piwik-script

Intern
Theoretische Physik I

PD Dr. Martin Greiter

Privatdozent
Theoretische Physik I
Julius-Maximilians-Universität Würzburg
Am Hubland
97074 Würzburg
Deutschland
Gebäude: M1 Informatik/Physik
Raum: 3023
Telefon: +49 931 31-81739
Martin Greiter

Research Interests

  • Fractional quantization in quantized Hall states and (itinerant) low-dimensional antiferromagnets
  • High-T superconductivity
  • Novel states of matter which may be realized by cold atoms in optical lattices

Former Teaching

  • Topological order: from quantized Hall states to magnetic systems, ws 2009/10
  • Antiferromagnetism und high-T superconductivity, ws 2008/09
  • Theoretische Physik F: Statistische Physik, ss 2008
  • Introduction to fractional quantization: quantum Hall liquids, spin chains, and high-Tc superconductivity, ws 2007/08
  • Quantum theory of many particle systems, ss 2007
  • Macroscopic quantum phenomena in metals and ultra cold gases, ws 2006/07
  • R. Thomale, S. Rachel, P. Schmitteckert, and M. Greiter, A family of spin-S chain representations of SU(2)_k Wess-Zumino-Witten models, Phys. Rev. B 85, 195149.
  • B. Scharfenberger, R. Thomale, and M. Greiter, Fractional Spin Liquid Hierarchy for Spin S Antiferromagnets, Phys. Rev. B 84, 140404(R) (2011).
  • M. Greiter and Holger Schmidt, Magnetic Excitations in the Site-Centered Stripe Phase: Spin Wave Theory of Coupled Three-Leg Ladders, Phys. Rev. B 83, 144422 (2011).
  • M. Greiter, Landau Level Quantization on the Sphere, Phys. Rev. B 83, 115129 (2011).
  • M. Greiter and Holger Schmidt, Evidence for Site-Centered Stripes from Magnetic Excitations in CuO Superconductors , Phys. Rev. B 82, 144509 (2010).
  • M. Greiter, On the linear dispersion--linear potential quantum oscillator , Annals of Physics 325, 1349 (2010).
  • M. Greiter, Confinement in a Quantum Magnet , www.nature.com/nphys/archive/categ_nv_012010.html Nature Physics 6, 5 (2010).
  • S. Rachel, D. Schuricht, B. Scharfenberger, R. Thomale, and M. Greiter, Spontaneous Parity Violation in a Quantum Spin Chain, J. Phys.: Conf. Ser. 200, 022049 (2010).
  • R. Thomale, E. Kapit, D.F. Schroeter, and M. Greiter, Parent Hamiltonian for the Chiral Spin Liquid, Phys. Rev. B 80, 104406 (2009).
  • S. Rachel, R. Thomale, M. Führinger, P. Schmitteckert, and M. Greiter, Spinon confinement and the Haldane gap in SU(N) spin chains, Phys. Rev. B 80, 180420(R) (2009).
  • M. Greiter and R. Thomale, Non-Abelian Statistics in a Quantum Antiferromagnet, Phys. Rev. Lett. 102, 207203 (2009).
  • M. Greiter, Statistical Phases and Momentum Spacings for One-Dimensional Anyons, Phys. Rev. B 79, 064409 (2009)
  • S. Rachel and M. Greiter, Exact models for trimerization and tetramerization in spin chains, Phys. Rev. B 78, 134415 (2008).
  • M. Führinger, S. Rachel, R. Thomale, M. Greiter, and P. Schmitteckert, DMRG studies of critical models of SU(N) spin chains, Ann. Phys. (Berlin) 17, 922 (2008).
  • R. Thomale and M. Greiter, Numerical analysis of three-band models for CuO planes as candidates for a spontaneous T violating orbital current phase, Phys. Rev. B 77, 094511 (2008)
  • D.F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Spin Hamiltonian for which the Chiral Spin Liquid is the Exact Ground State, Phys. Rev. Lett. 99, 097202 (2007).
  • M. Greiter and R. Thomale, No Evidence for Spontaneous Orbital Currents in Numerical Studies of Three-Band Models for the CuO Planes of High Temperature Superconductors, Phys. Rev. Lett. 99, 027005 (2007).
  • M. Greiter and D. Schuricht, Many-Spinon States and the Secret Significance of Young Tableaux, Phys. Rev. Lett. 98, 237202 (2007).
  • M. Greiter and S. Rachel, Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap, Phys. Rev. B 75, 184441 (2007).
  • M. Greiter, S. Rachel, and D. Schuricht, Exact results for SU(3) spin chains: Trimer states, valence bond solids, and their parent Hamiltonians, Phys. Rev. B 75, 060401(R) (2007).
  • R. Thomale, D. Schuricht, and M. Greiter, Charge excitations in SU(n) spin chains: Exact results for the 1/r2 model, Phys. Rev. B 75, 024405 (2007).