JULIUS-M AXIMILIANS-UNIVERSITAT- WURZBURG

BACHELOR THESIS

A Study of the Statistic Nature of v-ray
Variability of Blazars

Author: Supervisor
Luca Kohlhepp Prof. Dr. Karl Mannheim

+
+\+/+\ +/

ASTRO WURZBURG

A thesis submitted in fulfilment of the requirements

for the degree of Bachelor of Science
in the group of

Prof. Dr. Karl Mannheim

Chair for Astronomy

https://www.uni-wuerzburg.de/
http://www.astro.uni-wuerzburg.de/de/forschung/ag-kadler/matthias_kadler
http://www.astro.uni-wuerzburg.de/~mkadler/
http://www.astro.uni-wuerzburg.de/de

Contents

Zusammenfassung
Abstract

1 Introduction

1.1 Active Galactic Nuclei
1.1.1 Unification of AGN
1.1.2 Blazars
1.1.3

Spectra and Light Curves
1.1.3.1
1.1.3.2 High Energy Emission
1.2 Nature of the Used Data
1.3 Problem Addressed in this Work

Synchrotrono

2 Methods

2.1 Mathematical Basis of the Ornstein-Uhlenbeck Process
2.1.1 Motivation of the SDE
2.1.2 Properties of I'(t)
2.1.3 Solutions of the SDE
2.1.4 Stationarity of the OU-Process

2.1.4.1
2.1.4.2

Rearrangement (to simplify the proofs)
Proof of the 1st Criterion
2.1.4.3 Proof of the 2nd Criterion
2.1.4.4 Proof of the 3rd Criterion
Extraction of the Parameters
2.1.5.1
2.1.5.2
Implementation of the Algorithms
2.2.1
2.2.2 Parameter Analyser

2.2.2.1

2.2.2.2

2.2.2.3
Calibration of the e-Environment
2.3.1 Choosing the Method
2.3.2 Evaluating the Best Parameters

2.1.5

Extraction of o

Extraction of 0

2.2

Ornstein-Uhlenbeck-Simulator

Main Functions

Limit Calculators

Generic Application Functions

2.3

2.3.3 Determination of the Maximum

4 CONTENTS

2.3.4 Verification of the Extraction Method
2.3.5 Error Estimation of the Method

3 Results
3.1 Extraction of the Parameters
3.2 Building a Random Number Generator
3.3 Comparison of the Statistical Properties of Real and Generated LCs . . .

4 Summary and Outlook
List of figures
List of tables
Bibliography

Acknowledgements

Declaration of authorship
A Python Code of the Main Modules
B Python Code of the Scripts

C Validity of the Updating Formula

35
35
36
36

41

42

45

47

49

50

51

59

69

Zusammenfassung

Als Aktive Galaxienkerne (Active Galactic Nuclei - AGN) werden astronomische Ob-
jekte im Zentrum von Galaxien bezeichnet, deren Leuchtkraft durch die Akkretion von
Materie in ein massereiches Schwarzes Loch hervorgerufen wird. Die Leuchtkraft der
AGN kann die der umgebenden Galaxie um bis zu fiinf Gréenordnungen iiberschreiten.
Sie verdndert sich auf Zeitskalen von Minuten bis Jahrzehnten. Die stédrkste Variabi-
litdt wird bei einer Untergruppe der AGN, den sogenannten Blazaren, beobachtet. Den
Ursprung dieser Variabilitdt zu verstehen verspricht neue Erkenntnisse iiber die Ener-

gieumwandlungsprozesse in der Nahe Schwarzer Locher.

Dafiir ist es zundchst notwendig, einen Weg zu finden, die Variabilitdt in AGN mathe-
matisch zu beschreiben. Physikalische Modelle der Strahlungsprozesse kénnen dadurch
eingeschrinkt werden. Einfache Beschreibungen wie die periodische Verénderlichkeit
konnen bereits ausgeschlossen werden. Darum konzentriert sich diese Arbeit auf statisti-
sche Prozesse und insbesondere auf den einfachsten Markow-Prozess mit Gedéchtnis, der
sogenannte Ornstein-Uhlenbeck (OU) Prozess. Der OU-Prozess stellt die Losung einer
stochastischen Differentialgleichung (OUDE) dar. Mit dem OU-Prozess kénnen die un-
terschiedlichsten zeitlichen Variationen von Observablen von Modellsystemen beschrie-
ben werden. Beispiele dafiir sind die Brownsche Bewegung, der Ohmsche Widerstand

eines elektrischen Leiters oder Borsenkurse.

Im Rahmen der Astrophysik wurde der OU-Prozess bereits erfolgreich eingesetzt, um
die Variabilitéit der Strahlung von AGN Akkretionsscheiben im optischen und Réntgen-
bereich des elektromagnetischen Spektrums zu modellieren Takata et al. (2018, 2019);
Kelly et al. (2011); Kelly et al. (2014). Da die Fluvariabilitét im Bereich der Gamma-
strahlung am stirksten ausgeprigt ist, werden in dieser Arbeit AGN mit starker Gamma-
strahlung untersucht. Dies sind die sogenannten Blazare, in denen vom Schwarzen Loch
ein Plasmajet ausgeht, der innerhalb weniger Grad auf den Beobachter ausgerichtet ist.
Mit dem Fermi-LAT Observatorium wurden Zeitreihen der FluBdichte von Blazaren im

Gammastrahlenbereich iiber mehrere Jahre aufgezeichnet, die als Datenbasis dienen.

Zunéachst wurde die OUDE als Generator fiir Zahlenreihen implementiert. Es wur-
de eine Methode entwickelt, um die optimalen Parameter der OUDE bestimmen, die
zur Erzeugung von Zahlenreihen mit den statistischen Eigenschaften der beobachteten
Lichtkuren von Blazaren geeignet sind. Als zusétzlicher Test der Giite der Beschreibung
wird die spektralen Leistungsdichte verglichen und gezeigt, dass im Rahmen der Fehler

eine sehr gute Ubereinstimmung erzielt werden kann.

Abstract

Active galactic nuclei (AGN) are astronomical objects in the center of galaxies. They
are emitting light by the accretion of mass to a central supermassive black hole. The
luminosity of AGN can exceed that of the host galaxy up to five magnitudes and varies
on the scale of minuets to decades. The greatest variability can be observed from blazars,
sub type of AGN. Understanding the origin of this variability will help to improve the

knowledge of black hole physics, especially the energy transfers close it.

Therefore it is necessary to describe the variability in AGN mathematically. Trough
this it is possible to restrict the physical models of the radiation processes. Simple
descriptions like periodicity are already tested and excluded from this purpose. Therefore
this work will focus upon statistical processes, especially the simplest Markov-Processes
with memory, the so called Ornstein-Uhlenbeck (OU) process. The OU process is a
solution of a stochastic differential equation (OUDE). The OU process can model a
wide variety of time depended phenomena, such as Brownian motion, resistance in a

wire and some financial models.

In Astrophysics the OU process is already successfully used to describe the variability
of accretion discs in the optical and x-ray spectrum by Takata et al. (2018, 2019); Kelly
et al. (2011); Kelly et al. (2014). In this thesis AGN with strong ~-ray emissions are
explored, because the variability in the ~-ray spectrum is most pronounced. This are
the so called blazars, in which a plasma jet extrudes from the black hole within a few
degrees of the viewing angle. The Fermi/LAT satellite is recording time series of fluxes

for more then 10 years, this is used as the data base.

For this the OUDE is implemented as a generator to produce time series. Then a
method is developed, to find the optimal parameter of the OUDE, which can be used
to reproduce time series that imitate the light curves (LCs) of the observed blazars. As
an additional quality check the power spectrum density (PSD) is used to compare the
artificial and original LCs. With that it is shown that there is a good alignment within

error.

Chapter 1

Introduction

1.1 Active Galactic Nuclei

Active Galactic Nuclei (AGN) describe a galaxies with a supermassive black hole (SMBH)
in its center, which is accreting mass. The estimated mass of the SMBH ranges from
6 < logyg (MM@) < 10 (Vestergaard & Peterson 2006; Peterson et al. 2004). The accretion
process gives rise to a powerful non-thermal radiation, originating from a disc formed by
the accreting material as described by Shakura & Sunyaev (1973). Jets of plasma, which
are found in some galaxies, can be another source of radiation, as they are leaving the
galaxy perpendicular to the accretion disc and the galactic plane at highly relativistic
velocities. These jets emit radio radiation which overpowers the galaxies in the optical
spectrum (by a factor of 2-10). Thus, they are are called radio loud. The radiation, that
is emitted from the AGN, has a high luminosity ranging form 42 < log;, (L) <47

ergs—1

(Vestergaard & Peterson 2006; Peterson et al. 2004) and ranges over a wide band of
frequencies. The spectral energy distribution features two humps, shown in fig. 1.2,
dominated by different ways of emission. The low energy hump is likely caused by syn-
chrotron radiation. The the high energy regime can be explained by either leptonic,

hadronic or lepto-hadronic processes (Mannheim 1993).

1.1.1 Unification of AGN

There exists a multitude of different types of AGNs, that can be classified based on their
morphology and their spectrum of the source. All of these manifestations can be sum-
marized by one unified model, which has been introduced by Urry & Padovani (1995);
Antonucci & Barvainis (1990); Antonucci (1993). According to the unification paradigm
of AGNs, which today is considered the standard model of AGN, the appearance of the

4 Chapter 1 Introduction

Blazar
low power high power
BL Lac FSRQ
. ’A z&b
[C]
<
)
= FR-1 FR-1I
3
2
B
NLRG,
NLRG Type 11
e QS0
Seyfert 2
§ —_
5 accretion disc
T electron plasma
2 black hole
% broad line region
% narrow line region
[

. ?\

FIGURE 1.1: Visualisation of the unified model of AGN by Urry & Padovani (1995).
Graphic by Beckmann & Shrader (2012)

different manifestations are depended on the viewing angle, the luminosity and the radio
loudness, which itself is determined by the existence and extension of a jet. At the center
of an active galaxy a SMBH is located, onto which mass is accreting, forming a radiating
disc. The disc is surrounded by a torus of dust clouds blocking line of sight inside the

galactic plane. Therefore obstructing the broad line region (disc) for high inclinations.

1.1.2 Blazars

Because of their large amplitude variability, blazars are a prime candidate to examine
in this thesis. Blazars are a type of AGN that are described as a radio-loud AGN in the
standard model, with a small angle between the jet and the line of sight. In other words
the jet and its containing are moving towards the observer at relativistic speeds. Blazars
count to the most luminous types of AGNs, this is explained by Doppler boosting and
beaming of the relativistic jet. Blazars are commonly divided into two subgroups. The
BL Lac objects, that are characterised by a optical featureless continuum emission and

a variability on the time scale of minutes (Albert et al. 2007). The other class, has

Chapter 1 Introduction 5

107
=
L Ae10 2
'L 10
= E4
o 107
S,
% 10—12
107"
—14I.IIIIIIIIIIIIIII

10 I 12 17

10° 10" 10 10" 107 10
v [Hz]

23

FIGURE 1.2: Characteristic spectrum of AGN shown by the example of Mrk 421 (Abdo
et al. 2011). The green and red line show two fits of 1-zone synchrotron self-Compton
models to Mrk 421.

a higher luminosity and an optical spectrum, which features emission lines as well as
thermal emission. This class is named Flat-Spectrum Radio Quasar (FSRQ). FSRQs
typically show a variability on longer time scales such as on weekly or monthly (Ulrich
et al. 1997), but the are exceptions known such as CTA 102 (Shukla et al. 2018).

The word Blazar is a composite of the words 'blazing’ and ’quasar’. The first em-
phasizes the luminous and beamed nature of the radiation, whereas the word ” quasar”,
which short for quasi stellar, describes the point source, so star-like, nature of the source
(Kreter 2018).

1.1.3 Spectra and Light Curves

The spectral energy distribution (SED) of blazars is characterised by two humps, as

shown in fig. 1.2. These two humps can be explained by different radiation processes.

6 Chapter 1 Introduction

1.1.3.1 Synchrotron

The low-frequency hump is very well described by synchrotron radiation. According to
Rybicki & Lightman (1986), synchrotron radiation is emitted, when relativistic charged
particles are accelerated in a magnetic field B by Lorentz force. The Lorentz force in

the relativistic case is given by:

L i) = % (Ux é) . (1.1)

dt
m is the proper mass of the particle, v is the Lorentz factor, ¥ the velocity of the
particle, B the magnetic field and q the charge of the particle. While the Lorentz factor

is given by:

R (1.2)

JI-P

where = 7. Assuming a helical path of motion for the charged particle, an energy

loss of that particle can be calculated by:

2¢4 B2 .
P=— 323 B2y2sin? o (1.3)

with B = \é | and « being the pitch angle between ¢ and B. The charge of protons
and electrons can be set as ¢ = +e respectively. For highly relativistic electrons that are
present in the jet 8 ~ 1 is a good approximation. The radiated energy of a particle with
elementary charge is proportional to m~2 for the same 7. Thus, synchrotron radiation

emitted by protons is negligible in comparison to that emitted by electrons and positrons.

1.1.3.2 High Energy Emission

In comparison to the low-frequency hump it is not entirely clear which process causes the
emission in the x-ray and y-ray. Both leptonic and hadronic models are able to describe
the data. Even though they are competing models, there are not mutually exclusive,

which is shown by the existence of lepto-hadronic models (Mannheim 1993).
Leptonic Model - Inverse Compton Scattering

Compton Scattering is a well known effect of photons interacting with free electrons, in

which the photons transfer energy to the electron. At highly relativistic electron speeds

Chapter 1 Introduction 7

Y

K K

FIGURE 1.3: Scattering geometries in the observer’s frame K and in the electron rest
frame K’ (Rybicki & Lightman 1986).

the opposite effect happens. In the inverse Compton scattering the highly relativistic

electrons transfer energy to the photons they are scattering with.

By following the summary from Rybicki & Lightman (1986) and using the relativistic
principle the inverse Compton scattering observed in the laboratory system (K') can be
described as Thompson scattering from the rest frame of the electron (K’). Thompson

scattering describes low energy photons (hv < mc?) scattering elastically on electrons.

Therefore the photon energy in the rest frame of the electron needs to be calculated.

For that Doppler shift equations are being used
€ =ey(1— Bcosh) (1.4a)

€1 = €17(1 + Bcosb). (1.4b)

Using the equation for energy transfer by Compton scattering in the rest frame of the

electron, the posterior energy of the electron in the rest frame can be calculated by:

/
’ €

‘= I+ (1 —cosO)

(1.5a)

with © being
cos © = cos 0 cos @' + sin @' sin 6] cos ¢’ — ¢} (1.5b)

with ¢ and ¢/ being the azimuth angles of the incident photon angle and the scattered

photon angle in the rest frame of the electron.

For relativistic electrons that satisfy the condition v? — 1 > %, the photon energy

before the scattering, in the rest frame of the electron after the scattering and after the

8 Chapter 1 Introduction

scattering in the frame of the observer, are approximately in the ratios.

L:y:y? (1.6)

Thus, inverse Compton scattering can convert low energy photons into photons with

v2-times the energy and can therefore explain high energy radiation.
Hadronic Model - Shock acceleration

The Hadronic Model requires protons in the jet that get accelerated at the shock front
by the mechanism described by Fermi (1949). These highly relativistic protons can then
interact with either the ambient matter or photons originating from the accretion disk
or the dust torus (Sikora et al. 1987). This process is called pion photoproduction and
can be described by the following reaction diagram (Kreter 2018)

770+p
pty— At — N : (1.7)
T +n

The next reaction diagrams show the further decay of the pions:

0 -7+
™ = ut oy, (1.8)

u+—>e++17#—|—1/6.

Assuming only decays of the leading order, the m’-process is two times more likely

than the 7"-decay.

The interaction with ambient matter can be described as a proton-proton interaction

p+p+m°
p+p— : (1.9)

p+n+at

with a similar proportion of 7° and 7% generated the same way as with the pion photo

production.

1.2 Nature of the Used Data

The data that used for this thesis is taken from the Fermi Large Area Telescope (LAT).

The Fermi/LAT is a v-ray space telescope launched in June 2008. It is a pair conversion

Chapter 1 Introduction 9

telescope sensible in an energy range from 20 MeV to over 300 GeV. The telescope has
a large field of view of 2.4 sr at 1 GeV and performs a scanning motion in its normal
mode of operation to cover most of the sky with an uniform exposure in 2 orbits. This

takes roughly 3 hours (Atwood et al. 2009).

For this thesis the flux values, for photons over 1 GeV of over 2000 extragalactic
sources, binned at 28-day were used. The data was originally binned and employed for

a coincidence analysis of a neutrino by IceCube Collaboration et al. (2018).

The data was prepocessed using the recommended process by the Fermi/LAT collab-
oration for point-sources and handed to the author in a binned format giving fluxes as

well as additional data. No single photon events were provided.

The data used in this thesis covers the time from August 2008 to October 2017 and
contains 460 FSRQs and 836 BL Lacs. The remaining sources also display blazar-like

behaviour, but remain mostly unclassified.

1.3 Problem Addressed in this Work

The successful implementation of one, multiple or infinite OU processes to describe
AGNs in the optical and x-ray spectrum by Kelly et al. (2011), Kelly et al. (2014)
and Takata et al. (2018, 2019), has lead to the question if such an implementation of
the OU process is also suitable to describe LCs in the y-ray spectrum, which is known
for its high variability. Also the y-ray radiation does not originate in the disk, as the
thermal dominated optical and x-ray emission does, but instead in the non-thermal jet
and thus can be used to explore the mechanisms at work inside of the jet. The used data
set from the Fermi/LAT presents itself as well suited for this, with a high number of
sources spanning over a long observation time, without any major gaps in the acquisition
process. This allows a analysis of the distribution of the whole population instead of
examining single sources. To be able to deal with a data set of this size efficiently, a

new method to extract the parameters of the OU process is developed.

Chapter 2

Methods

2.1 Mathematical Basis of the Ornstein-Uhlenbeck Pro-

cess

The mathematical basis on which the light curve generator of this thesis is build, is
the OUDE. It is a Stochastic-Differential-Equation (SDE) of first order, that was first
proposed by Uhlenbeck & Ornstein (1930). Its basis is the Brownian motion, as described
by Wiener. The difference is that the particle is not visualized in a vacuum anymore,
but in a medium, where friction is introduced. To mimic the behavior of Fermi LCs
at energies > 1GeV and monthly binning, the characteristics, describing the shape
and signatures for characteristic time scales, regarding possible periodicity, have to be
understood. Abdo et al. (2010) found indication for a correlated noise behavior in
Fermi LCs. Timmer & Koenig (1995) showed that time sequences showing long term
variation with respect to the sampling time scale (time binning) feature slopes in the
power spectral density (PSD o f#) of 3 ~ —2 (red noise). Time series showing short
time variability with respect to the sampling time show pink noise behavior (5 ~ —1)
instead. A process, capable of realizing this is the OU-process, see Uhlenbeck & Ornstein
(1930), described by the OUDE, a stochastic differential equation (SDE). The basis for
the OU process is the Brownian motion of particles exposed to friction by an ambient
medium. In the following a motivation for the OUDE will be discussed based on the
Wiener process. This requires a time dependent, random noise function I'(¢) for which
the necessary properties will be described. As the OUDE stands, solutions can be given
in a discrete form and the stationarity of the OU process around a given mean value can

be proven.

11

12 Chapter 2 Methods

2.1.1 Motivation of the SDE

The basic SDE for the Wiener process describing particles in vacuum undergoing Brow-

nian motion reads:

duw (1)
dt

Where u(t) denotes the velocity of the particle and T'(¢) a white noise. The properties
of the white noise I'(¢) are detailed in Sec.2.1.2., Uhlenbeck & Ornstein (1930) then

=T(). (2.1)

introduced a friction, which is directly proportional to the velocity:

duOU(t)

T —Ou(t) +T'(t). (2.2)

Following Uhlenbeck & Ornstein (1930), the strength of the friction is described by a
friction coefficient #. A friction term, being directly proportional to the velocity covers
a wide range of specific type of frictions, such as Stokes and Doppler friction (Uhlenbeck
& Ornstein 1930). While in this case 6 is a scalar coefficient, this can in principle be

extended to more dimensions by introducing 6 as a friction tensor instead.

Accounting for a velocity of the surrounding medium, u, Eq.2.2 can be re-written as

du(t)
dt

=0(p—u(t) +T(t). (2.3)

2.1.2 Properties of I'(t)

Before solving the SDE, the properties of the in-homogeneity in Eq.2.3, I'(¢), will be
discussed. I'(t) is defined to be white noise. Samples obtained from white noise are

completely uncorrelated and distributed in a way that their mean is 0:
(T'(t)) =0 (2.4a)
(LTt + 1)) =46d(7) (2.4b)
(Gillespie 1996D).

These requirements are satisfied by the normal distribution with a mean g =0 and a

variance o, also written as

N(0,02). (2.5)

Chapter 2 Methods 13

Gillespie (1996b) summarizes further properties of the normal distribution, which are

listed in the following and used in the subsequent sections:

o+ BN(m,o%) = N(a+ Bm, f20?) (2.6a)
a+BN(0,1) = N(a, 5%) (2.6b)
N(my,0%) 4+ N(mg,03) = N(my + ma, 01 + 03). (2.6¢)

To solve the SDE the time infinitesimal of the normal distribution should be studied
first.
N(0,0%)dt (2.7)

Let dt’ = %, where n > 0 € N and thus dt’ < dt, see Gillespie (1996b), then Eq.2.7 can
be re-written as the sum over n steps. Gillespie (1996b) gives following proof with an
arbitrary random distribution satisfying Eqs.2.6a-2.6c whereas here the focus is laid on

a Gaussian distribution for T'(¢):!

N(0,02) dt = ZN 0,03) (2.8a)

Using 2.6¢, 2.8a reads

N(0,02) dt = dt' N (o, > g§> (2.8D)
=0

dt
N(0,0%) dt = —N(O nos) (2.8¢)
and using 2.6a, 2.8c becomes
o2
N(0,0%) dt =dt N (0, ;) (2.8d)
o2
— of = ;2 Vn. (2.8¢)

For Eq.2.8e to be true, o1 and o3 need to be dependent on dt and dt’ respectively.

Ansatz: " o
g g
0,/2 0./2
0./2 no./2

! Also a uniform distribution would suffice Eqs.2.6a-2.6¢

14 Chapter 2 Methods

Hence, the distribution of I'(¢) is defined in such a way that its infinitesimal does not

change when the size of dt is varied:

I(t)=N <0, (C’;, t) (2.10a)

with N(¢t) = N(0,1,t), follows:

P(t) = Z=N (1) (2.10D)
T(t)dt = oN(t)Vdt. (2.10c)

2.1.3 Solutions of the SDE

The time derivative of the velocity % can be expressed as

du 1
—_— = — — . 2.11
M L e+ dt) — () (211)
Applying this to Eq.2.3 and solving for u(t + dt), yields

u(t + dt) = u(t) + 6(u — u(t))dt + T'(t)dt. (2.12a)

Utilizing a normal distribution in the manner of Eq.2.10c for the noise term I'(¢) results
in following SDE:

u(t + dt) = u(t) + 0(u — u(t))dt + o N (t)Vdt. (2.12Db)

To be calculated by a computer, a discrete formulation of the process is needed, that

equals or approximates a sampled continuous process, so that
ur =u(t =AtT) VT € N. (2.13)

If the sampling of time steps in the computation is smaller than the relevant time scales of
the considered process, the continuous SDE can be approximated by a discrete function

(dt — At < 1), which is proven in appendix C:
ups1 = up + 0 At(p — ur) + oVAENy. (2.14)

An exact updating formula, where At < 1 is not necessary to hold, can be found
in the paper of Gillespie (1996a) and in the appendix C. Gillespie (1996a) introduces

exponential decay terms, ensuring ur to return back to p in any given step.

Chapter 2 Methods 15

2.1.4 Stationarity of the OU-Process

For a process to be stationary in a wide sense, it has to fulfill the following criteria:
(u(t)) = (u(t + 1)) (2.15a)

(u?(t)) < oo Vt. (2.15b)

(u®)u(t+ 7)) = (u(t))(u(t + 7)) = (u(T)u(0)) — (u(1))(u(0)) Vt V7T >0 (2.15¢)

Equation 2.15a states that the mean value is a constant function and thus independent
on the time step. Equation 2.15b gives a finite variance for all time steps and Eq.2.15¢

states that the co-variance is only dependent on the difference between two time steps.

2.1.4.1 Rearrangement (to simplify the proofs)

up is written as us.ar = x(s),s € N, so that the following calculations can be written
on the dependence on steps. At first the solution of the OU-Process is simplified for

statistical analysis:
x(s) =x(s — 1)+ 0At(p —z(s — 1)) + o VAEN(0,1, (s - At) — 1). (2.16a)

Then a closed expression of z(s) is needed that only depends on x(0) and the samples

of the normal distribution:

= x(s) = (1 — OAL)*2(0) + S (1 —0AL) - (At + oVAIN(0,1, (k — 1) - At))].
= (2.16b)

That this equation satisfies the OUDE can be shown by induction. By definition the

initial case is fulfilled with
z(0) = z(0). (2.16¢)

Thus the induction can be started:

z(s+1) = (1—-0At)x(s) + 0Atu+ oV AN (0,1, Ats)

— (1= 6A1) | (1= 0A1)*z(0) + Z (1= 020~ (0t + o VAN (0,1, (5 — 1)AY))

+0Atu + oV AEN(0, 1, Ats)

16 Chapter 2 Methods

S

= (1— A" '2(0) + (1 - 0A) Y ((1 — OAL)F(OAL + o VAIN (0,1, (k — 1)At)>
k=1
+0AtL + oV AEN (0,1, Ats)
— (1 — 02 2(0) + Z (1= 0A1 1 F (At + oVAEN (0,1, (5 — 1)A))

+0Atu + oV ALN(0, 1, Ats)

s+1
= (1- 02 ™ 2(0) + 3 ((1 — 9A) IR (GAL + oV AEN(0, 1, (k — 1)At)> O
k=1
(2.16d)
At this point n is introduced as n = s — k. Therefore k = s — n. The start index of the
sum reads
k=1l=s—n=n=s—-1 (2.16e)
The end index becomes
k=s=s—n=n=0. (2.16f)

Because of the sum is associative, the start and end points of the sum can be inter-

changed:

= z(s) = (1 — 0AL)*z +Z [(1 =AD" - (OALu + oVAEN(0,1,((s — n) - At) — 1))].

(2.16g)
In the next step equation 2.6¢ is applied. All normal distributed independent variables
from 0 to ((s —n) - At) — 1 are summed. For each new time step a new uncorrelated
variable is added. Thus, the sum equals a normal distribution at a specific time step,
e.g. the time the last step was added. Here for convenience of short equations the time

step that will be added next is chosen instead:

s—1 s—1
= 2(s) = (1 — 0AE)*z(0) + N <0Atuz (1—0AH)", 0 AL > (1 — AL, s - At) .
n=0 n=0
(2.16h)

If one writes this as a single normal distributed variable using 2.6a, it becomes

= z(s) =N ((1 — OAL)*2(0) + GAtuZ (1—0AH)" 2Atz 1—0A)™ s At)
n=0 n=0
=N (Mean(x), Var(z),t).
(2.161)

Chapter 2 Methods 17

2.1.4.2 Proof of the 1st Criterion

To proof the first criterion 2.15a, equation 2.17a is shown to be true for all s:

!

(x(s)) = (x(s+1)) Vs e N. (2.17a)

Hence z(s) can be written as normal distributions 2.16i. The mean is the first argument
of N. Therefore 2.17a simplifies to:

s—1 s
(1= 0AE)°z(0) + 0ALn Y (1 — 0AD)" = (1 — 0AL)* T2(0) + 0Atn Y (1 - OAL)"
i i (2.17b)
0=[(1—-0At)* — (1 — OAL)®]z(0) + OALu(1 — HAL)® (2.17c)
(1 — AL T 2(0) = (2(0) — 0ALL) (1 — HAL)®. (2.17d)
LHS RHS

From there can see, that this equation is satisfied for all s if
2(0) = p = RHS = (p — 0ALp) (1 — AL)° = pu(1 — 0AL)* T = LHS|,)=, 0. (2.17e)

If a system runs sufficiently long, the criterion of 2.17e loses its importance, because
after a sufficient amount of time a steady-state is reached, making the initial conditions

unimportant.

This implies that
1= 2(0) = (2(0)) = (x(s)). (2.17)

2.1.4.3 Proof of the 2nd Criterion

For the proof of 2.15b it is again used that z(s) is normal distributed and that (d?) =
Var(d) for some distribution d:

s—1

Var(z(s)) = > At Y (1 - 0AL)>. (2.18a)

n=0
This, expression is required to be finite for all times. Hence a lower limit of s = 0 is
given and only the limit of s — oo is analyzed:

s—1 s—1

Var(z(s)) = lim oPALY (1 —0AL)* = lim P ALY (1 - 0AL)%" (2.18b)

18 Chapter 2 Methods

g At _ 2
Var(a(s)) B2) =mospee (1= 0487 <1 (2.18¢)
0, (1—0A1)2>1
o2 At
AL 11— 0A < 1
Var(z(s)) = { 208042 | <1 (2.18d)
00, 1 —0At > 1

Thus this requirement for a stationary process is fulfilled for |1 — 0A¢t| < 1.

2.1.4.4 Proof of the 3rd Criterion

For the following proof it is necessary to express x(t 4+ 7), dependent on x(¢) and inde-
pendent of x(0):

S+T
(s+7) = (1-0A)*T72(0) + Z [(1 — OA)STTR L (OAtE + o VAN (0,1, (k — 1)At)) .

k=1
(2.19a)

Separating the one sum into two, so the first goes from index 1 to s and the second from

s+ 1to s+ 7. It becomes

z(s+7)=(1—-0At)°(1 —0AL) xz(0)+

(1= A8y (1 = 9AL)" - (02 + oVAIN(0,1, (k — 1)AD)|+

k=1
Si [(1 — OAL) TR (0AL + oVAEN (0,1, (k — I)At))]
k=s+1

— (1 - 6A)T ((1 — 9AL)*z(0) + S [(1 — OAL) F(OAL + oVAEN (0,1, (k — 1)At)]>

k=1

z(s)

+ if {(1 — QA TR (OALu + oVAEN(0, 1, (k — 1)At))}
k=s+1

= (1 —0A)T - z(s) + i [(1 —OA)TF (AL + o VAEN (0,1, (k + 5 — 1)At))} .
= (2.19b)

The result is an explicit equation for z(s+7) based on z(s). Thus, it can be begun with

proofing the criterion of equation 2.15c:

(x(s)z(s + 7)) =

Chapter 2 Methods 19

T

<x(s) <(1 —0AL) x(s) + {(1 — A F(OAtL + o VAN (0,1, (k4 s — 1)At))]> > :
k=1
(2.20a)

Multiplying z(s) in the sum and using the linearity of the expectation value, one yields:

(w(s)z(s + 7)) = (1 — OAL)2%(s)) + <Z [x(s)@ - HAt)T_kGAt,ua:(s)] > +
T =1 (2.20D)

<Z (1 —0AH)*oV/AEN(0,1, (k + 5 — 1)At)> .

k=1

The linearity of the expectation value is used again to pull it into the sum and all scalars

out of it.

(@(s)ax(s + 7)) = (1 — AT (22(s)) + [(1 — AL FOAL <$(s)>} n
k=t (2.20¢)

<i:x(s)(1 — Ao VAEN (0,1, (k4 s — 1)At)>

k=1

At this point it is necessary to simplify the last summand.
AUX:

Replacing z(s) with its explicit form yields:

<ZT: z(s)(1 — AL FoVAIN(0,1, (k + 5 — 1)At)>

k=1

= < i [Z [(1 — OAL)* (OAtp + oVAEN(0,1, (i — 1)At))} :
e (2.20da)

(1 — AL FoV/ALN(0,1, (k + 5 — 1)At) > = 5.

The product inside the sum is expended inside the inner sum:

<Z > [— AT RNtV ALN (0,1, (k + s — 1)+
==l (2.20db)
(1 —0A)* T F52AtN (0,1, (i — 1)At)N (0,1, (k + s — 1)At] >

20 Chapter 2 Methods

Using linearity of the expectation values, the expectation value of each of the inner

summands is calculated separately:

= <i i [(1 — AL TTFYALtoVAEN (0,1, (k4 s — 1)} > +

k=1 i=1

. (2.20dc)
< Z — AT k 2AtN(O, 1, —1DAHNO,1, (k+s— 1)At]> .
k=1 i=1
Linearity of the expectation value is applied again to pull it inside the sum
S=> "3 [(1-0A0 T FOAteVALN(0,1, (k + 5 — 1)+
oo, A (2.20dd)
D (1= AT FGALN(0, 1, (i — 1)ALN(0, 1, (k + s — 1)AL)].
k=1 i=1

By definition the expectation value of the normal distribution is defined as (N (0,1,t)) =
(I'(t)) = 0 (Eq. 2.4a) and the auto-correlation as (N(0,1,¢)N(0,1,t+ 7) = (I'(t)['(t +
7)) = 6(7) (Eq. 2.4b). Thus, the first summand vanishes and the equation reads:

S = ;2 — OAL) RS2 ALS (K + s — 1) At — (i — 1) AL)]. (2.20de)
1=

(k+s—-1)—(i—1)=k+s—iwithk >1andi <s. Thus k+s—i > 0 Vk,i.
= 0((k+s—1)At) = 0 Vk,i.

= <ix(s)(1 — AL o VALN (0,1, (k4 s — 1)At)> —0=25. (2.20df)

k=1
With that knowledge the main calculation can be continued:
(2(s)a(s + 7)) = (1 - 0AH) (2%(s)) + 3 [(1 —OAD)TROA L <x(s)>] (2.20¢)
k=1
Using equation 2.17f it follows that

(z(s)z(s + 7)) = (1 — 0AL)" (22(s)) + [(1 - 9At)7_k9At,u2]. (2.20f)
k=1
Considering the relative autocovariance between two time steps, the following statement

needs to hold:
((t)z(ty +7) = (2(t2)z(ts + 7). (2.20g)

Chapter 2 Methods 21

& (1 —0A) (22 (t1)+) S [(1 - HAt)T’kGAtMZ] =
k

—_

(2.20h)

Rl

(1 — OAH) (22 (t2)+) [(1 - eAt)T—’“eAwﬂ
k=1

= (2%(t))) = (2%(t2)) (2.20i)

If t; and t9 are sufficiently large and the difference t; — to is constant, Eq.2.20i reads

= lim (z2(t;)) = lim (2%(tp)) (2.205)

t1—0o0 to—00
Using equation 2.18a and 2.18c it becomes.

a2 At a2 At

1—0At)2 1— (1—0AL)2 - (2:20k)

:>17(

2.1.5 Extraction of the Parameters

To describe light curves properly with the OU-Process, it is necessary to be able to
determine the parameters of the OUDE from a given time series. This means a unique
projection form the physical parameters to the OU parameters, (physical parameters) —
(1,0,0), needs to be found. This allows to choose OU parameters based on physical
measurements to create artificial light curves that mimic the natural ones as close as
possible. For that reason, methods to determine u, o and 6 from the time series of an
OU process are developed. In the following, a mathematical description of the methods
is given as well as its derivation. The method for determining p and o is described
first. From those the 6 parameter can be derived. The parameter p is extracted straight

forwardly from the time series by calculating the expectation value (mean).

2.1.5.1 Extraction of o

To extract o, data points where uy is close to the mean (within an e environment) are

considered. Following Ansatz is used:
ur = p+e€. (2.5)
Then the SDE 2.14 reads:
upy1 = up 4+ 00 — (4 €)) + oVALN(t) (2.6)

= UT4+1 —UT = —0Ate + oV AtN(t). (27)

22 Chapter 2 Methods

For an ¢ < C’g the term with € is negligible. It is therefore reduced to

ury1 —up = oV AtN(t) = N(0,0%At, t). (2.8)

If a given set of up is within the € environment encompassing pu, the variance can be
calculated on both sides. For normal distributions its variance is its second argument,

like it is shown in equation 2.7, thus
Var(ury, — ur) = Var(N(0,0%At, t)) = o2 At. (2.9)

Therefore ov/ At can be written in a closed expression as:

ur — p < € << U\/E}) (2.10)

oV At = ,|Var ({UT+1 —ur AL

2.1.5.2 Extraction of 6

With the values extracted for o/ At, At can be determined by utilizing the variance

of the complete time series. From the equations 2.18a and 2.18c follows that

g At 2
—Z =2t o0 (1—-0AH)* <1
Var(u(t)) = 1-(1-0At)? ()) (2.11)
00, (1—-0At)?2 >=1
Hereafter stationary processes will be focused upon, so that
oAt
)= ———— 2.12
Var(ult) = 1=y (212

/ o2 At

Because the variance is insensitive for the sign of the deviation from the mean, the sign

of o can not be determined by this method. Only the absolute |af is known as

o2\t

=4/l - ——.
o Var(ur)

(2.14)
Hence, another method is used to evaluate the sign. This other method is less precise
than the first method since it depends on data points sufficiently far from g which in
most cases of time series are more scarce than the bulk of data points scattering close
to u. However, the following method however is sensitive to the sign of o and can be

used in combination with the method shown above to pinpoint the value and sign of

Chapter 2 Methods 23

«. Therefore equation 2.14 is considered for large deviations of up from p and a small
0. Such that the term with the normal distribution is small against the first two terms

with the reversion rate # and vanishes:
ury1 = up + 0AE(u — up). (2.15a)
This is now rewritten in terms of a:
= urt1 = (1 = A ur + 0Atp = aur + (1 — a)p (2.15b)
= upyl = aup + L — ap (2.15¢)

ur41 —
o YT+ H

= a. 2.15d
p— (2.15d)

The « is averaged for all sufficiently large ur. The sign sensitive o can be calculated by

U1 — p aur + 0Atp }>
= — N €« ————. 2.15
o <{ ur — {1t ‘) oV At (2:15¢)

From these two methods the absolute and sign of a can be calculated separately. The
absolute value of the more precise method (Eq. 2.14) is used and the sign of the sign
sensitve method (Eq. 2.15e):

a = sign(ay) - |al. (2.16)

OAt can now be calculated from this «, using the definition of « in equation 2.13:

OAL =1 — . (2.17)

2.2 Implementation of the Algorithms

In the following section the implementation of the Ornstein-Uhlenbeck-Simulator as well
as the parameter extractor are explained. Both are designed as python 3 (version 3.7.3)
modules to be imported into other python programs or juypter notebooks. In both
modules numpy (version 1.17.2) was used, because its arrays handle large amount of

data more efficiently than default python lists.

2.2.1 Ornstein-Uhlenbeck-Simulator

The generation of random numbers, like the white noise needed for the UO process,
requires significant computing power. Generating multiple random numbers at once

can reduce the computing power needed for each random number. To make use of

24 Chapter 2 Methods

this feature and to reduce computational overhead, this implementation was designed
to calculate large numbers of Monte-Carlo-Simulations (MCS) at once. To have this
functionality and still be highly customizable by the user some of the parameters of the

main function can accept a variety of types as arguments.

For the implementation in python the numpy module is utilized. Numpy is used for
two reasons. On the one hand, python lists get highly inefficient when multiple (n)
lists are stacked inside of each other, the access time complexity is O(n), compared to
a multidimensional numpy array where it is O(1). Additionally, for all cases where the
type of the numpy array is not object, the memory used by the pyhton list is bigger.
While having the same space complexity (O(n)), each element requires an additional
pointer. Also, python lists stacked into each other cannot easily be generalized for
an arbitrary number of lists stacked into each other. While the depths of stacking

2. On the other hand, numpy has high quality random

represents the number of axes
number generators that can generate numbers in high quantities directly into numpy

arrays.

The main function of the module is named ou_generate and it is the only function
of the module that needs to be called by the user for basic functionality and most
advanced functionality. The mandatory parameters of that function are iterations,

theta, sigma, mu and xO.

e iterations is the number of time steps calculated per MCS. Its type is int.

e theta, sigma and mu are the parameters of the equation 2.14. Their type can
differ and either be an object of the type ndarray or with the attribute __iter__
so it can be converted into a ndarray. If it is either, after conversion, its shape
attribute needs to be equal to the optional parameter size. They can also be a
callable that can generate a ndarray with the shape size if given a size argument.

Or they can be a float.

e x0 are the start values. Its type can be None in addition to all the types theta,
sigma and mu can be. If it is None, values from a white noise distribution are used

to set the start values.

In addition to these mandatory parameters there are optional parameters, commonly
called ko-arguments, which always have a default value. The ko-arguments of the main

function are dt, noise_generator, noise_parameters, size and unpack.

Zthe length of one axis is its dimension

Chapter 2 Methods 25

e dt sets the At value of the equation 2.14. It does not change the amount of time
steps, but the length of those steps. That means the total duration of the MCS is

given by iterations - dt. Default value is 1.

e noise_generator is the function used for generation of the white noise. It needs to
take an argument named size and return a ndarray, with its shape equal size. It
can also take more arguments, then these must be specified in noise_parameters.

Default value is numpy.random.standard normal.

e noise_parameters will pass through arguments to the noise generator. Its type
needs to be dict. The keys need to be the name of the argument and the values

the corresponding arguments. The default value is {}.

e size is the value that determines how many MCS are generated at once. It also
changes dimensions of the output ndarray accordingly, so that its shape is size +
(iterations,) ((iterations,) is a tuple with iteration in its single entry).

The default value is (1,).

e unpack specifies if the general n-dimensional structure of the output is discarded
for a one-dimensional ndarray of the size iterations. This parameter only has
an effect if size does equal (1,) (tuple with only a single 1 in it). The default

value is True.

If called, the main function first checks if size is of the type tuple. Then it converts
theta, sigma and mu into numpy arrays, if they are not all given as floats. After that
conversion the array with the random numbers is generated and multiplied with v/dt.
Therefore the function given in the argument noise_generator is called. All arguments
passed in noise_parameter are passed to this function as well as a size argument,
which is set to size + (iterations,). This returns an n-dimensional numpy array
called noise, where the index of the last dimension denotes time and the other indices
denote a particular MCS. When this array is generated, the start values given in x0 are
copied in noise, for that the last index of noise, the one responsible for time, is set
to 0. The next step is the main loop. Therefore Numpy slicing is used to efficiently
calculate all MCS for an individual time step. To save memory, up is written in the
noise array. To prevent collisions, up,q is stored at the same address as Np. After
ury1 is calculated using Np, Np is overwritten with up4q1. This is possible because Np

is not needed any more.

Additionally to the main function ou_generate, the module contains an Iterator
class, some wrapper functions and a function that is used to convert the parameters

mu, theta and sigma from different input types to the corresponding numpy arrays.

26 Chapter 2 Methods

The Iterator can be used to iterate over each index-tuple of a multidimensional array.
Therefore the initializer requires a size-argument. There the size of the array must be
given as a tuple. For numpy arrays this is stored in the shape attribute. Then, the initial-
ized object can be used as a generator in a for-loop. Multiple wrapper functions are pro-
vided, which can be used to make functions fulfill the requirements for in ou_generate,
that do not fulfill them per se. There is wrap_rename_size to rename the size argument,
if it has another name in a function. wrap_additional_arguments makes it possible to
use more than only the size argument by saving values for the other parameters in the
wrapper. If a function is needed as parameter, that has no size argument, it can also be
wrapped by wrap_no_size, so that the given function is called once for each cell of the
returning array. There is also the wrapper wrap no_size_and additional_arguments
that combines the last two capabilities. It is written separately, because it is not trivial

to chain the wrappers mentioned above together.

If seeds are required to make the generated time series reproducible, they can be set de-
pending on the argument given in noise_generator. In the case that noise_generator
is a number generator from the module numpy.random, as given in the default argu-
ment, the seed can be set by calling numpy.random.seed before calling ou_generate.
This function takes zero or one arguments. If no argument is given, the seed is set to
default®. If an argument (int) is given, the seed is set to the number given. If the used
random generator supports getting a seed by an argument, this seed argument can be

passed through to the noise generator by noise_parameters.

2.2.2 Parameter Analyser
2.2.2.1 Main Functions

The core of this module are the three functions that can calculate |a|, aa and ov/At.
These are called get_alpha_abs, get_alpha_pm and get_sigma respectively. get_sigma
and get_alpha pm take a lower and upper limit instead of an e. Although there are
functions provided to calculate these limits from a fixed € or an €, that is set by properties

of the time series.

The argument data that is used in all three main functions and some (all) of the
others, has always the same meaning and requirements. data contains the OU time
series that shall be analyzed. It needs to be an ndarray from the numpy module, with
only one dimension. data is always interpreted as a time series with equal stime steps.
Missing values can be given as numpy.nan to archieve constant time steps even with

data that is not spaced equally by default.

3usually dependent on the system time

Chapter 2 Methods 27

get_sigma implements the equation 2.10 as executable code. Its parameters are data,
lower and upper.
e data is, as already described, an array of the OU time series.
e lower. If a value is above this value and below upper it is used to calculate o.
e upper. See lower.
get_alpha_abs will be able to calculate equation 2.14 for the user when it is provided
with a data set and o+ At, provided by the parameters data and sigma.
e data is, as already described, an array of the OU time series.
e sigma is a parameter of equation 2.14 and will be used in the equation as o/ At.
get_alpha pm is the implementation of the calculation of gy by the equation 2.15e.
get_alpha_pm requires the parameters data, mean, lower and upper.
e data is, as already described, an array of the OU time series.

e mean will be used as p from equation 2.15e

e lower. If a value is below this value or above upper it will be used to calculate

4.

e upper. See lower.

2.2.2.2 Limit Calculators

The following functions are used to calculate a mean, lower and upper limit that can
be used as parameters for the main functions. It was chosen to calculate these limits in
methods outside of the main methods, so that the user can change and try out different
methods of setting an €. They all return a tuple of three elements that can be used as
mean, lower and upper (in this order) in the main functions. There are three predefined

methods of setting the limit.

set_limit_by_std allows to set an € symmetrical around the mean of the time series.
The € is determined as a multiple of the standard deviation of the time series. This

method requires the two parameters data and sigma.

e data is, as already described, an array of the OU time series.

28 Chapter 2 Methods

e sigma describes to how many standard deviations around the mean e is set to. Its

type is either int or float.

set_limit_by_epsilon calculates the mean, lower and upper limit for an absolute
epsilon, given as a parameter. Its parameters are data and epsilon.
e data is, as already described, an array of the OU time series.
e epsilon is an absolute value. In its distance to the mean, the lower and upper

limits are set.

set_limit_by_percentage_of mean sets the lower and upper limit to be at a certain
percentage of the mean. This method is only recommended when the deviations from
the mean are much smaller than the mean. It needs the parameters data and percent.

e data is, as already described, an array of the OU time series.

e percent determines how far the limits are away from the mean,as a fraction of it.

2.2.2.3 Generic Application Functions

The following functions are programmed in a way that they can easily be used without
a deeper understanding of the details of the program. The goal of all of these functions
is to provide a good calculation of a and o with only a few but significant parameters

that work over wide ranges of different time series.

all by_std calculates a ¢ and a « from a given time series by only using two float as
arguments in addition to the time series itself. The parameters are data, sigma_sigma
and sigma_alpha.
e data is, as already described, an array of the OU time series.
e sigma sigma is equivalent to m, from section 2.3.
e sigma alpha is equivalent to mq from section 2.3.
There are other generic application functions in this module, but they were mainly

used to explore different methods of how to set the e-environment and are not recom-

mended for use.

Chapter 2 Methods 29

2.3 Calibration of the e-Environment

Before the extraction program can be used to determine the parameters that are common
for the Fermi LCs, it is necessary to first find a suitable algorithm to set the € parameters
of the equations 2.10 and 2.15e, introduced in section 2.1.5. In this context the quality

of the parameter extraction is tested as well (sanity check).

In addition to numpy, which is used for the modules listed above, further packages are

used for data reprocessing and visualisation of the results. These modules are:

scipy 1.4.1

matplotlib 3.1.3

tqdm 4.42.1

e time (native module)

To avoid confusion, the € of equation 2.10 that is used to calculate o will be called ¢,

and the e of equation 2.15e that is used to calculate a4 will be called €.

2.3.1 Choosing the Method

The parameter space of 1 and o+/At is not tightly restricted (u € R, o € R™), thus it
is not recommend to just set e, and €, to a fixed value for all time series. If one did
so, it would be very likely that either all, too few or none, of the points are within the
€ boundary. Therefore a more sophisticated method needs to be found to set the e by

properties of the time series that are easy to obtain.

One method that satisfies these requirements is to set € as a multiple (factor) of the
standard deviation of the time series. This method is completely independent of p
and thus works equally well over the complete parameter space of u, while also scaling
with ov/At and « to ensure there are always data points inside or respectively outside
the e-environment. These multiple of the standard deviation are be called m, and m,

respectively.

As part of this work other methods are explored, but then discarded in favor of the
method using the standard deviation. These methods are suffering from the absence of
decoupling from g or being biased by the time series (sample) size. Discarding these
methods is not only done on how they would behave on different parameters of y and
o, also on the basis of tests done similar to 2.3.2, but on a smaller scale, that shows the

presumed issues.

30 Chapter 2 Methods

Spearman R Person R Kendal-7 AVG
My 0.312 0.322 0.393 0.343+0.036
Me 1.00 1.60 1.84 1.4840.36

TABLE 2.1: m, and m, with the best result in respect to each statistical test and the
average

2.3.2 Evaluating the Best Parameters

For getting the best possible values for m, and m,, a multitude of time series are gen-
erated with the OU-generator, which is described in sec 2.2.1 . Then, an e-environment
for each time series is calculated for a multitude of m, and m,. For each of these e-
environments o and 6 are extracted using the program from sec. 2.2.2 and the algorithm
developed in sec. 2.1.5. For each (unique) combination of m, and m, the extracted
values are then compared to those which are used to generate the time series using three

statistical tests. The results of these tests can be seen in Fig. 2.1.

The tests used to determine correlation between the extracted ov At and At and
the given ov/ At and 0At, those that are used to generate the time series, are correlation

coefficients by Spearman (Spearman R), Pearson (Pearson R) and Kendall (Kendall-7).

For the generation of the OU time series, 6 is drawn from N (5,5), o from N(0,1) and
wu from N(0,1). At is set to 0.1. 100,000 time series are generated, but those where
2 > 0At > 0, are discarded as not stationary for all extractions and evaluations, so that
more then 80,000 time series remain. A seed was used, to assure that the results are

reproducible. The python code for the generation can be found in Appendix B.

2.3.3 Determination of the Maximum

To determine the best values for m, and m,, the gradient in m, direction is calculated
first. This gives a value for each unique combination of m, and m,. For each m, the
absolutes of all gradients (over all m,) are summed. The m, for that this sum is the
lowest, is the best. Then, the gradients in m, direction are calculated for m, that is
determined to be the best. The m, where the absolute of the gradient is the lowest, is

determined as the best m,.

This is done for all three statistical tests. The results for the best m, and m, are
slightly different. Thus, the mean and standard error of m, and m,, are calculated from

the results of all tests.

Chapter 2 Methods

31

extraction quality, tested with Spearmen-R

35 ——

0.875

0.850

- 0.825

- 0.800

Spearmen-R

r0.775

0.750

0.725

0.700

0.90

0.88

- 0.86

r0.84

Pearson-R

- 0.82

0.2 0.4 0.6 0.8 1.0 1.2

extraction quality, tested with Kendall-t

0.75

0.70

r0.65

Kendall-T

r 0.60

0.55

0.2 0.4 0.6 0.8 1.0 1.2
mg

FI1GURE 2.1: Quality of the extraction measured with different correlation coefficients,
between the extracted 6 and the given 6, while m, and m, are varied

32 Chapter 2 Methods

- 103
107 5
=
>
0
c
(O]
©

10!

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Uextracted\/E

FIGURE 2.2: Density plot of the extracted ov/ At, against the actual ov/ At parameter
used to generate the time series.

2.3.4 Verification of the Extraction Method

To extract o and « from the OU time series used for calibration, the optimized m, =
0.343 and m, = 1.48 are applied. This sanity check ensures the validity of the extracted
parameters and functionality of the algorithm. Therefore the extracted o/ At are plotted

against the given ones used to generate the time series in fig. 2.2. The same was done
for §At in fig. 2.3.

As one can see, the algorithm accomplishes its task. It is also apparent that its quality
degrades for 6At — 1. This was expected, because the approximation of small € breaks

at this point.

2.3.5 Error Estimation of the Method

To estimate the accuracy of the parameter extraction, a cone that encompasses 68%
of all data points is fitted to the data from section 2.3.4. For the estimation of the
OAt-error only AAt < 1 are used in the calculation. From the opening angle of the cone

a relative error of o/ At and 0At can be found. Due to the nature of the spread of the

Chapter 2 Methods 33

2.00 — 103
1.75
1.50
102
1.25 <
D,
5 —
‘g 1.00 E
& ‘0
C
Q
0.75 o
101
0.50
0.25
100

0.25 050 0.75 1.00 1.25 150 1.75 2.00
eextractedAt

FIGURE 2.3: Density plot of the extracted At against the actual At parameter used
to generate the time series. The gap in the middle equals a « close to 0. In this case
assumption for the extraction breaks and the estimation gets less precise.

extraction it seems more useful to give a relative error than a absolute one. The relative

errors ogag and o JAL are calculated to the values in tab 2.2:

TOAL ‘ 95VAL
17.55 % | 4.45%

TABLE 2.2: Relative Errors for ov At and for At < 1

The constant relative error for #At only makes sense for At < 1. For §At > 1 the

absolute error can be calculated with

Oabs,0at = Ogat + (2 — OAL). (2.18)

Using this equation is equivalent of fitting a cone with the same opening angle from the

other side.

Chapter 3

Results

For the extraction the OU-parameters and the subsequent simulations, not the fluxes
measured by the Fermi/LAT, will be used but instead their logarithm (base 10). There-
fore it is necessary to have a clear nomenclature that can distinguish between source
and logarithmic or expontionated data. In the nomenclature chosen, ”OU” and ”Fermi”
identify the source, while ”time series” is the data where OU-parameters are extracted
from or data can be generated as. "LC” is 10 to the power of the time series. So in case
of Fermi they are the actual flux values measured by the Fermi/LAT. These relations

are shown clearly in in table 3.1.

3.1 Extraction of the Parameters

The extraction of the OU-parameters is done to all points of the Fermi time-series, where
the test statistic for the detected flux is greater or equal to 9 (T'S > 9). Furthermore,
if a time series has less than 38% significant data points left, it is discarded completely.
After this procedure 253 of the 2278 LCs remain.

‘ ou Fermi
time series gen logio(flux)
light curve (LC) | 109¢" fluzx

TABLE 3.1: Clarification of nomenclature. While flux is the flux (in -Z£5) measured
by the Fermi/LAT and gen are the numbers given by the OU-Generator described in
section 2.2.1

35

36 Chapter 3 Results

3.2 Building a Random Number Generator

To generate OU-LCs that resemble the Fermi data, it is necessary to define random
number generators (RNG) that draw their numbers from the distributions that the
parameters extracted from the Fermi light curve have. To understand the distribution
of the Fermi-LCs, all extracted parameters u, 0At,ov/At of all LCs fulfilling the test
statistic are plotted in a histogram which is shown in fig. 3.1. A normal distribution is
fitted over the histogram. The normal distributions are then numerically integrated, to

obtain the cumulative distribution function (CDF) for each parameter.

Base of the RNG is the basic numpy.random.random number generator that has a
uniform distribution between 0 and 1. To generate a random number with the wanted
distribution, a number is drawn from numpy.random.random. Then, it is calculated at
which value the CDF will reach that drawn number. That value is then returned as the

random number that has the desired probability density function (PDF).

3.3 Comparison of the Statistical Properties of Real and
Generated LCs

To check if the extraction of the parameters is successful, LCs generated with the dis-
tributions derived from the Fermi data are compared with those used to calibrate the
parameter extraction. This is done to make sure that the extraction does not simply
rebuild the distribution that was used for calibration, in the following called prior dis-
tribution. Therefore 100,000 time series were simulated for the distributions of u, At,

oV At extracted in figure 3.1.

To compare the two sets of LCs, the power spectrum density (PSD) is calculated
and compared for the LC originating from the prior distribution and the distribution

extracted from the Fermi data, in the following called posterior distribution.

PSDs are commonly used in AGN research to quantitatively describe the variability of
a source as it is done by Abdo et al. (2010). Going further, Timmer & Koenig (1995) even
build a random number generator to generate artificial X-ray data by a PSD power-law

slope.

The PSD can be approximated by the periodogram. The periodogram as it is defined
by Timmer & Koenig (1995) reads:

1 . —iw
P(w) =~ D e, (3.1)
t=0

Chapter 3 Results

—— fitted PDF
1.75 A I . extracted from Fermi LCs

=

%

o
1

1.25 1

probability density
=
o
o

251 —— fittet PDF
Il 6 extracted from Fermi LCs

= N
s} o
) 1

Iy
o
)

probability density

0.5 A

0.0 -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
OAt

71 —— fitted PDF
Il o extracted from Fermi LCs

I
1

probability density
w

0.0 0.1 0.2 0.3 0.4 0.5
oVt

F1GURE 3.1: PDF of u, At, o/ At extracted from the Fermi LCs

38 Chapter 3 Results

0.4

[prior distribution
posterior distribution

0.34 1 1 fermi-LCs

0.29 A

0.23 A

0.17 -

fraction of LCs

0.11 -

0.06 A

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
power-law exponent 8 of the PSD

FIGURE 3.2: Distribution of the power-law exponent S of the PSD for the OU-LCs

used in the calibration of m,, and m,, see section 2.3 (blue), the Fermi-LCs (green) and

the OU-LCs generated to replicate the Fermi-LCs with the OU-parameter distribution
fitted in section 3.2 (orange)

In this thesis the periodiogram was calculated by the algorithm of Lomb (1976) and
Scargle (1982). An implementation of this can be found in the scipy module for python.
To compare the PSDs a power law of the form w” is fitted to P(w). The exponent j3

that is obtained for each LC can now be compared.

The orange histogram of fig. 3.2 shows how well the OU process could replicate the
PSD of Fermi-LCs (green) once the distributions for the OU-parameters are calibrated.
To show that the adjustment of the OU-parameter distributions is successful and the
distribution of 5 is not an inherent property of the OU process, § of the distribution used

to calibrate m, and m,, see section 2.3, is also calculated and plotted in comparison.

To have a more quantitative measure of how well the distributions are equal to each
other, the fist 4 central moments are compared to each other. For mean and variance the
implementation of the numpy module is used, for the skewness and kurtosis the scipy
module is used. The results for the central moments can be found in tab. 3.2. The means
of the two distributions can not be distinguished. The skewness of both distributions is
small. While the OUs are basically indistinguishable from 0, the Fermi-LCs are slightly

left leaning but with such a low value that it is still compatible with 0 and thus with

Chapter 3 Results 39

central moment | Fermi-LCs ‘ OU-LCs

mean -1.2 -1.1
variance 0.16 0.083
skewness -0.17 0.095
kurtosis -0.038 0.087

TABLE 3.2: Statistical properties of the distribution of 8 for the Fermi-LCs and the
OU-LCs build to imitate the Fermi-LCs. The distributions are shown in fig. 3.2 as
histograms.

each other. For the kurtosis both values are so low that they are compatible with 0
and with each other. The only parameter where there is a relevant difference in the two

distribution is the variance.

The slightly left leaning of the Fermi-LCs as well as the higher variance can both be
explained by the so called red noise leakage. In contrast to the computer generated OU-
LCs, the Fermi-LCs are not sampled equidistant. While there is a flux value given for
each month per LC, filtering the test-statistic yields LCs that are not sampled equidistant
anymore. Calculating the periodiogram for non equidistant sampled LCs comes with a
bias towards lower frequencies, this is called red noise leakage. If one calculates a power
law slope with these, this yields a lower 5. While the Lomb-Scargle Algorithm used to
calculate the periodiogram is designed to reduce the red noise leakage, it can not be

eradicated completely.

Chapter 4

Summary and Outlook

In this thesis, a method to extract OU-parameters from a time series is described. After
showing that this method as well as its implementation work properly on mock data,
the method is employed to extract OU-parameters from gamma-ray data obtained with
the Fermi telescope. On the basis of 253 lightcurves satisfying the test-statistics require-
ments, distributions for each of the three parameters of the OU process are obtained.
Drawing random values from these distributions, a set of artificial Fermi-lightcurves is
generated. Using power spectral densities for the amplitude variations as a reference for
metric purposes, it is shown that within errors, the artificial lightcurves show the same

statistics as the original data.

Even though the results are promising in showing that a simple (3-parameter) de-
scription for the complex variability patterns found in Fermi-LAT lightcurves is possible,
further research needs to be done: This includes especially a closer look on data from
other energy ranges of the electromagnetic spectrum. The emission at different wave-
lengths may originate from different regions of the AGN governed by different stochastic
or correlated processes. Further studying the wavelength-dependent lightcurves may

thus help to resolve the physical processes at work in these powerful gamma-ray sources.

In particular, a comparison between the X-ray/optical lightcurves of accretion-disc
dominated AGN and the gamma-ray lightcurves of jet-dominated AGN may provide
important clues about the connection between disk and jet. Furthermore, other time
scales of variability, especially those that are more rapid than monthly, need to be inves-
tigated. Rather compact regions within the AGN seem to be involved in the gamma-ray
emission corresponding to length scales much shorter than a light-travel distance of one
month, given the reported shortes time scales of minutes for blazars. Such investigations
will help to discern the radiation processes giving rise to the gamma-ray variability of

blazars.

41

List of Figures

1.1

1.2

1.3

2.1

2.2

2.3

3.1
3.2

Visualisation of the unified model of AGN by Urry & Padovani (1995).
Graphic by Beckmann & Shrader (2012)
Characteristic spectrum of AGN shown by the example of Mrk 421 (Abdo
et al. 2011). The green and red line show two fits of 1-zone synchrotron
self-Compton models to Mrk 421.
Scattering geometries in the observer’s frame K and in the electron rest
frame K’ (Rybicki & Lightman 1986).

Quality of the extraction measured with different correlation coefficients,
between the extracted 6 and the given 6, while m,, and m, are varied
Density plot of the extracted ov/At, against the actual ov/At parameter
used to generate the time series. oL
Density plot of the extracted At against the actual At parameter used
to generate the time series. The gap in the middle equals a « close to 0.
In this case assumption for the extraction breaks and the estimation gets
less precise.o

PDF of p, OAt, ov/At extracted from the Fermi LCs
Distribution of the power-law exponent S of the PSD for the OU-LCs used
in the calibration of m, and m,, see section 2.3 (blue), the Fermi-LCs
(green) and the OU-LCs generated to replicate the Fermi-LCs with the
OU-parameter distribution fitted in section 3.2 (orange)

43

List of Tables

2.1

2.2

3.1

3.2

me and m, with the best result in respect to each statistical test and the
AVETAZE + v v v e

Relative Errors for ovVAt and for At <1

Clarification of nomenclature. While flux is the flux (in -2%;) measured

by the Fermi/LAT and gen are the numbers given by the OU-Generator
described in section 2.2.1
Statistical properties of the distribution of g for the Fermi-LCs and the
OU-LCs build to imitate the Fermi-LCs. The distributions are shown in
fig. 3.2 as histograms. L

45

Bibliography

Abdo A.A., Ackermann M., Ajello M., et al., 2010, ApJ 722, 520

Abdo A.A., Ackermann M., Ajello M., et al., 2011, The Astrophysical Journal 736, 131
Albert J., Aliu E.,; Anderhub H., et al., 2007, ApJ 669, 862

Antonucci R., 1993, ARA&A 31, 473

Antonucci R., Barvainis R., 1990, ApJ 363, L17

Atwood W.B., Abdo A.A., Ackermann M., et al., 2009, ApJ 697, 1071

Beckmann V., Shrader C.R., 2012, Active Galactic Nuclei

Fermi E.; 1949, Phys. Rev. 75, 1169

Gillespie D.T., 1996a, Phys. Rev. E 54, 2084

Gillespie D.T., 1996b, American Journal of Physics 64, 225

IceCube CollaborationAartsen M.G., Ackermann M., et al., 2018, Science 361, eaat1378

Kelly B.C., Becker A.C., Sobolewska M., et al., 2014, The Astrophysical Journal 788,
33

Kelly B.C., Sobolewska M., Siemiginowska A., 2011, ApJ 730, 52

Kreter M., 2018, Ph.D. thesis, JMU Wiirzburg

Lomb N.R., 1976, Astrophys. Space. Sci. 39, 447

Mannheim K., 1993, A&A 269, 67

Peterson B.M., Ferrarese L., Gilbert K.M., et al., 2004, ApJ 613, 682
Rybicki G.B., Lightman A.P., 1986, Radiative Processes in Astrophysics
Scargle J.D., 1982, ApJ 263, 835

Shakura N.I., Sunyaev R.A., 1973, A&A 24, 337
47

48 BIBLIOGRAPHY

Shukla A., Mannheim K., Patel S.R., et al., 2018, 854, L.26

Sikora M., Kirk J.G., Begelman M.C., Schneider P., 1987, ApJ 320, L81
Takata T., Mukuta Y., Mizumoto Y., 2018, The Astrophysical Journal 869, 178
Takata T., Mukuta Y., Mizumoto Y., 2019, The Astrophysical Journal 879, 132
Timmer J., Koenig M., 1995, Astronomy and Astrophysics 300, 707

Uhlenbeck G.E., Ornstein L.S., 1930, Phys. Rev. 36, 823

Ulrich M.H., Maraschi L., Urry C.M., 1997, ARA&A 35, 445

Urry C.M., Padovani P., 1995, PASP 107, 803

Vestergaard M., Peterson B.M., 2006, ApJ 641, 689

Acknowledgements

I thank Prof. Dr. Karl Mannheim for giving me the challenge and opportunity to
work in research, particularly in such an interesting field as astronomy. In particular
I'm grateful for his insightful inputs and his trained eye, which objections to my work

need to be considered.

I thank Paul R. Burd for the long discussions and helpful tips and explanations. Also
for giving me the great opportunity to work with you on a publication during this time,
as well as sharing an office with me, so I wouldn’t go mad. He also helped to debug and
sanity check my programming code, doing so he was a lot more useful than a rubber
duck.

I thank Prof. Dr. Sara Buson for providing the already binned data form the Fermi-
telescope, as well as Jeffrey Scargle and Greg Madjeski, for the discussions during our
meetings, especially in the light, that he is experienced on the topic of statistical pro-

gresses.

I thank Henri Scheppach, Theodor Kaiser, Leonard Miiller for discussions and finding

errors in grammar and spelling as well as for the moral support.

I thank my parents for supporting me in my decisions, so that I was able to reach my

goal of studying physics.

49

Declaration of authorship

I, Luca Kohlhepp, declare that this thesis titled, ’A Study of the Statistic Nature of

~-ray Variability of Blazars’ and the work presented in it are my own. I confirm that:

m This work was done wholly or mainly while in candidature for a research degree

at this University.

m Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated.

m Where I have consulted the published work of others, this is always clearly at-
tributed.

m Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
m | have acknowledged all main sources of help.

m Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed: %u,‘q M([%f/a

Date: 21.04.2020

50

o N O Ut ks W N

10
11
12
13
14
15
16
17
18

Appendix A

Python Code of the Main
Modules

Formating of the python code can seem off, because it was formated to be easily read
in the source code. The formating was not changed here, so that the lines shown here

coincide with the source code lines.

In this Appendix, the main modules are shown. Their documentation can be found

in section 2.2.

If those modules contain a "main” method (if _name == ’_main_’:), they are
either left over for texting the validity of the module or to show case it. These modules
are not to be run as independent programs, but as modules to be included into other
programs.

import numpy as np

class DimensionError (Exception):

pass

iterates over all indices of an n-dimensional array, which shape is given in
the ’size’ argument

class Iterator:

def __init__(self, size):
self .size = size

self.itlist = [0]*len(size)

def __iter__(self):
while self.itlist[-1] < self.size[-1]:
for i in range(len(self.size)):

if self.itlist[i] >= self.sizel[il:

51

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64

65

66

67
68

52

Appendix A Python Code of the Main Modules

self.itlist[i] = O

self.itlist[i+1] += 1
yield tuple(self.itlist)
self.itlist [0] += 1

converts multiple types into the type np.ndarray

def

to_nparray(para, size, all_para_floats):

if callable(para):

para = para(size)
elif type(para) == np.ndarray:
if not para.shape == size:

raise DimensionError ("shape of parameter is not equal to size')
elif hasattr(para, ’__iter__’):
para = np.array(para)
if not para.shape == size:
raise DimensionError ("shape of parameter is not equal to size')
elif not all_para_floats:
para = np.full(size, para)

return para

Main-function generates a MC simulated noise by the Ornstein-Uhlenbeck-SDE

def

ou_generate(iterations, theta, sigma, mu, x0, dt=1, noise_generator=np.random
.standard_normal, noise_parameters={}, size=(1,), unpack=True):

validation and preparation of the parameters

size is forced into a tuple

if type(size) == int:
size = (size,)
size = tuple(size)

check if all run parameters (theta, sigma, mu) are float if not make them
all to arrays

all_para_floats = isinstance(theta, (int, float)) and isinstance(sigma, (int,
float)) and isinstance(mu, (int, float))

theta = to_nparray(theta, size, all_para_floats)

sigma = to_nparray(sigma, size, all_para_floats)

mu = to_nparray(mu, size, all_para_floats)

theta is only used with dt, so it will be once resized here
theta = theta * dt
mu is only used with theta, so this value is calculated once here

mu = theta * mu

generate the noise and iter_size

noise_parameters[’size’] = size+(iterations,)
noise = noise_generator (**noise_parameters)
iter_size is an iterator, that iterates over a slice of the size ’size’. So

it can be used to iterate over the
complete theta, sigma, mu arrays or over a slice, that represents one time
step, of the noise array

iter_size = tuple([slice(0, length, 1) for length in sizel)

resize noise with time step length

Appendix A Python Code of the Main Modules 53

69 noise = noisexdt**0.5

70

71 # initialize start values in the noise array, where t=0 (last index = 0)
72 if x0 is None:

73 pass

74 elif callable(x0):

75 x0 = x0(size)

76 noise[iter_size+(0,)] = xO[iter_size]

77 elif type(x0) == np.ndarray:

78 if x0.shape == size:

79 noise[iter_size+(0,)] = xO[iter_size]

80 else:

81 raise DimensionError ("parameter shape is not equal to size')
82 elif hasattr(x0, ’__iter__’):

83 x0 = np.array(x0)

84 if x0.shape == size:

85 noise[iter_size+(0,)] = xO[iter_size]

86 else:

87 raise DimensionError ("parameter shape is not equal to size')
88 else:

89 noise[iter_size+(0,)] = x0

90

91 # main iteration process

92 if all_para_floats:

93 for i in range(iterations-1):

94 noise[iter_size+(i+1,)] = noisel[iter_size+(i,)] * (1-theta) + mu +

sigma*noise[iter_size+(i+1,)]

95 else:
96 for i in range(iterations-1):
97 noise[iter_size+(i+1,)] = noisel[iter_size+(i,)] * (1-thetal

iter_size]) + muliter_size] + sigmaliter_sizelx*noise[iter_size+(i+1,)]

98

99 # discards the wrapping array in case size = (1,) and feature is enables
100 if size == (1,) and unpack:

101 return noise[0, O:iterations]

102 else:

103 return noise

104

105

106 |# These are wrappers, to make functions usable as arguments in ou_generate, that
do not full fill it prerequisites

107
108 |# Use this if your function has no size argument, but also doesn’t need more
arguments.

109 |# It works by calculating the function once per cell in an size shaped array,
110 | # saving the result in an array and returning that array.

111 | def wrap_no_size(func):

112 def wrapper (size, *args, **xkwargs):

113 result = np.zeros(size, dtype=float)
114 for i in Iterator(size):

115 result[i] = func(xargs, **xkwargs)
116 return result

117 return wrapper

118

119

120

121

122
123

124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144

145

146
147
148
149
150
151
152

U W N

54 Appendix A Python Code of the Main Modules

This wrapper is useful, when the method has size, but also needs additional
arguments. This is not necessary,
when the noise function needs additional arguments, these can be given as

kwargs in noise_parameter
sizepos is the position of size in args (if in args). Dummy value must be given
If size not in args, sizepos needs to be set to -1

def wrap_additional_arguments (func, args, kwargs, sizepos=-1):

def wrapper (size):

if sizepos != -1:
args[sizepos] = size
else:
kwargs[’size’] = size

return func (*args, **kwargs)

return wrapper

This wrapper is useful when the function already has a size argument, but it is
named differently.
def wrap_rename_size (func, name):
def wrapper (xargs, **kwargs):
kwargs [name] = kwargs[’size’]
del kwargs[’size’]
return func(*args, **kwargs)

return wrapper

This combines the need of additional arguments and the lack of a size argument.
This was implemented,
because it is not trivial to wrap no_size and additonal_arguments into each
other.
def wrap_no_size_and_additional_arguments (func, args, kwargs):
def wrapper (size):
result = np.zeros(size, dtype=float)
for i in Iterator(size):
result[i] = func(*args, *xkwargs)
return result

return wrapper

LisTiNGg A.1: OU-Generator, file: ou_generator.py

import numpy as np

General:
feed with np.array with flux only, non significant values, need to be set to np

.nan
Some basic exceptions used (subject to change)
This exception is thrown, if some values that shouldn’t are NalN

class IsNANException(Exception):

pass

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Appendix A Python Code of the Main Modules

95

Implementation of the given formulas, from paper/thesis.

an upper and lower limit are given

Instead of a epsilon

returns a sigma*sqrt(dt) and the number of points used to calculate it

def

def

def

get_sigma(data, lower, upper):

positions of u_T, that are NOT NaN AND over lower AND under upper

pos = np.array((“np.isnan(data))*(data > lower)x*(data < upper), dtype=bool)

discards last element (no
pos[-1] = False
positions of u_T+1 (shift

u_T+1 would exist)

positions by +1)

posl = np.zeros(len(pos), dtype=bool)

posi[1:]1 = pos[:-1]

calculates u_t+1 - u_t for all u_t

distance = datal[posil] - dat
discards all that are NAN

a[pos]

distance = distance["np.isnan(distance)]

if no points are left, no
if len(distance) == 0:
return np.nan, O

standard deviation is cal

sigma can be calculated

culated and returned

return np.std(distance), len(distance)

get_alpha_abs(data, sigma):

return np.sqrt(1-(sigma**2/np.var(data["np.isnan(data)])))

get_alpha_pm(data, mean, lower, upper):

positions of u_T, that are NOT NaN AND (over lower OR under upper)

pos = np.array((“np.isnan(data))*((data < lower)+(data > upper)),

discards last element (no
pos[-1] = False
positions of u_T+1 (shift

u_T+1 would exist)

positions by +1)

posl = np.zeros(len(pos), dtype=bool)

posi[1:]1 = pos[:-1]
calculates all the alphas
alphas = (datal[posl] - mean
if len(alphas) == 0:

return np.nan
calculates the mean of al

return np.mean(alphas[“np.i

at once

)/(datalpos] - mean)

1 alphas that are not NalN
snan (alphas)])

auxiliary functions to easily calculate limits

gets limits in terms of standard deviations form mean

this is the method chosen to be used in the thesis/paper

def

set_limit_by_std(data, sigma):

mean = np.mean(data[“np.isnan(data)])

std = np.std(data["np.isnan

if mean == np.nan or sigma

(data) 1)

== np.nan or std == np.nan:

dtype=bool)

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

o N O Ok W N

10

56

Appendix A Python Code of the Main Modules

raise IsNA

NException ()

return mean, mean - sigma * std, mean + sigma * std

get limits form

epsilon distance

def set_limit_by_epsilon(data, epsilon):

mean = np.mean
if mean == np.

raise IsNA

(data["np.isnan(data)l)
nan:

NException ()

return mean, mean - epsilon, mean + epsilon

def set_limit_by_p
mean = np.mean
if mean == np.

raise IsNA

ercentage_of_mean(data, percent):
(data["np.isnan(data)])
nan:

NException ()

return mean, mean * (1 - percent), mean * (1 + percent)

calculates alpha

and/or sigma directly, with use of the functions above

def sigma_by_percentage_of_mean(data, percent):

limits = set_1

imit_by_percentage_of_mean(data, percent)

return get_sigma(data, *limits[1:])

def alpha_by_std(data, sigma_para, sigma_std):

limits = set_1

return np.sign

calculates sigma

imit_by_std(data, sigma_std)
(get_alpha_pm(data, *limits)) * get_alpha_abs(data, sigma_para)

and alpha by the method described in the thesis/paper (

sigma_sigma <=> m_\sigma, sigma_alpha <=> m_\alpha

def all_by_std(data, sigma_sigma, sigma_alpha):

limits_sigma =
limits_alpha =
sigma, n = get
return sigma,

sigma), n

set_limit_by_std(data, sigma_sigma)
set_limit_by_std(data, sigma_alpha)
_sigma(data, *limits_sigmal[1:])

np.sign(get_alpha_pm(data, *limits_alpha))*get_alpha_abs(data,

LisTING A.2: Parameter extractor for o and «, file: get_para.py

import numpy as np

PDF refers to probability density function

CDF refers to cumulative distribution function

Iterator class,
copied from ou

iterates over al
argument

class Iterator:

used in random_array to iterate over a n-dimesional np array -
_generator

1 indices of an array, which shape is given in the ’size’

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

37

38

39

40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Appendix A Python Code of the Main Modules 57

def __init__(self, size):
self.size = size
self.itlist = [0]*len(size)

def __iter__(self):
while self.itlist[-1] < self.size[-1]:
for i in range(len(self.size)):
if self.itlist[i] >= self.sizel[il:

self.itlist[i] = O
self.itlist[i+1] += 1

yield tuple(self.itlist)

self.itlist [0] += 1

this is the main random generator
cdf refers to an np.ndarray, that contains the numeric CDF (numeric integration
of the PDF)
cdf [0] needs to be 0O and cdf [-1] needs to be 1
def random(cdf, min_limit, max_limit):
draws random number from uniform distribution
ran = np.random.random()
gets the position where the cdf is the first time bigger then random value
over_ran = np.where(cdf > ran) [0][0]
the value before that is the last where random is bigger
under_value = cdf [over_ran-1]
calculates the "float position" ran would have, if cdf would be continuous
sampled
last pos bigger then ran :: linear interpolation between the points

bigger and smaller then ran

float_pos = (over_ran-1) + (ran - under_value) / (cdf[over_ran] - under_value
)

calculate a value from the "float position" (from the uniform sampling of
the CDF)

return min_limit + (max_limit - min_limit) * (float_pos / (len(cdf)-1))

this is version uses the random function, but has a additional size argument. A
random number is generated for each
cell of a size shaped array
def random_array(cdf, min_limit, max_limit, size):
result = np.zeros(size, dtype=float)
calculates a random number for each cell in result
for i in Iterator(size):
result[i] = random(cdf, min_limit, max_limit)

return result

if you only have a PDF, calculate a fitting CDF here
def cdf_by_pdf (pdf):
cdf = np.zeros(len(pdf)+1, dtype=float)
for i in range(len(pdf)):
cdf [i+1] = cdf[i] + pdf[i]
cdf [0] =0
cdf [-1] = 1

60
61
62
63
64
65
66
67
68

58

Appendix A Python Code of the Main Modules

if

return cdf

—__nhame__ ==

tests only

cdf = np.array([0.0, 0.1,

print (random(cdf, 0, 1))
pdf = np.array([0.1]1%10)
print (cdf_by_pdf (pdf))

LisTiNG A.3: Random number generator, file: random_by_cdf.py

0.2,

0.3,

N O Otk W N

10
11
12
13
14

15

Appendix B

Python Code of the Scripts

As well as for Appendix A, the code shown is directly from the programs and thus not

specially formated.

This code here doesn’t have the module like nature of the code of Appendix A, even
if parts of it may be used as such. It is special tailored to the exact use case of the
situation and data. For that reason things like paths or the use of very specific data
structure, are coded directly into the program code. In most cases paths and other
variables are initialised in the "main” (if __name__ == ’_main__’:) and not set in the
functions themselves, so that it should be easy to change code, or use the program as a

module instead, even though it is not designed as such.

Might not be as well documented and commented as the main modules

import numpy as np
import ou_generator as ou

import time

nun

The format used to save the np.array with the 0OU-time series is a 2d ndarray with
dtype=object.

Its shape is (amount, 4), where amount is the amount of time series saved in the
array.

In the second dimension the [time series, theta, mu, sigmal] for each time series

is stored in this order.

nun

While this is code is not written to be imported as a module and calling this as
one will generate the exact
time series used in the thesis/paper, one can shift all the non essential code

into a if __name_ == ’__main__’ clause.

59

16

17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66

60 Appendix B Python Code of the Scripts

It might be easier to just copy the repack2 method into the program where it is

needed.

set the amount, length and dt of the time series to generate
amount = 100000

length = 1190

dt = 0.1

seed = 982947937

just renaming the fuction, so that one does not need to write np.random.normal

all the time

normal = np.random.normal

not tested if order stays the same

doesn’t work, don’t use, use repack2 instead
def repack(theta, sigma, mu, noise):

[]

one_chain = slice(0, noise.shape[-1], 1)

dummyList

for i in ou.Iterator(theta.shape):
#dummyList .append ([noise[i+(one_chain,)], thetali], muli]l, sigmal[il)
pass

return np.reshape(np.array(dummyList), theta.shape+(4,))

repacks the generated time series in the chosen format
def repack2(theta, sigma, mu, noise):
result = np.empty(theta.shape+(4,), dtype=object)

for i in ou.Iterator (theta.shape):

one_chain = slice(0, noise.shape[-1], 1)
result[i+(0,)] = noise[i+(one_chain,)]
result[i+(1,)] = thetalil

result[i+(3,)] = sigmalil

result[i+(2,)] = mulil]

return result

generate parameters
the parameters are generated out of function, so that they can be saved with
the generated numbers

np.random.seed (seed)

theta = normal(5, 5, amount)
sigma = normal(0, 1, amount)
mu = normal (0, 1, amount)

for some manual checking (not required)

print (type (mu) == np.ndarray)

generating ou_noise
print (’ generating ou processes’)
start = time.time ()

generates the ou-time series with the ou_generator module

67

68
69

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

=W N =

26

27

Appendix B Python Code of the Scripts 61

generated = ou.ou_generate(length, theta, sigma, mu, None, dt=dt, size=(amount,)
)

print (’finished in {}s’.format(time.time()-start))

some prints mean to mu parameter; sanity check if generator works and doesn’t
mess up order.

for i in range(len(mu)):
print ("mu: {}, <x>: {}’.format(mul[i], np.mean(generated[i])))

repack to array form needed for next step

start = time.time ()

print (’repackaging’)

print (generated.shape)

repacks it in the format used during the project

array = repack2(theta, sigma, mu, generated)

print (array.shape)

print (’finished in {}s’.format(time.time()-start))

print (’saving’)

start = time.time ()

saves the array using the np module

np.save(’ouV4.npy’, array)

print (’finished in {}s’.format(time.time ()-start))

print (Pexit’)

LisTING B.1: Generates the spezific time series used in 2.3.4, file: newBulk.py

import numpy as np

import get_para as gp

import os

from scipy.stats import ks_2samp as ks, spearmanr as sr, pearsonr as pr,
kendalltau as k1l

import tqdm

nun

data: [time series, theta, mu, sigmal
class QueueElement:

def __init__(self, name, alpha_func, sigma_func, alpha_paras, sigma_paras):
self.name = name
self.alpha_func = alpha_func
self.sigma_func = sigma_func
self .alpha_paras = alpha_paras

self.sigma_paras = sigma_paras

this calculates sigma and alpha (2x) with given functions and given parameters
for one time series
def single_estimator(single_data, alpha_func, sigma_func, alpha_para, sigma_para,
sigma_given):
If the sigma or alpha parameters are iterable they will be unpack when

thrown into

28

29
30
31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48

49
50

51
52
53

54

55

56

57

58

59

60

61

62

63

64

65
66

67
68
69

62 Appendix B Python Code of the Scripts

the limit generating funtion. This allows for 1limit functions that use more

then one argument

if hasattr(sigma_para, ’'__iter__’):

sig_limit = sigma_func(single_data, *sigma_para)
else:

sig_limit = sigma_func(single_data, sigma_para)
if hasattr(alpha_func, ’__iter__’):

alpha_limit = alpha_func(single_data, *alpha_para)
else:

alpha_limit = alpha_func(single_data, alpha_para)

estimation of sigma

sigma_est = gp.get_sigma(single_data, *sig_limit[1:]) [0]

estimation of alpha with estimated sigma

alpha_est = gp.get_alpha_abs(single_data, sigma_est) * np.sign(gp.
get_alpha_pm(single_data, *alpha_limit))

estimation of alpha with given sigma

alpha_giv = gp.get_alpha_abs(single_data, sigma_given) * np.sign(gp.
get_alpha_pm(single_data, *alpha_limit))

return values as tuple

return sigma_est, 1 - alpha_est, 1 - alpha_giv

this calculates sigma and alpha (2x) with given functions and given parameters
for all time series

def estimator (data, alpha_func, sigma_func, alpha_para, sigma_para, dt):
!!! the array cells at (0, x) are reserved for the parameters of the
functions !!!
estimation = np.zeros((data.shape[0] + 1, 3), dtype=float)
sets the input values in the first cell
estimation[0, 0], estimation[0, 1], estimation[0, 2] = sigma_para, alpha_para
, alpha_para
iterates over all times series
for i in tqdm.tgdm(range(data.shape[0]), desc=’time series’, leave=False):

estimation[i + 1, 0], estimation[i + 1, 1], estimation([i + 1, 2] =

single_estimator (datal[i, 0], alpha_func,

sigma_func, alpha_para,

sigma_para,

datali, 3] * np.sqrt(dt))

return estimation

this calculates sigma and alpha (2x) for one function each over a given
parameter space for each.

the results per parameter are saved and the match between the calculated and
given sigma and alphas are calculated

with the functions given in test.

def one_function(data, path, name, alpha_func, sigma_func, alpha_paras,
sigma_paras, dt, tests=[ks, sr, pr, k1],

test_names=None):

sets standard names for standard tests

if test_names is None and tests == [ks, sr, pr, kl]:

70
71

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95

96
97
98

99

100

101

102
103
104
105

106

107
108
109
110
111
112

113
114

Appendix B Python Code of the Scripts 63
test_names = [’ks’, ’sr’, ’‘pr’, ’kl’]
statistics = np.empty((len(tests) + 1, len(alpha_paras) + 1, len(sigma_paras)
+ 1, 3), dtype=object)
writes used tests and parameters in the Oth line of the array
for i in range(len(tests)):
statistics[i + 1, 0, 0, 0] = test_names[i]
for i in range(len(alpha_paras)):
statistics[0, i + 1, 0, 0] = alpha_paras[i]
for i in range(len(sigma_paras)):
statistics[0, O, i + 1, 0] = sigma_paras/[i]
writes it’s own name in [0, O, 0, O]
statistics [0, O, 0, 0] = name
creates output dir if necessary
if not os.path.exists(f’{path}/{name}’):
os.mkdir (£’ {path}/{name}’)
main iteration over both parameter spaces
for i in range(len(alpha_paras)):
for i in tqdm.tqdm(range(len(alpha_paras)), desc=’alpha’):
for k in tqdm.tqdm(range(len(sigma_paras)), desc=’sigma’, leave=False):
estimation = estimator(data, alpha_func, sigma_func, alpha_parasl[il,

sigma_paras [k], dt)
np.save (f’{path}/{name}/est -{name}#{i}-{k}.npy’, estimation)
for m in range(len(tests)):
test quality of sigma
statistics[m + 1, i + 1, k + 1, 0] = tests[m](

np.abs(datal:, 3]["np.isnan(estimation[1:, 0])] * np.sqrt(dt)

estimation[1:, O] ["np.isnan(estimation[1:, 0])1]1)
test quality of theta

statistics[m + 1, i + 1, k + 1, 1]

tests[m] (datal:, 1]["np.
isnan(estimation[1:, 1])] * dt,

estimation[1:,
np.isnan(estimation[1:, 1]1)1)

statistics[m + 1, i + 1, k + 1, 2]

tests[m] (datal:, 1]["np.
isnan(estimation[1:, 2])] * dt,

estimation[1:,
np.isnan(estimation[1:, 2])1)

np.save (f’{path}/stat-{name}.npy’, statistics)

1[0~

21~

this can execute one_function multiple times, so it is easier to queue multiple

functions with the same tests

def multiple_functions(data, path, dt, queue, tests=[ks, sr, pr, kl], test_names=

None) :
sets standard names for standard tests
if test_names is None and tests == [ks, sr, pr, kl]:

test_names = [’ks’, ’sr’, ’pr’, ’kl’]

for element in tqdm.tqdm(queue, desc=’functions’):
one_function(data, path, element.name, element.alpha_func, element.

sigma_func, element.alpha_paras,

element .sigma_paras, dt, tests=tests, test_names=test_names)

115
116
117

118
119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137
138

139

140

141

142

143

144

145

146
147

148
149
150

64

Appendix B Python Code of the Scripts

if

__name_ == main__":

testqueue = [QueueElement (’test’, gp.set_limit_by_std, gp.set_limit_by_std,
(1, 2, 3, 41, [0.056, 0.1, 0.5, 11)]
data = np.load("ouV4.npy", allow_pickle=True)
stableindices = np.where(np.array(np.where(datal[:, 1] < 20, True, False) * np
.where(datal:, 1] > 0, True, False), dtype=bool)) [0]
newdata = np.empty((len(stableindices), 4), dtype=object)
for i in range(newdata.shape[0]):
newdatal[i, :] = datal[stableindices[i], :]
del data
print (’data loaded and cleand sucessfully, starting the fun part’)
the next line is for testing purposes only
multiple_functions (newdata, ’./Extract’, 0.1, testqueue)
generates the queue for testing all methods (also the rejected) for a small
sampling in a chosen parameter space
queuel = [QueueElement(’std-std’, gp.set_limit_by_std, gp.set_limit_by_std,
(0., 1, 1.5, 2, 2.5, 3, 3.5, 4],
[0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 11D,
QueueElement (’per-std’, gp.set_limit_by_percentage_of_mean, gp.
set_limit_by_std,
(0.1, 0.2, 0.5, 1, 1.5, 21, [0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 11),
QueueElement (’std-per’, gp.set_limit_by_std, gp.
set_limit_by_percentage_of_mean,
fo.s, 1, 1.5, 2, 2.5, 3, 3.5, 41, [0.02, 0.05, 0.1,
0.2, 0.5, 11),
QueueElement (’per-per’, gp.set_limit_by_percentage_of_mean, gp.
set_limit_by_percentage_of_mean,
(0.1, 0.2, 0.5, 1, 1.5, 2], [0.02, 0.05, 0.1, 0.2,
0.5, 11),
QueueElement (’max-max’, gp.set_limit_by_min_max, gp.
set_limit_by_min_max, [0.2, 0.5, 0.8],
[0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.31),
QueueElement ("max-std’, gp.set_limit_by_min_max, gp.
set_limit_by_std, [0.2, 0.5, 0.8],
fo.ot, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 11D,
QueueElement (’std-max’, gp.set_limit_by_std, gp.
set_limit_by_min_max, [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4],
(0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3]1)

]
uncomment the following line to test the rejected methods
multiple_functions(newdata, ’./Extract2’, 0.1, queuel, tests=[sr, pr, k1],
test_names=[’spearmanr’, ’personr’, ’kendalltau’])

generates queue for std-std method only, this was found to be the best
method. For that reason a finer sampling
was calculated, to find the maximum quality better.
queue_std = [QueueElement (’std-std-more’, gp.set_limit_by_std, gp.
set_limit_by_std, np.linspace(0.1, 3.5, 70 - 1),

np.linspace(0.01, 1.3, 129))]
this starts the main calculation
multiple_functions(newdata, ’./Extract-std’, 0.1, queue_std, tests=[sr, pr,
k171,

151
152

N O O W N

[ed]

10
11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44

Appendix B Python Code of the Scripts 65

test_names=[’spearmanr’,

’personr’, ’kendalltau’])

print (’finished’)
LisTiNG B.2: This codes test multiple methods and parameters, to select and e-

environment, file: best_epsilon.py

import numpy as np
import matplotlib.pyplot as plt

import matplotlib.colors as colors

nun

This program will get the maximum for each test. It also includes some plotting (

I know that isn’t a nice separation)

nun

repackaging into [test, alpha, sigma, extraction]
def get_2dmesh(d4array):

d2mesh = np.zeros((d4array.shape[0] - 1, 3, dé4array.shape[1] - 1, d4array.

shape [2] - 1))

zeroed = dé4array[1:, 1:, 1:, :]

for i in range(zeroed.shape[0]):

for k in range (zeroed.shape[1]):
for m in range (zeroed.shape[2]):
for n in range(zeroed.shape[3]):
d2mesh[i, n, k, m] = zeroed[i, k, m, n][0]

return d2mesh

calculates the minimum of an array in sigma direction, by summing over alpha
space
def get_sigma_minimum(mesh):

return np.argmin([np.sum(mesh[:, i]) for i in range(mesh.shape[1]-1)1)

def plot(raw_data, mesh, path, test_index, para_index, test, para):
plt.pcolormesh(raw_data[0O, O, 1:, 0], raw_datal[O, 1:, O, 0], mesh[i, k], cmap
=’RdBu’)
plt.xlabel (" $m_{\\sigmal}$’)
plt.ylabel (’$m_{\\alpha}t$’)
plt.title(f’extraction quality, tested with {testl}’)
cbar = plt.colorbar ()
cbar.set_label (f’{test}’)
plt.savefig(f’{path}{test_index}-{para_index}.pdf’, dpi=300)
plt.close ()

def plot_grad(raw_data, mesh, path, test, test_index, para, para_index):
print (mesh.shape)
plt.pcolormesh(raw_data[0, O, 1:, 0], raw_datal[0, 1:, O, 0], mesh[test_index,
para_index], cmap=’gist_yarg’,norm=colors.LogNorm(vmin=1E-5,vmax =1E-1))
plt.xlabel ("$m_{\\sigmal}$’)
plt.ylabel (" $m_{\\alphal$’)
plt.title(f’gradient of the extraction quality, tested with {testl}’)

45
46
47
48
49
50
51
52
53
54

55
56
57

58
59
60
61
62

63
64

65
66
67
68
69
70
71
72
73
74

75
76

7
78
79
80
81
82
83
84
85
86
87

88
89
90
91

66 Appendix B Python Code of the Scripts
plt.colorbar ()
plt.savefig(f’{path}{test_index}-{para_index}-grad.pdf’, dpi=300)
plt.close ()

if __name__ == ’_ _main__’:

raw_data = np.load(’stat—std—std—more.npy’, allow_pick1e=True)
mesh = get_2dmesh(raw_data)

plt.pcolormesh(raw_data[0, O, 1:, 0], raw_data[O, 1:, O, 0], mesh[0, 0], cmap
=’RdBu’)
plt.show ()

calculate the absolutes gradients of all 3 tests in both (alpha and sigma)
direction
gradients = np.zeros(mesh.shape + (2,), dtype=float)
for i in range (mesh.shape[0]):
for k in range (mesh.shape[1]):

gradient indizes: [test, parameter, x, y, direction]

gradients([i, k, :, :, 0], gradients[i, k, :, :, 1] = np.abs(np.
gradient (mesh[i, k1))
#print (gradients [0, 1, :, :, 0])
#plt.pcolormesh(raw_datal[O, O, 1:, 0], raw_datal[O, 1:, O, 0], gradients[1l, 1,

:, :, 1], cmap=’gist_yarg’,norm=colors.LogNorm(vmin=1E-5,vmax =1E-1))

#plt.show ()

gets sigma, where the gradient is as small as possible

averaged over all tests, this is the best parameter for sigma

best_sigma = [get_sigma_minimum(gradients[i, 1, :, :, 1]1) for i in range(3)]
best_sigma_values = [raw_datal[0, 0, 1:, 0][i] for i in best_sigmal

print (best_sigma_values)

print (f’{np.mean(best_sigma_values)} {np.std(best_sigma_values)l}’)

for the best sigma (not the averaged, but for each test), the minimum of
the gradient in alpha direction is computed

here also is averaged over all tests

best_theta = [np.argmin(gradients([i, 1, :, best_sigmal[i], 0]) for i in range
(3)1
best_theta_values = [raw_data[O0, 1:, 0, 0]J[i] for i in best_thetal]

print (best_theta_values)
print (f’{np.mean(best_theta_values)} {np.std(best_theta_values)}’)

testlist = [’Spearmen-R’, ’Pearson-R’, ’Kendall-$\\tau$’]
paralist = [’$\\sigma$’, ’$\\theta$’, ’$\\theta_ {giv}$’]

visulizes the results from above as plots
for i in range(len(testlist)):
for k in range(len(paralist)):
#plt.pcolormesh(raw_datal[0O, O, 1:, 0], raw_datal[O, 1:, 0, 0], mesh[i,
k], cmap=’RdBu’)
#plt.show ()
plot(raw_data, mesh, ’./’, i, k, testlist[i], paralist[k])

plot_grad(raw_data, gradients([:, :, :, :, 0], °./0-’, testlist[i], i,
paralist[k], k)

Appendix B Python Code of the Scripts 67

92 plot_grad(raw_data, gradients[:,

s, o, 1, 11, , testlist[il, i,
paralist [k], k)

Li1sTING B.3: This gets the optimum parameter for each test (only one function) it
works with the files generated by best_epsilon.py. In line 79, between the mean and
the standard deviation is a £ symbol in the python code, that can not be represented

correctly in LaTeX, while viewing code, file: get-min.py

Appendix C

Validity of the Updating Formula

For this calculation the exact updating forumula from Gillespie (1996a) is required. First
is shown that the updating formula is exact while not depending on the step size. To
show that the approximate updating formula (eq. 2.14) corresponds to a 1st order taylor
expansions for small At it is required to show that the OUDE is fulfilled for infinitesimal

time steps.

The exact updating formula as given by Gillespie (1996a) is

2(t+ At) = z(t)e™F + [% (1 - eAﬂ Iy (C.1)

Gillespie (1996a) uses a different nomenclature (6 = 1/7 and o = /¢), the correspon-
dence to the parameters used here will be become apparent later. Also z is named X

and N (t) is named n.

First it is shown that the Eq.C.1 is exact. For this following expression must hold
x(t + Aty + Atg) = x(t + Ats), (C.2)

where At3 = Aty + Aty. Therefore:

At

1
2t + Aty + Aby) = 2t + Aty)e™ 7 + [% (1- e 5)" Ve Zat+ At (C3)

A 1 A 1
(s 4[5 (L= ™) M) e 4 [T (12)] M Later an)

(C.4)

N

Ny = z(t+ Ats)
(C.5)

At At A T A L T A
E3
x(t)e L T 2 +e :2 {762 (| —e 27—t1):|2 Nl"‘ {62* (l — e 27—t2):|

Appendix X. Appendiz Title Here Appendix C Validity of the Updating Formula

(A :At3A) :
A 2 (At + Ato 1 A =
$(t)e_%—l—[%—(e_m%—e_ T)}QNl—i—[% (1—6_27t2):|2N2é:L‘(t—|—At3)
(C.6)
Using the properties of the normal distributions of equations 2.6b and 2.6¢, yields
1
At A At- A =
m(t)e‘é + [% (e_z% — 6_2 = +1- 6_2 Tt2>} : N3 L z(t + Ats) (C.7)
1
At A 5
()= + [(e 1)) Ne L alt + Atg)D (C.8)

Because it is proven that eq. C.1 is exact, it is now required to show that it also fulfills
the OUDE. Therefore let At — 0, then

A
3 —1-2 o). (C.9)

T

Term of O(At?) or higher order are negligible, thus

g A (C.10)
T
Therefore eq. C.1 becomes
1
x(t + At) = z(t) <1—At> + {CT <1—1+2N>]2N (C.11)
T 2 T
1
x(t+At) =x(t) — z(t)At+ e VALN (C.12)
T ~~
v 7

For At — 0, At = dt and for small At, this is the approximate updating formula
found in 2.14.

	Zusammenfassung
	Abstract
	1 Introduction
	1.1 Active Galactic Nuclei
	1.1.1 Unification of AGN
	1.1.2 Blazars
	1.1.3 Spectra and Light Curves
	1.1.3.1 Synchrotron
	1.1.3.2 High Energy Emission

	1.2 Nature of the Used Data
	1.3 Problem Addressed in this Work

	2 Methods
	2.1 Mathematical Basis of the Ornstein-Uhlenbeck Process
	2.1.1 Motivation of the SDE
	2.1.2 Properties of (t)
	2.1.3 Solutions of the SDE
	2.1.4 Stationarity of the OU-Process
	2.1.4.1 Rearrangement (to simplify the proofs)
	2.1.4.2 Proof of the 1st Criterion
	2.1.4.3 Proof of the 2nd Criterion
	2.1.4.4 Proof of the 3rd Criterion

	2.1.5 Extraction of the Parameters
	2.1.5.1 Extraction of
	2.1.5.2 Extraction of

	2.2 Implementation of the Algorithms
	2.2.1 Ornstein-Uhlenbeck-Simulator
	2.2.2 Parameter Analyser
	2.2.2.1 Main Functions
	2.2.2.2 Limit Calculators
	2.2.2.3 Generic Application Functions

	2.3 Calibration of the -Environment
	2.3.1 Choosing the Method
	2.3.2 Evaluating the Best Parameters
	2.3.3 Determination of the Maximum
	2.3.4 Verification of the Extraction Method
	2.3.5 Error Estimation of the Method

	3 Results
	3.1 Extraction of the Parameters
	3.2 Building a Random Number Generator
	3.3 Comparison of the Statistical Properties of Real and Generated LCs

	4 Summary and Outlook
	List of figures
	List of tables
	Bibliography
	Acknowledgements
	Declaration of authorship
	A Python Code of the Main Modules
	B Python Code of the Scripts
	C Validity of the Updating Formula

