1ŝ2+ ŝ2ŝ3� yields a spin
doublet ��b−1/2
 , �b1/2

 with energy E=−J and a quadruplet
��c−3/2
 , �c−1/2
 , �c1/2
 , �c3/2

 with E= J

2 , both of which are
symmetric under mirror reflection �interchange of sites 1 and
3�, and another doublet ��a−1/2
 , �a1/2

 with E=0, which is
antisymmetric under this mirror reflection. The subscripts in
the kets label the eigenvalues of ŝtot

z . We define a fiducial

state �b̃−1/2
 for sublattice A via �b̃−1/2
��b−1/2
cos 	
+ �c−1/2
sin 	, which interpolates between the stot

z =− 1
2 quan-

tum ground state �b−1/2
 of the isolated rung for 	=0 and the
classically Néel ordered state �↓↑↓
 for 	=arctan� 1

�2
�

=0.6155. We then introduce bosonic operators a0
†

��a−1/2
	b̃−1/2�, etc., as indicated in Fig. 2�c�. Written
in terms of these operators, the Hamiltonian HA of a
single rung will contain a linear term 3

4 �c0
†+c0�sin 2	. Fi-

nally, we introduce a similar formalism with operators A0
†

��a1/2
	b̃1/2�, etc., and a fiducial state �b̃1/2
 with Stot
z =+ 1

2 for
the rungs on sublattice B and express all the spin operators
on all the individual sites in terms of the bosonic operators.

When we couple the rungs with intraladder couplings J�

=J and interladder couplings J� �see Fig. 2�b��, we keep
terms up to quadratic order in the bosonic operators and ad-
just the angle 	 introduced above such that the terms linear
in the operators vanish. This yields 	=0.341 for J�=0.07J.
We introduce Fourier transforms of our bosonic operators
into momentum space using the unit cell indicated by the
gray area in Fig. 2�b� and rewrite the total Hamiltonian in
terms of those. As the linear SWT preserves both the mirror-
reflection symmetry and the total spin quantum number Sz,

the Hamiltonian separates into several terms, Ĥ= Ẽ0+ Ĥa0

+ Ĥc0+ Ĥa1+ Ĥc2+ Ĥb1,c1,c−1, where Ẽ0 is a contribution to the

ground-state energy, Ĥa0 contains only the operators a0
†, a0,

A0
†, and A0, and so on. The low-energy spectrum we are

interested in is exclusively contained in

Ĥb1,c1,c−1 = �
k
�
̂k

†Hk
̂k −
1

2
tr�Hk�� ,

where 
̂k��B−1,k ,b1,k
† ,C−1,k ,c1,k

† ,C1,−k
† ,c−1,−k�T and Hk is a

6�6 matrix. We diagonalize Ĥb1,c1,c−1 via a six-dimensional
Bogoliubov transformation at each point in k space.

Cuts of the dispersion of the lowest mode we find are
shown in Fig. 1�a�. They agree strikingly well with the su-
perimposed experimental data by Tranquada et al.13 Constant
energy slices of the neutron-scattering intensity �+−�k ,�� of
this mode, which may be compared to the data reported in
Fig. 2 of Tranquada et al.,13 are shown in Fig. 4. The other
two modes of Hb1,c1,c−1, as well as all modes from the other

terms in Ĥ, are only weakly dispersing and start at energies
of order 2J, i.e., in a regime where we would no longer
expect our spin-wave theory to yield reliable results.

Finally, let us remark that for J��0.5J, the saddle-point
energy in our model is given to a highly accurate approxi-
mation by ��� ,���1.47�J�J. Since we expect J� to de-
crease with decreasing doping, we would expect a similar
doping dependence for the saddle-point energy.29,30

IV. CONCLUSION

In conclusion, we have shown that models of coupled
two-leg ladders describing bond-centered stripes cannot ex-
plain the magnetic spectrum of La2−xBaxCuO4 �Ref. 13� as
the coupling induced by the charge stripes between the lad-
ders is insufficient to induce long-range magnetic order. We
have further shown that a model of coupled three-leg ladders
describing site-centered stripes accounts accurately for the
experimental data. The experiment hence provides evidence
for site-centered, and not bond-centered, stripes.
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