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Abstract

There are about one hundred billion galaxies in the universe. Blazars are a very specific

type of these galaxies featuring highly relativistic, bipolar jets that are directed towards

us. The most energetic, steady radiation observed in the universe is identified with

such sources. However, the mechanisms producing this radiation and its characteristic

variability, are still uncertain. In this thesis, the statistical properties of the high-energy

gamma-ray flux variations of blazars are studied in order to put constrains on the ground

laying physical processes.

The first four statistical moments of the log-flux distributions from 335 monthly binned

Fermi -sources are analyzed, indicating log-normalcy of the monthly flux distributions.

Besides FSRQs being more variable than BLLs, no significant di↵erence between the

blazar sub-classes is evident. The statistical moments of the flux distributions from eight

of these blazars in daily binning yield similar results. Additionally, these distributions

of daily fluxes are fitted with a log-normal and stationarity is investigated through

invariance of the mean flux on the one hand and a visual approach in the histograms on

the other hand. The claim that log-normalcy implies the driving physical process to be

multiplicative, is challenged along the lines of Scargle (2020). Multiplicative processes

such as variations in the accretion flow that are inherited by the jet could be a possible

explanation for the gamma-ray variability, nevertheless.

Time domain modeling of the gamma-ray flux variations in the monthly and daily

sample is performed with Bayesian block analysis. Building up on that, two objective

methods to define flares are introduced. The key question is whether these flares show

a tendency for time (a)symmetry. The baseline method characterizes flares by the flux

overcoming a certain threshold (Meyer et al., 2019). The half-clap method extrapolates

the rising and falling behavior of the variations. Applying both of these methods to

the monthly and daily sample shows that each ratio of rise and decay time occurs to

a comparable degree, when excluding single-block flares. This exclusion is necessary

because truly asymmetric flares can result in a (trivially symmetric) single-block flare

when the time binning is too wide. The occurrence of every kind of asymmetry suggests

that neither on monthly nor daily timescales, there is only one process causing distinct

events. Possible explanations for the shape of the observed variations could be overlap

or a mixture of processes. Moreover, it is likely that daily timescales are not enough to

resolve the true shape of the high-energy variations, which is illustrated along the results

of previous studies. Several approaches to refine the applied methods and approaches

to remaining questions are presented in the end and considered for future work.
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Zusammenfassung

Im Universum gibt es hundert Milliarden Galaxien. Ein sehr spezieller Typ davon sind

Blazare. Sie zeichnen sich durch hoch relativistische Ausströmungen von Materie (Jets)

aus, die eng zur Sichtlinie verlaufen. Von Blazaren geht variable Strahlung der höchsten

überhaupt beobachteten Energien (gamma-Strahlung) aus, aber es ist unklar wie diese

entsteht. In dieser Arbeit werden die statistischen Eigenschaften der gamma-Variabilität

von Blazaren untersucht, um mögliche physikalische Prozesse ein zu schränken.

Aus einem Sample mit 335 monatlich gebinnten Quellen des Fermi -Satteliten wer-

den die ersten vier statistischen Momente der Flussmessungen berechnet. Diese deuten

eine log-normale Verteilung der monatlichen Flüsse an. Abgesehen davon, dass FSRQs

variabler sind als BLLs ist (basierend auf den statistischen Momenten) kein Unterschied

zwischen den Blazarunterklassen erkennbar. Das gleiche gilt für acht dieser Blazare bei

täglich gebinnten Flüssen. Log-Normalität der täglichen Flüsse wird anhand von Fits

diskutiert und Stationarität wird einerseits durch Zeitinvarianz des Mittelwertes und

andererseits druch farbkodierte Histogramme untersucht. Die Behauptung, dass log-

normale Flussverteilungen auf mutiplikative Prozesse schließen lassen, wird anhand von

Scargle (2020) widerlegt. Nichtsdestoweniger kommen multiplikative Prozesse für die

Erklärung der beobachteten gamma-Strahlung in Frage.

Mit dem Bayesian Block Algorithmus wird eine Zeitreihenanalyse der beiden Samples

durchgeführt. Darauf aufbauend werden zwei Herangehensweisen zur Definition von

Flares eingeführt um die Zeit(a)symmetrie der Flussfluktuationen zu parametrisieren.

Während ein Flare in der Baseline Methode durch das Überschreiten eines festen Fluss-

wertes bestimmt ist, wird bei der Half-Clap Methode das Steigungsverhalten der Vari-

ation extrapoliert. Mit beiden Methoden wird sowohl für die monatlich als auch für

die täglich gebinnten Quellen jede Art von (A-)Symmetrie zu einem ähnlichen Anteil

gefunden, wenn man den Überschuss an “einzelblock” Flares ausschließt. Dies ist nötig,

weil ein tatsächlich asymmetrischer Flare als (trivial symmetrischer) “einzelblock” Flare

dargestellt wird, wenn das Zeitbinning zu groß ist. Da jede Art von (A-)Symmetrie

vorkommt, kann weder für das monatliche noch für das täglich gebinnte Sample in

Frage kommen, dass nur ein bestimmter Prozess für die Flares auf diesen Zeitskalen

verantwortlich ist. Überlappung oder eine Kombination aus mehreren Prozessen bietet

eine mögliche Erklärung. Zusätzlich wird gezeigt, dass die Variabilität der gamma-

Strahlung von Blazaren auf kürzeren Zeitskalen als Tagen stattfinden kann. Verschiedene

Möglichkeiten um die eingeführten Methodik zu verfeinern und Ansätze für o↵ene Fragen

werden zum Schluss erwähnt.
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1. Observing blazars in the

gamma-regime

The first chapter of this work provides an outline of active galactic nuclei (AGN) and

blazars. Numerous open questions concerning these sources are raised. These particu-

larly refer to the relativistic jets which are thought to produce the high-energy radiation

(E > 1MeV, also called gamma-radiation) that is of interest here. It is not clear which

physical process underlay this high-energy emission. This work aims to study the flux

variability of blazars in order to put constraints on the underlying physical processes.

1.1. Active galactic nuclei

About 20% of all galaxies are said to be active, meaning that they have a very luminous

core. These so-called AGN produce their luminosity through accretion processes which

outshine the ambient stellar emission. This is powered by the super massive black hole

(SMBH) in the center of such galaxies.

Out of these AGN, another 20% feature bipolar, highly energetic outflows of matter.

These are called jets and emit radiation in the radio regime. Thus, AGN exhibiting

such jets are often referred to as radio-loud1. The unification scheme (Urry & Padovani,

1995), depicted in Fig. 1.12, represents the currently accepted structure of a radio-loud

AGN. The SMBH in the center is surrounded by an accretion disk. Clouds with di↵erent

properties that are depicted as di↵erent shaded blobs in the sketch cause characteristic

1 Kellermann et al. (1989) classifies AGN as radio-loud if the ratio of radio (5GHz) and optical (B-band)
flux exceeds a value of ten.

2 Figure is not to scale; typical parameters according to Urry & Padovani (1995):
accretion disc ⇡ 1�30 ·1014 cm, broad line region ⇡ 2�20 ·1016 cm, inner radius of torus ⇡ 1017 cm,
narrow line region ⇡ 1018 � 1020 cm, radio jets ⇡ 1017 � 1024 cm
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1. Observing blazars in the gamma-regime

Figure 1.1.: Structure of an AGN with jets (not to scale; Urry & Padovani, 1995). Prop-
erties of the narrow line region (NLR), broad line region (BLR) and torus cause various
emission features. Observation thereof is dependent on the angle of view. If the line of
sight is close to the jet axis, as indicated with the eye, the AGN is called a blazar.

emission features. The big, grey blobs represent a low-density medium emitting narrow,

forbidden emission lines. Hence, this is referred to as the narrow line region (NLR).

Similarly, the so-called broad line region (BLR), which is depicted with black dots,

produces Doppler broadened lines because the gas is closer to the black hole and therefore

in rapid movement. Depending on the angle of view, these emission features can be

obscured by the donut shaped dust torus surrounding the accretion disk.

For all sources considered in this work, the angle of view is closely aligned with the jet

axis, as indicated with the eye. AGN observed with this angle of view are called blazars.

The bipolar jets launch in close vicinity to the black hole. “Despite [their] ubiquity,

2



1.2. Blazars

many fundamental physics aspects of jets are still poorly understood and constrained,”

as summarized in a detailed overview on jets from AGN by Boettcher et al. (2012).

One of these questions is as to why jets only occur in 20% of all AGN and how the

launching mechanism works in general. The commonly consulted theories are that the

jet extracts electromagnetic energy from the rotation energy of the SMBH (Blandford

& Znajek, 1977) and/or that the jets are driven by accretion disc winds (Blandford &

Payne, 1982). A further topic of recent research is how the jets stay collimated and

transport energy, momentum, and angular momentum over their vast extension up to

mega parsecs.

VLBI studies yield that the jets consist of components of higher flux density that are

traveling outwards (e.g. Jorstad et al., 2017; Wagner, 2018). Due to the small angle of

view, the speed of such components can appear to be faster than the speed of light.

Another e↵ect of this geometry is that the radiation is Doppler-boosted (Rybicki &

Lightman, 1986). Thus, the emission from the jet dominates and often even outshines

the host galaxy of blazars.

1.2. Blazars

The spectral energy distribution (SED) illustrates the behavior of flux density F at the

corresponding frequency ⌫. The SED is typically plotted in logarithmic scale and the

flux density is multiplied with frequency such that the integrated area under the graph

corresponds to the received power of a given frequency range (per area). For a blazar,

this results in a characteristic double humped structure as can be seen in the SED of

PKS 1510-089 shown in Fig. 1.2.

Due to the fact that the radiation associated with the low-energy peak shows po-

larization, it is expected to be produced via synchrotron emission from an electron

distribution.

The origin for the second hump in the SED is topic of recent research. Commonly, it

is modeled with inverse Compton (IC) scattering. This means the relativistic electron

distribution causing the synchrotron emission additionally up-scatters ambient photons

to high energies. These ambient photons could be the synchrotron photons produced

before which is referred to as synchrotron self Compton (SSC) model. Models based on

3



1. Observing blazars in the gamma-regime

Figure 1.2.: The SED of PKS 1510-089 shows the characteristic double humped structure
of a blazar. Red points show quasi simultaneous measurements that are fitted with a
polynomial while the grey points represent archival data. Figure adapted form Abdo
et al. (2010).

other photon sources are called external Compton (EC) models. The external photons

could originate from the broad line region, the accretion disk, the dust torus, or even

other components of the jet (see Finke, 2016, and references therein for an overview of

IC models). In addition to the electrons, Mannheim (1993) first suggested that protons

are also present in the jet. These could cause a contribution to the high-energy hump

via synchrotron radiation or interaction with ambient photons and would also produce

neutrinos.

Blazars can be sub-classified based on the position ⌫syn of their synchrotron peak.

Abdo et al. (2010) classify blazars as low-synchrotron peaked (LSP) if ⌫syn < 1014 Hz,

intermediate-synchrotron peaked (ISP) if 1014 Hz < ⌫syn < 1015 Hz, and high-synchrotron

peaked if ⌫syn > 1015 Hz. It has to be noted that the synchrotron peak and therefore

this classification can change over time.

Another blazar sub-classification is based on the presence of emission lines. Histor-

ically, blazars without emission lines were called BL Lac objects (BLLs). This tracks
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1.3. Blazar variability

back to BL Lacertae, the first source identified of that kind (Schmitt, 1968). Blazars

that do show emission features are called Flat Spectrum Radio Quasars (FSRQs). It

eventually became clear that the emission lines are sometimes more and sometimes less

outshone by the broadband emission of the jet. Even the prototype BL Lacertae itself

can show emission lines (Vermeulen et al., 1995). Thus, Ghisellini et al. (2011) express

the distinction based on the ratio of broad line luminosity to Eddington luminosity be-

ing less than 5 · 10�4 for BLLs and greater than that for FSRQs, respectively. This

is physically motivated by the thought that the “presence of strong emitting lines is

related to a transition in the accretion regime, becoming radiatively ine�cient below a

disc luminosity of the order of 1% of the Eddington one”. All blazars classified as HSP

are BLLs and most LSP blazars are FSRQs.

1.3. Blazar variability

As can be seen in Fig. 1.2, the flux density at a given frequency is not constant. In fact,

variability throughout the whole electromagnetic spectrum is typical for blazars (Urry,

1999). This study aims to analyze the high-energy variability behavior of blazars in

order to put constraints on the processes underlying these variations.

In a first approach, the distributions of the observed fluxes are considered. Variability

studies typically account for a fit of the analyzed flux distributions (e.g. Meyer et al.,

2019; Tluczykont et al., 2010; Ackermann et al., 2015). They mainly discuss the dis-

tinction of normal and log-normal distributions (Shah et al., 2018). This is motivated

by the hope of tracking properties of the distribution back to the process producing the

flux. This process is often assumed to be composed of various sub-processes. The overall

process is referred to as “additive” if it is composed by the sum of the sub processes or

as “multiplicative” if it is based on the product of these.

Recent studies, such as Shah et al. (2018), point out that gamma-ray flux distributions

show log-normal rather than normal behavior. Stating that this requires the ground

laying process producing the gamma-ray emission to be multiplicative, Rieger (2019)

poses possible explanations. One that is commonly evoked in other studies as well is

that variations in the accretion flow of the disk propagate inwards and are inherited by

the jet, where the gamma-rays are produced (see Sec. 3.1). This hypothesis is studied

5



1. Observing blazars in the gamma-regime

by analyzing the log-normality of flux distributions from blazars. In addition to that,

stationarity of the flux distributions is illustrated and discussed.

An independent, second approach to learn about emission processes present in blazars

is based on time domain analysis. One can generally discriminate between physically

motivated (physical) and data driven (non-physical) time domain modeling. The former

evokes physical assumptions that could be based on constrains from e.g. acceleration,

cooling, dynamical, and instability timescales. These can give implications on the rising

and falling behavior of the flux which justifies to model variations, for instance, with

an exponential fit. The goal of this work is to constrain the physical assumptions based

on the observed variability behavior. Therefore, non-physical time domain modeling

is chosen to objectively characterize the flux increases and decreases. Common non-

physical methods to do so are Fourier Analysis, auto-correlation, or Bayesian block

analysis (see Sec. 2.2). Based on the latter, two methods that define the rising and

falling behavior of the flux are introduced. Of the many properties that can be obtained

with these methods, the timescales of rise and fall are of concern for this work. Studies

with similar goals often exclusively discuss single flux variations with high flux amplitude

that are called flares (e.g. Hovatta et al., 2015, and many more). By contrast, this study

aims to conduct a systematic analysis of all variations in a large sample of sources. For

this thesis, a flare is defined by the corresponding method (see Sec. 2.2). With systematic

comparison of detected flares in a large sample of light curves this thesis aims to provide

constraints for physical models of the emission processes.

1.4. FERMI-LAT

Gamma-rays interact with the atmosphere through Compton scattering, the photoelec-

tric e↵ect, and pair production. The latter dominates at the higher energies (> 1MeV)

as are of interest here. If the initial photon energy is high enough the produced pair

causes a leptonic cascade of photons and electrons in the atmosphere which in turn can

cause Cherenkov light which is studied by ground-based telescopes such as CTA3 or

MAGIC (Lorenz & MAGIC Collaboration, 2004).

In order to observe gamma-rays of moderate energies, measurements have to be con-

3 See https://arxiv.org/pdf/0906.4114.pdf, 11.02.2020
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1.4. FERMI-LAT

ducted on satellites above the atmosphere. Currently operating missions are the In-

ternational Gamma-Ray Astrophysics Laboratory4 (INTEGRAL), the Astro-Rivelatore

Gamma a Immagini Leggero5 (AGILE), and the Fermi Gamma-ray Space Telescope6.

The latter is the most recent and most sensitive space-based gamma-ray telescope so far

and is the source of data studied in this work.

The Fermi -sattelite was originally named Gamma-ray Large Area Space Telescope

(GLAST) when it was launched on the 11th of June 2008. The NASA-mission device

has been assembled at the SLAC National Accelerator Laboratory7 (SLAC) and carries

two instruments as scematically shown in Fig. 1.3. The Gamma-Ray Burst Monitor

(GBM) is used to study gamma-ray bursts while the major instrument, the Large Area

Telescope (LAT), conducts an all-sky survey for gamma-rays with energies from 20MeV

to greater than 300GeV (Atwood et al., 2009). The large field of view (2.4 sr) covers one

fifth of the sky which, combined with the 90minute orbit around earth and a specific

rocking motion, allows to monitore the entire sky every three hours. The Fermi -LAT

contains four components:

1. The Tracker consists of several layers of silicon-strip particle tracking detectors.

Therein, an incoming photon is converted to an electron and positron pair the paths

of which are immediately measured. The presence of two coinciding paths allows

the di↵erentiation of gamma-ray photons and charged particles (cosmic rays).

2. The Anticoincidence Detector is used to filter cosmic rays. On average, there

is one gamma-ray photon in ten thousand to one million background events. The

instrument consists of specially formulated plastic tiles that produce flashes of light

when hit by a cosmic ray.

3. TheCalorimetermeasures the energy the secondary electron-positron pair through

a proportional intensity of a light flash caused by interaction with the material (ce-

sium iodide).

4. The information captured by all this is interpreted with the microprocessors of the

4 See http://www.esa.int/Enabling_Support/Operations/Integral_operations, 30.01.2020
5 See http://www.agilescienceapp.it/wp/agilescienceen/?page_id=685, 30.01.2020
6 See https://www.nasa.gov/content/fermi-gamma-ray-space-telescope, 30.01.2020
7 See https://www6.slac.stanford.edu, 30.01.2020
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1. Observing blazars in the gamma-regime

Figure 1.3.: Schematic set up of the Fermi Gamma-ray Space Telescope.

Data Aquisition System, such that only gamma-ray events are relayed to the

ground.

The Fermi -LAT data is available as so-called Pass 8 data on the Fermi -website8. This

data has been preprocessed regarding event reconstruction, energy reconstruction, and

further classification such as identifying cosmic rays and multiple events as explained in

Atwood et al. (2013). After choosing a certain location, search radius, and energy range,

one can download the coresponding fits files containing information for further analysis

(photon file with event measurements and space craft file with telescope properties).

8 See https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi, 30.01.2020
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1.4. FERMI-LAT

Name Class Type redshift

0 OJ 287 BLL LSP 0.306
1 PKS 0208-512 BLL LSP 1.003
2 PKS 0235+164 BLL LSP 0.94
3 PKS 1510-089* FSRQ LSP 0.360
4 PKS 2155-304 BLL HSP 0.116
5 3C 273* FSRQ LSP 0.158
6 3C 279* FSRQ LSP 0.536
7 3C 454.3* FSRQ LSP 0.859

Table 1.1.: Sources and parameters of the daily sample covering August 2008 up to
January 2018 with energy cut at E > 100MeV, where * indicates publication in Meyer
et al. (2019).

The Fermi -Lat collaboration provides recommendations for these steps9 depending on

the desired type of analysis for each scientific goal.

The main data set for this study was originaly employed in the chance coincidence

analyses of the neutrino IC170922A and the blazar TXS 0506+056 (IceCube Collabo-

ration et al., 2018). The data spans the time interval from August 2008 to October

2017 and is binned in time in 28 day intervalls. The sample, hereafter referred to as

“monthly” sample, contains 2276 sources and covers energies E > 1GeV. It has to be

noted that although not all of these are classified as blazars, they are all considered as

such for the purpose of this work (see Sec. 2.1.1).

In addition to that, these findings are compared to a smaller sample of eight sources in

daily binning, which will be referred to as “daily” sample. A list of it is shown in Tab. 1.1.

Four of these sources were already discussed in the variability study Meyer et al. (2019),

which is denoted with *. Additional information was obtained from the third catalog

of AGN detected by Fermi (Ackermann et al., 2015, 3LAC10). This includes the object

class (FSRQ or BLL)11 determined with optical observations, the type (HSP, ISP, or

LSP) based on the SED classification, and the redshift. The measurement time span

9 See https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/, 30.01.2020
10 See https://www.ssdc.asi.it/fermi3lac/, 03.03.2020
11 PKS 0235+164 is a blazar of unknown type according to 3LAC but classified as BLL on Sim-

bad: http://simbad.u-strasbg.fr/simbad/sim-id?Ident=PKS+0208-512&submit=submit+id,
03.03.2020
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1. Observing blazars in the gamma-regime

Sample name “monthly” “daily”

Time binning 28 days 24 hours
Energy cut E > 1GeV E > 100MeV
Sources 2276 8

Time span Aug 2008 - Oct 2017 Aug 2008 - Jan 2018
Published in IceCube Collaboration et al. (2018) Meyer et al. (2019)

Table 1.2.: Properties of the two data sets studied in this work.

covers August 2008 up to January 2018 and the energy cut was set to E > 100MeV.

The properties of both samples are summarized in Tab. 1.2. Within this work the

terms “flux value”, “observed flux”, “bin”, or “data point” will always refer to the flux

value derived for a constant time bin (monthly or daily, respectively).

Each flux value obtained in Fermi analysis is associated with a value called test

statistic (TS). It is used to describe the certainty that an observed photon is in fact from

the suspected source rather than from another one. It is defined as the log-likelihood ratio

between the maximized likelihoods L1 and L0 for the hypothesis with and without an

additional source, respectively (Mattox et al., 1996). Based on this, TS = �2ln(L1/L0)

can be interpreted as the squared detection significance such that TS > 4 equals a

detection significance greater than two sigma. The most common, yet ambiguous, way

to work with data form Fermi analysis is to choose a limit for significant detection and

treat detections not fulfilling this condition as “upper limits” (e.g. Peñil et al., 2020).

Nevertheless, upper limits can be problematic for further processing of the data. This

work requires TS > 4 where all bins not fulfilling this condition will be neglected (see

Sec. 2.1.1).

10



2. Data analysis and methodology

After the Fermi -analysis, there are several ways to further study the measured fluxes.

Two are presented in this chapter. First, the general flux distribution is considered. This

involves fitting the distribution in form of a histogram and calculating the statistical

moments thereof. The ambiguity of the production and interpretation of these results is

discussed in Sec. 3.1. The other approach utilizes non-physical time domain modeling in

form of Bayesian blocks. Building up on these, two systematic methods to define flares

and thereby characterize the flux variability behavior are introduced. All of this analysis

is performed with python version 3.6.8 (Van Rossum & Drake, 2009) and made use of

Astropy1, (see Appendix).

2.1. Flux distributions

When consulting histograms, it is not immediately clear which binning to use. The

choice of binning, however, can a↵ect the representation of the data by suppression or

destruction of important features. Often the data range is divided into an arbitrary,

equally sized number of bins. A more sophisticated way to choose the number of bins is

introduced by Knuth (2006)2. The optimal number of equally sized bins is determined

by “assigning a multinomial likelihood and a non-informative prior [in order to] derive

the posterior probability for the number of bins in a piecewise-constant density model

given the data.” Another approach is to use Bayesian blocks according to Scargle et al.

(2013). In this case, the binning structure is adapted to the data which conveniently

brings out all significant features. Due to the fact that the Bayesian bins can vary in

1 Astropy is a community-developed core Python package for Astronomy http://www.astropy.org,
26.05.2020

2 Utilized implementation: https://docs.astropy.org/en/stable/api/astropy.visualization.

hist.html, 04.02.2020
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2. Data analysis and methodology

size, wide bins will naturally contain more data points than narrow ones. As a constant

size of bins is easier accessible, the binning of all histograms plotted in this work is

determined by the Knuth algorithm.

2.1.1. Sample study of the monthly sources

Properties of the monthly flux distributions are compared based on the source classes

(FSRQ, BLL, and unclassified). To allow comparison between individual sources, all

flux bins Fi (typically of the order 10�8 � 10�6 GeV cm�2 s�1) are scaled by the

mean F of the corresponding light curve. Thus, the flux values are mainly distributed

around zero when plotted in logarithmic scale. This is shown in the top left of

Fig. 2.1 for the distribution of all scaled fluxes as obtained from the analysis explained

Sect. 1.4. Besides the expected distribution of fluxes around zero, a distinct distribu-

tion of smaller flux values shows up as well. This illustrates that several flux values

are significantly lower than the corresponding mean flux of their source. The distinct

distribution vanishes if only flux values with TS > 4 (see Sect. 1.4) are included, such

as shown in the top right of Fig. 2.1. Thereby, the distinct distribution is identified as

noise/background. Individual flux bins with TS < 4 are consequently neglected from

here on. While in the literature these are sometimes considered as “upper limits” (see

Peñil et al., 2020), they will be handled as gaps here. Consequently, the mean F (used

as scaling factor) is calculated by the corresponding TS > 4 flux values only.

One quarter of all flux bins in the monthly sample fulfill the condition TS > 4. In

order to avoid a bias towards higher fluxes, sources with more than 50% of the flux bins

missing are excluded from this analysis (analogous to Peñil et al., 2020). This a↵ects

1941 sources, while the remaining 335 sources are considered for further analysis. The

resulting distribution of fluxes is shown in the bottom of Fig. 2.1.

Lastly, it has to be noted that the original sample of 2276 sources contains several

classes of extra-galactic objects as anticipated for its initial purpose. This involves 416

FSRQ and 618 BLL associations. In addition, 37 FSRQs and 18 BLLs are identified

with counterpart. The filtered sample of 335 sources used here contains 69 (12) FSRQs

and 106 (2) BLL associations (additional identifications). The remaining sources are

unclassified (UC) AGN. This is due to the fact that these classifications require obser-

vations in other wavelengths (see previous section) that are not available for the large

12



2.1. Flux distributions

Figure 2.1.: Distribution of every individual flux bin of the monthly sample scaled by the
corresponding mean of each light curve in logarithmic scale. Top left: initial sample.
Top right: only bins with TS > 4. Bottom: contains only sources where at least 50%
of all bins have TS > 4. This filter is used throughout this work.
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amount of sources detected by FERMI. Nevertheless, the unclassified sources have sim-

ilar properties to the ones classified as balzars, for instance their spectra. This can be

shown by applying artificial neural networks, as performed in Liodakis & Blinov (2019)

and Kovačević et al. (2020) or it is visible when comparing the power density spectra

of all sources in the sample (P.R. Burd, private conversation). Therefore, it is assumed

that all unclassified sources of this sample are blazars as well.

To sum up, the initial sample of 2276 sources reduces to 335 by requiring TS > 4 for

each flux bin and a minimum of 50% remaining bins for each source. All of these sources

are assumed to be blazars.

To characterize the log-flux distribution of each source, the first four statistical mo-

ments are computed. For n random variables xi, these are defined as shown in Eq. 2.1.1.

In this work, the random variable xi equals the logarithmic, scaled flux values: log(Fi/F ).

For real measurements, sampling adjustments accounting for the degrees of freedom have

to be added. This is performed for the individual first, second, third3, and fourth4 statis-

tical moment of the log-flux distribution from each source. The normalized distributions

of the resulting parameters are shown in Fig. 2.2 for the source class FSRQ (red shaded),

BLL (blue dotted), and unclassified (grey contour).

The first statistical moment is the mean µ (first panel of Fig. 2.2) of the logarithmic

fluxes observed for each individual source. The flux is dependent on the distance of the

3 Utilized implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.skew.html, 04.03.2020
4 Utilized implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.kurtosis.html, 04.03.2020
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2.1. Flux distributions

Figure 2.2.: Normalized distributions of first, second, third, and fourth (top to bottom)
statistical moment of the log-flux distribution of each individual source of the monthly
sample according to Eq. 2.1.1. The resulting values are shaded red, dotted blue, and
contoured grey according to source class “FSRQ”, “BLL”, and “UC”.
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2. Data analysis and methodology

source5. Hence, these mean values are unsuitable for comparison of class properties.

The second moment, variance or � (second panel of Fig. 2.2), can be interpreted as

the range of variability (Ackermann et al., 2015). It is independent of the concrete value

that the flux it is varying around. Thus, comparison between the source classes is pos-

sible. It can be seen in the first two histogram bins of Fig. 2.2 that most FSRQs show

larger variances than most BLLs. This indicates that FSRQs are more variable than

BLLs, which is in accordance with previous results reported in Ackermann et al. (2015).

Nevertheless, every source class shows instances of high variability. The most variable

sources (� > 0.25) are 3FGL J1224.9+2122, 3FGL J1504.4+1029, 3FGL J2232.5+1143,

and 3FGL J2254.0+1608 (3C 454.3). This histogram fits the assumption that the un-

classified sources are blazars and therefore constituted of a mixture of FSRQs and BLLs.

The skewness, or third statistical moment (third panel of Fig. 2.2), indicates asym-

metry of a given distribution. While zero represents symmetry, values more than ±0.5

(±1) away from zero are usually considered to be moderately (highly) asymmetric. Neg-

ative values indicate a left skew, which means that the distribution shows a long tail

to the left with an accumulation of values on the right. Positive skewness values indi-

cate a tail to the right and a bulk on the left accordingly. The skewness values for the

monthly log-flux distributions range from -0.75 to 1.25, as shown in the third plot of

Fig. 2.2. Most sources are approximately symmetric. The skewness has to be treated

with caution in these cases because the data included here might lack small values that

are below the sensitivity threshold of the satellite or were excluded due to TS< 4. The

overall distribution of skewness values is the same for FSRQs, BLLs, and UCs, which is

in agreement with UCs consisting of FSRQs and BLLs.

The bottom plot of Fig. 2.2 shows the distribution of the fourth statistical moment,

which is also called kurtosis. Historically, the kurtosis was also referred to as the “peaked-

ness” of a distribution. By now it is established that it rather describes the “thickness

of the tails” of the distribution6. In this implementation, a kurtosis of zero corresponds

to a normal distribution. A distribution that is more shaped like a box (i.e. more values

close to the mean, also referred to as “stocky” or “broad shoulders”) would have a neg-

ative kurtosis up to -4, while a distribution with long, thick tails has a positive kurtosis

5 Assuming that the luminosity is constant, the flux is only dependent on distance. This will be used
for the daily sample to compare individual sources.

6 See https://doi.org/10.1080/00031305.2014.917055, 11.05.2020
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2.1. Flux distributions

up to infinity. The kurtosis parameters of this sample range from -1 to 1.5 with BLLs

showing slightly larger values than the FSRQs.

A two sample Kolmogorov-Smirnov test7 is utilized to quantify the hypothesis that

the distribution of parameters pictured in Fig. 2.2 are drawn from the same sample.

This hypothesis can be rejected for the variance with a p-value of 5%. For all other

statistical moments it can not be ruled out that the distributions of each class belong to

the same overall distribution. To conclude, the FSRQs of the monthly sample are more

variable than the BLLs. Considering the first to fourth statistical moment, no other

di↵erentiation between the classes is possible.

2.1.2. Individual flux distributions of the daily sample

The flux bins of the daily sample are also filtered for TS > 4. The resulting flux

distribution of each source is shown by introducing color coded histograms. Additionally,

the distributions are fitted with a normal in log scale, which corresponds to a log-normal

fit.

Presenting a sequence (e.g. time, frequency, energy band) of data in a histogram does

not conserve the information which possibly is encoded within the order of the sequence.

The possibility of representing this information visually is explored here by plotting the

histogram in a color scheme according to time. This is demonstrated in in Fig. 2.3 - 2.10

for the daily sample.

The top plot shows the distribution of flux values scaled to the mean of each light

curve. It is plotted in logarithmic scale such that the values are again distributed around

zero. The plot underneath depicts the light curve of each source with the time spanning

along the x-axis and the scaled flux in linear scale on the y-axis. The time is given in

Modified Julian Date (MJD)8 which is the number of days elapsed since 17th of Novem-

ber 1858. The rainbow-color bar is linearly distributed9 over the time span of each data

set.

This representation aims to visualize stationarity within the observed period. Sta-

tionarity can be defined by the time invariance of particular statistical quantities. In a

7 Utilized implementation: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/

scipy.stats.ks_2samp.html, 17.03.2020; hereafter KS test
8 See http://scienceworld.wolfram.com/astronomy/ModifiedJulianDate.html, 19.02.2020
9 Taking 20 non-overlapping data points of the light curve with each step
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2. Data analysis and methodology

Ag µg �g �2
R Nbins skew kurtosis

89.038 -0.067 0.259 0.0713 26 0.079 -0.336

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

-0.211 -0.1 -0.011 -0.044 -0.089 -0.027 -0.068 -0.182 -0.146 0.004

Figure 2.3.: OJ 287; Top: Distribution of flux values Fi scaled by the mean F in logarith-
mic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters thereof
and properties of the logarithmic distribution are shown in the upper table. Bottom:
Light curve provides color coding according to time for the observation period of about
3600 days. A stationary distribution, is expected to scatter around the same mean
for all colors, while non-stationary ones should show skewed accumulation of colors.
For comparison, sationarity is indicated by the variance �µ of the nine mean values µi

(computed from non-overlapping segments of 400 days) being relatively small.
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2.1. Flux distributions

Ag µg �g �2
R Nbins skew kurtosis

178.707 -0.112 0.243 0.091 14 -0.133 -0.476

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

0.003 -0.191 -0.043 -0.173 -0.109 -0.13 -0.127 -0.011 -0.064 0.004

Figure 2.4.: PKS 0208-512; Top: Distribution of flux values Fi scaled by the mean F in
logarithmic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters
thereof and properties of the logarithmic distribution are shown in the upper table.
Bottom: Light curve provides color coding according to time for the observation period
of about 3600 days. A stationary distribution is expected to scatter around the same
mean for all colors, while non-stationary ones should show skewed accumulation of
colors. Another indication of stationarity is that the variance �µ of the nine mean
values µi (computed from non-overlapping segments of 400 days) is small.
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2. Data analysis and methodology

Ag µg �g �2
R Nbins skew kurtosis

99.153 -0.085 0.318 0.092 25 0.039 -0.503

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

0.048 -0.328 -0.366 -0.322 -0.247 -0.189 -0.003 -0.206 -0.233 0.018

Figure 2.5.: PKS 0235+164; Top: Distribution of flux values Fi scaled by the mean F in
logarithmic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters
thereof and properties of the logarithmic distribution are shown in the upper table.
Bottom: Light curve provides color coding according to time for the observation period
of about 3600 days. A stationary distribution is expected to scatter around the same
mean for all colors, while non-stationary ones should show skewed accumulation of
colors. Another indication of stationarity is that the variance �µ of the nine mean
values µi (computed from non-overlapping segments of 400 days) is small.
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2.1. Flux distributions

Ag µg �g �2
R Nbins skew kurtosis

210.797 -0.169 0.379 0.190 42 0.087 0.170

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

-0.073 -0.223 -0.22 -0.148 -0.117 -0.211 -0.08 -0.277 -0.428 0.011

Figure 2.6.: PKS 1510-089; Top: Distribution of flux values Fi scaled by the mean F in
logarithmic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters
thereof and properties of the logarithmic distribution are shown in the upper table.
Bottom: Light curve provides color coding according to time for the observation period
of about 3600 days. A stationary distribution is expected to scatter around the same
mean for all colors, while non-stationary ones should show skewed accumulation of
colors. Another indication of stationarity is that the variance �µ of the nine mean
values µi (computed from non-overlapping segments of 400 days) is small.
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2. Data analysis and methodology

Ag µg �g �2
R Nbins skew kurtosis

123.346 -0.090 0.241 0.158 30 -0.068 -0.433

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

-0.033 -0.118 -0.042 -0.117 -0.126 -0.039 -0.14 -0.066 -0.077 0.002

Figure 2.7.: PKS 2155-304; Top: Distribution of flux values Fi scaled by the mean F in
logarithmic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters
thereof and properties of the logarithmic distribution are shown in the upper table.
Bottom: Light curve provides color coding according to time for the observation period
of about 3600 days. A stationary distribution is expected to scatter around the same
mean for all colors, while non-stationary ones should show skewed accumulation of
colors. Another indication of stationarity is that the variance �µ of the nine mean
values µi (computed from non-overlapping segments of 400 days) is small.
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2.1. Flux distributions

Ag µg �g �2
R Nbins skew kurtosis

115.278 -0.071 0.321 0.263 42 0.324 0.447

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

0.021 0.123 -0.205 -0.267 -0.3 -0.265 -0.187 -0.214 -0.304 0.02

Figure 2.8.: 3C 273; Top: Distribution of flux values Fi scaled by the mean F in logarith-
mic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters thereof
and properties of the logarithmic distribution are shown in the upper table. Bottom:
Light curve provides color coding according to time for the observation period of about
3600 days. A stationary distribution is expected to scatter around the same mean for all
colors, while non-stationary ones should show skewed accumulation of colors. Another
indication of stationarity is that the variance �µ of the nine mean values µi (computed
from non-overlapping segments of 400 days) is small.
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2. Data analysis and methodology

Ag µg �g �2
R Nbins skew kurtosis

184.454 -0.229 0.384 0.240 42 0.385 0.797

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

-0.174 -0.331 -0.296 -0.563 -0.346 -0.199 -0.205 -0.264 0.241 0.041

Figure 2.9.: 3C 279; Top: Distribution of flux values Fi scaled by the mean F in logarith-
mic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters thereof
and properties of the logarithmic distribution are shown in the upper table. Bottom:
Light curve provides color coding according to time for the observation period of about
3600 days. A stationary distribution is expected to scatter around the same mean for all
colors, while non-stationary ones should show skewed accumulation of colors. Another
indication of stationarity is that the variance �µ of the nine mean values µi (computed
from non-overlapping segments of 400 days) is small.
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2.1. Flux distributions

Ag µg �g �2
R Nbins skew kurtosis

187.246 -0.177 0.408 0.204 51 0.002 0.854

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 �µ

-0.326 0.155 -0.009 -0.597 -0.48 -0.066 -0.122 -0.193 -0.59 0.063

Figure 2.10.: 3C 454.3; Top: Distribution of flux values Fi scaled by the mean F in
logarithmic scale with Poisson errors (grey) and Gaussian fit (black). Fit parameters
thereof and properties of the logarithmic distribution are shown in the upper table.
Bottom: Light curve provides color coding according to time for the observation period
of about 3600 days. A stationary distribution is expected to scatter around the same
mean for all colors, while non-stationary ones should show skewed accumulation of
colors. Another indication of stationarity is that the variance �µ of the nine mean
values µi (computed from non-overlapping segments of 400 days) is small.
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2. Data analysis and methodology

wide sense, stationarity is defined by the invariance of the mean, a finite variance, and

the fact that the co-variance only depends on the distance between two data points.

Theoretically, the time invariance could only be checked if one had an infinite amount

of data points. The finite observations acquired in practice therefore have to be consid-

ered with care: in a specific stretch of data, a stationary distribution could be mistaken

to be non-stationary and vice versa (Scargle, 2020). Bearing this in mind, it shall be

investigated whether the scaled, daily log-fluxes are stationary within the observation

period of about 3600 days.

For the illustrative purpose of this work, indications of stationarity are studied through

the time invariance of the mean by dividing each light curve in segments of 400 days.

This results in nine segment-mean values µi that are shown in the bottom table of

Fig. 2.3 - 2.10 along with their variance �µ.

The variance of the segment-mean values is used as estimate of stationarity where a

small value with respect to the segment-mean values indicates time invariance (with

respect to the segment size). This is visualized in the histograms through color coding

according to time of the light curve. A hint for stationarity is imprinted by the fact that

all colors scatter about the same, time invariant mean i.e. are distributed equally over

the span of the histogram. This is fulfilled for the histograms of OJ 287, PKS 0208-512,

and PKS 2155-304. In agreement with that, the variance �µ of the mean yields small

(< 0.004) values. High variance values (> 0.40) suggest that the distribution is not

stationary within the observation period with respect to the segment size. This is the

case for 3C 279 and 3C 454.3. Accordingly, the colors in the histogram do not scatter

about the same value but show distinct clustering. For 3C 279, mainly the last, red

part appears shifted with respect to the previous flux mean. 3C 454.3 shows the highest

values of �µ and consequently distinct accumulation of colors in the histogram. It can

be seen that the blueish phase around MJD 55500 is at a higher flux level than the

turquoise-green, quiescent phase between 56000 and 56500. PKS 0235+164 yields an

intermediate variance of 0.018. In the histogram it can be verified that this is because

the distribution seems to be stationary apart from the first, purple segment around MJD

54750 which appears to scattered around a higher flux level. This instance shows how

much the selection of the observation period can a↵ect the judgment of stationarity. The

remaining sources PKS 1510-089, and 3C 273 yield intermediate variance values and can

neither by this value nor by the color coded histogram be classified to be stationary or
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2.1. Flux distributions

not. As already mentioned, this only holds for the considered time segments of 400 days

within the observation period of about 3600 days.

In the next step, the logarithmic flux distributions plotted in Fig. 2.3-2.10 are fitted

with a Gaussian function of the from

y =
Agp
2⇡ · �g

· exp
✓
�(x� µg)2

2 · �2
g

◆
(2.1.2)

which corresponds to a log-normal fit of the linear flux data.

When presenting fits, it is crucial to give an estimate for the goodness of the fit. To

do so, one first needs to determine the uncertainties of the data points to be fitted. In

this case, this corresponds to the uncertainty �b of counts in each bin of the histogram.

According to Poisson statistics, this equals �b =
p
nb for nb counts in each bin which

is shown in the plots with grey error bars. When fitting10 the Gaussian above to the

histogrammed data, this uncertainty is considered by setting the weights to 1/�2
b = 1/nb.

The best fit for the free parameters amplitude Ag, mean value µg, and variance �g of

Eq. 2.1.2 are shown in the table of Fig. 2.3-2.10. As measure for the goodness of the

fit, the reduced chi square �2
R and the corresponding number of fitted data points (i.e.

number of bins Nbins determined with the Knuth algorithm) is shown as well. All of the

fit parameters and the third11 and fourth12 statistical moment are discussed in Sec. 3.1

and summarized there in Tab. 3.1.

For each of PKS 0208-512, PKS 1510-089, and 3C 273, the fit seems to be shifted.

This e↵ect can be explained by the uncertainty of each histogram bin, which has been

estimated with Poisson statistics. The dependence of uncertainty �b on the counts nb

causes the histogram bins with only few counts to have a relatively small error while the

ones with many counts have a large error. Consequently, the small histogram bins will

be weighted stronger than the larger ones.

The histogram of 3C 454.3 shows one particularly high bin that seems to break the

distribution. A closer look at the light curve shows that this is probably due to the part

in the light curve where the flux seems to vary between two fixed values. Inspection of

10 Utilized implementation: https://lmfit.github.io/lmfit-py/model.html, 20.02.2020
11 Utilized implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.skew.html, 04.03.2020
12 Utilized implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.kurtosis.html, 04.03.2020
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2. Data analysis and methodology

the data reveals that these flux values have unexpectedly high TS values (TS > 3000).

Based on this, these data points are assumed to be artifacts of the analysis.

For an ideal fit, the reduced chi square �2
R should be close to one. The fact that

�2
R ⌧ 1 for all fits suggests that the error of the histogram bins have been considered

too large. Instead of using Poisson statistic, the option of propagating the error of the

flux values on the error of the counts in the histogram, similar to Meyer et al. (2019),

shall be explored in future work.

2.2. Definition of flares in light curves

There are two approaches to characterize and model the variability of observed flux

variations. They di↵er in that one makes physical assumptions, while the other does

not. They are thus referred to as physically motivated (physical) and purely data driven

(non-physical) models, respectively. Physical models assume a certain shape and behav-

ior of the flux given a theoretical model and its implications on e.g. acceleration, cooling,

dynamical, and instability timescales. In this work, the goal is to put constraints on

the possible physical processes. Therefore, time domain modeling of the flux should be

non-physical (i.e. not biased towards a physical model).

Besides auto-correlation and Fourier analysis, Bayesian Block analysis (Scargle et al.,

2013) is frequently used for this purpose and chosen here. It allows one to “identify

and characterize statistically significant variations while suppressing the inevitable cor-

rupting observational errors.” The procedure is illustrated by Fig. 2.11, which shows the

monthly light curve of PKS 1510-089. The top panel shows the “raw” light curve as

obtained by Fermi -analysis. The middle panel shows the corresponding Bayesian blocks

as obtained by the implementation outlaid in A.1, which is used for all of the results

throughout this thesis.

For the execution of this algorithm, the fitness is set to measures, assuming that the

flux errors are Gaussian13. It is possible to adjust the p-value or the gamma-value of the

algorithm, which a↵ects the fineness of the blocks. While the robustness of the method-

ology was tested with various settings of these parameters, the results presented here

are produced with default settings only. The flux value of a block is set to the mean of

13 Strictly, these flux errors are Possonian.
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2.2. Definition of flares in light curves

Figure 2.11.: Monthly light curve of PKS 1510-089 (top) analyzed with Bayesian blocks
shown in blue (middle). The center of the local block-maxima are defined to be indi-
vidual peaks of flaring events as indicated with a green vertical line (bottom). This is
the starting point for both flare finding methods.
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2. Data analysis and methodology

the data points within the block. Though this is by far the most common application,

the algorithm itself does not account for the shape or the flux value of the blocks. In

future work, this could be explored by setting the block to other values (e.g. median,

minimum, or maximum) or fitting the data within di↵erently.

Another factor that influences the outcome of the Bayesian block algorithm is the data

itself, of course. As explained in the previous section, flux values violating the condition

TS > 4 are neglected here. It has to be noted that taking these values or their upper

limits in account can result in di↵erent blocks. Furthermore, the light curves analyzed

here are binned monthly or daily which requires an arbitrary time to be the start of a

month or a day. It has been shown that shifting the integration time of daily binning by

12 or 6 hours results in di↵erent bins and consequently a↵ects the block representation

(A. Gokus, private communication). Consideration of these e↵ects, however, exceeds

the scope of this work.

Keeping these limitations in mind, the blocks determined with default settings pro-

vide the basis for the definition of a flare. This is achieved with two methods (baseline

and half-clap) that are introduced in the following. For both of the methods, the first

step is to determine the local maxima of the blocks in the light curve. Every block that

is higher than its two neighbors is considered to be the peak of a flare. Referring to

the definition of the Bayesian block algorithm, there is no significant variation within

a block. Hence, the exact time of these flare peaks is set to the middle of the block,

as illustrated in Fig. 2.11 in the bottom panel with vertical lines over the peak block in

green.

The next step in both methods is to define which blocks belong to the rise and decay

of these peaks. This is done by proceeding downward from each peak block, as long as

the adjacent block is lower. One can imagine this like pouring water onto a peak. All

the blocks that the water is is running over, belong to this peak and therefore form a

flare. This is equal to the a one-dimensional version of the watershed concept of topo-

logical data analysis. The natural follow up question is: what about the resulting lakes

or valley blocks? I.e. where does one flare end and the other start? This is where the

two definitions of flares of this work provide di↵erent approaches.
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2.2. Definition of flares in light curves

2.2.1. Baseline Method

The baseline method14 was first introduced in Meyer et al. (2019). The authors use

the criteria of a constant flux level that defines the onset and o↵set of a flare if the flux

exceeds or goes under that level, respectively. This means only peaks that are above this

baseline are considered as flare and adjacent blocks belong to a peak, as long as they are

above the baseline. Meyer et al. (2019) use the mean flux of each light curve as baseline

which is adapted here. The baseline method is illustrated in Fig. 2.12 in the top panel. In

addition to the identified peaks represented in green, the baseline is shown in pink. The

block groups that consequently define a flare are shaded in orange. The authors point

out that this approach stems from the so-called HOP algorithm (Eisenstein & Hut, 1998)

as in “hopping” from one point (block) to the other. This is why the resulting flares

are referred to as HOP-groups. For the scope of this work, multiple peaks are treated

as one flare, as shown in the third flare from the right in the top panel of Fig. 2.12. The

highest local maximum within the flare represents the peak. The first (last) flare in the

light curve starts (ends) when the flux rises above (goes under) the baseline the first

(last) time. This means flares that lack an onset or o↵set or cases where the flux starts

o↵ or ends above the baseline are conservatively dismissed for this analysis.

The clear disadvantage of this method is that the result is highly dependent on the

choice of baseline. Moving it further up or down will exclude or include di↵erent groups

of blocks which in turn highly a↵ects the shape of the flare. Moreover, multiple maxima

within one flare defined in this way could represent what are in fact multiple, distinct

flares as one single flare. What appears to be a quiescent level of the source by eye, i.e.

the comparably long low-flux blocks, can thus not serve as baseline to define the flares

with this method. The higher the baseline is set the more peaks can possibly lay under

the baseline and thus not be considered at all. A clear advantage of this method is that

despite the baseline being a bias, it is the only necessary assumption to systematically

define flares in every light curve.

14 Implementation: see Appendix A.2
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2. Data analysis and methodology

Figure 2.12.: Monthly light curve of PKS 1510-089 and identified flares based on the
baseline method (top) and the half-clap method (bottom). For the former, the start
and end of a flare is defined by blocks going over or under the baseline. In case of
multiple peaks (e.g. the third one from the right) the highest peak is chosen. The
half-clap method defines the start and end of a flare by taking the minimum of half the
valley block (turquoise) and clapping the adjacent block onto the valley block (dark
purple), as illustrated in a zoomed in section of the light curve (middle).
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2.2. Definition of flares in light curves

2.2.2. Half-Clap Method

The half-clap method15 has been established in the framework of this work to avoid

the bias of choosing a baseline. The first step, is to divide the mentioned valley blocks

analogous to the peak blocks at their center (half method). This way, all of the light

curve could be divided into flares based on the local maxima and minima of the blocks.

There are, however, many cases where the valley block is very long. This corresponds to

a quiescent flux state without flaring from the source rather than to the onset or o↵set of

a rapid flux variation. In these cases, dividing the valley block at its center would highly

exaggerate the extent of the flares. Thus, the slope of the variation is taken into account.

This is done by clapping the length of the block adjacent to the valley block onto that

valley block (clap method). The resulting fraction of the valley block is then interpreted

to be part of the flare whereas the rest of the valley block represents a quiescent level.

The methods are combined by taking the minimum of each method for the start and

end of a flare. This basically means that the start (end) of a flare lays at the center of a

valley block unless the rising (falling) behavior suggests that it should be closer to the

peak.

This method is illustrated in the middle panel of Fig. 2.12. It shows the same blocks

that represent the third flare from the right of the top panel in the same figure16. The

two flares shaded in orange and purple in the middle panel were defined based on the

half-clap method. First, the center of each valley block is considered to be the end

of one and the start of another variation. This is illustrated with a turquoise, dashed

line (half method). Second, the rising and falling behavior is analyzed by clapping the

length of the adjacent block onto the valley block. This is shown with dark purple for

the beginning of the left and the end of the right flare in the middle panel of Fig. 2.12.

For the onset of the left, orange flare, the rising behavior determined with the clapping

method yields a shorter rise time (starting slightly over MJD 57000, shown in dark pur-

ple) than the half method does (starting slightly under MJD 57000, shown in turquoise).

Therefore the minimum (clap method in this case) defines the onset of the left flare. For

the end of that flare, by contrast, the half method (ending just over MJD 57200, shown

15 Implementation: see Appendix A.3
16 While the baseline method shown in the top panel, identifies one flare, the half-clap method in the

middle panel identifies two flares for the same block structure. The two independent methods to
define flares naturally yield di↵erent flares for the same light curve.
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2. Data analysis and methodology

in turquoise) represents the minimum. The same holds for the onset of the right flare

shaded in purple. Consequently, the left flare ends where the right flare starts. As can be

seen by this example, the defined flares do not overlap and are uniquely identified within

the light curve. Relaxing this condition is part of future work. The end of the right flare

is again given by the clap method (ending at MJD 57350, shown in dark purple) as it is

shorter than the half method (ending at MJD 57400, shwon in turquoise).

Applying this procedure to the full light curve results in the flares shaded in orange

and purple in the bottom panel of Fig. 2.12. Also for this method, flares that are not

completely mapped (e.g. missing a start or an end) are conservatively neglected. The

last group of blocks in the bottom panel of Fig. 2.12, for instance, is not considered

because it is not certain how much further the last block will go and whether the next

block would be higher or lower than that.

Even though this method does not require a baseline, assumptions have to be taken

into account to define flares. One strong assumption is that the slope of the flare can

simply be extended by clapping the adjacent block. The second assumption is that the

length of half the valley block belongs to the flare instead, in case this length is less than

the clapping would be. The latter represents handling the special case of overlapping

flares based on the former. While these strong assumptions are a downside compared

to only having one assumption in the baseline method, this approach allows to consider

every peak that is found in the light curve. This includes peaks with low flux values and

close peaks at a high level, both of which are not considered with the baseline method.

2.2.3. Parametrization of the flares

The key question that shall be answered by systematically applying these methods to

many light curves is whether the flares show a tendency for asymmetry based on the rise

time tr and the decay time td. These are simply given by the time between the onset of a

flare and its peak and the time from the peak to the o↵set, respectively. One has to keep

in mind that both of these methods are built up on non-physical time domain modeling.

They do yield exact times but these are not necessarily equal to the physical rise and

decay behavior. Nevertheless, the methods provide an objective parametrization that is
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Figure 2.13.: Illustration of the asymmetry measure A (Eq. 2.2.1) for three exemplary
flare shapes. The flare peak is denoted with a green vertical line and the rise and decay
times are indicated with lavender and fuchsia horizontal arrows respectively.

studied in form of the asymmetry measure

A =
tr � td
tr + td

(2.2.1)

of each flare. The three exemplary flare shapes in Fig. 2.13 illustrate that the asymmetry

measure ranges from �1 to +1. In the following, all flares from all sources (classes) are

considered at once as one large sample. In figures, the baseline method is always shown

on the left side and the half-clap method on the right.

2.3. Monthly Flares

Both of the methods are applied to the monthly sample. As discussed in Sec. 2.1.1, this

consists of 335 sources. For 99 of these sources, the Bayesian block algorithm yields only

one block, i.e. the flux over the observed period is constant. Requiring that the light

curve shows at least one full flare, the baseline method detects 537 flares in 196 sources

and the half-clap method detects 401 flares in 119 sources. The discrepancy is due to the

conservative conditions of the definition of a full flare explained in the previous section.

The resulting distribution of asymmetry measures (see Eq. 2.2.1) Ãm,bl and Ãm,hc for all

flares in all sources of the monthly sample is shown in the top left and right of Fig. 2.14

for the baseline and the half-clap method, respectively.

Both methods show an excess for A = 0, suggesting that a large portion of all flares
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2. Data analysis and methodology

baseline stat. moment half-clap
-0.024 mean -0.027
0.335 variance 0.234
0.126 skew 0.052
-1.410 kurtosis -1.148

Figure 2.14.: Distribution of asymmetry measures for all detected flares of all sources in
the monthly sample derived with the baseline method (top left) and half-clap method
(top right). Both methods yield each kind of asymmetry to a comparable degree when
excluding single-block flares (bottom), as shown by the statistical moments of these
distributions listed in the table.

36



2.3. Monthly Flares

are symmetrical. An investigating of the light curves, however, reveals that many of

these symmetric flares consist of one block only. The sixth flare determined with the

baseline method in the top panel of Fig. 2.12 is such an instance. A single block is not

su�cient to represent the structure of a flux variation, as discussed in Sec. 3.2.4. Hence,

single block flares are excluded for this analysis. For the half-clap method, this also

includes flares such as the fifth one from the right in the bottom panel of Fig. 2.12. The

asymmetry measure does not necessarily have to be zero, but if there is only one block

(the peak) between the starting and end block, the flare is conservatively dismissed.

Only considering the asymmetry measure Am,bl and Am,hc of flares with more than

one block yields 203 baseline flares and 204 half-clap flares as shown in the distributions

on the left and right of the bottom panel in Fig. 2.14, respectively. Comparison of this

to the result in the top panel shows that the excess of symmetric flares is a relic of non-

resolved single-block flares rather than a real symmetry of the flux variations. Hereafter,

all single-block flares will be excluded to avoid this bias.

Given this, it can be seen that the asymmetry measures for both methods range from

-1 to 1. This means that for the monthly sample, both methods yield flares with both

kinds of asymmetry as well as symmetry. For the baseline method, it appears that the

second from left and second from right bin occur slightly more often than the rest. This

could be due to an excess of flares that consist of only two blocks based on one data bin

each. In this case, either the rise time is exactly twice as high as the decay time or vice

versa (see Sec. 3.2).

The statistical moments (see Eq. 2.1.1) of both distributions without single-block flares

are presented in Fig. 2.14 as well. The mean of both distributions is lower than zero,

suggesting that flares tr < td occur slightly more often than the opposite. However, the

deviation of each mean from zero is not significant with respect to the large variation of

either method.

The skewness or asymmetry of both distributions is close to zero. This shows that

asymmetry measures larger and smaller than zero occur to a comparable degree. It can

be noted that the skewness of both methods is larger than zero, hinting a positive skew.

Just as the tendency of the mean, this suggests that that flares with tr < td are slightly

more numerous than the opposite. Neither of these results is significant, though.

The kurtosis of both distributions is less than zero and therefore boxier than a Gaus-

sian. As can already be seen in the histograms, the clear deviation of the kurtosis from
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2. Data analysis and methodology

baseline stat. moment half-clap
FSRQ BLL UC
-0.095 -0.117 0.044
0.362 0.315 0.325
0.377 0.332 -0.053
-1.334 -1.243 -1.414

mean
variance
skew

kurtosis

FSRQ BLL UC
-0.055 -0.050 -0.004
0.230 0.218 0.243
0.091 0.108 0.002
-1.005 -0.988 -1.267

Figure 2.15.: Distribution of asymmetry measures for all flares that consist of more
than one block derived with the baseline method (left) and half-clap method (right)
for FSRQs (shaded red), BLLs (dotted blue), and UCs (gray contour). The table
underneath shows the statistical moments of each distribution.

zero (i.e. the boxieness of the distribution) proves that all asymmetry measure values

occur to a comparable degree.

Just as in Sec. 2.1.1, this analysis is also performed for each class of the monthly sam-

ple separately. The resulting distribution of asymmetry measures of all flares consisting

of more than one block from all sources in the corresponding class is shown in Fig. 2.15.

The baseline method is on the left and the half-clap method is on the right. FSRQs

are shaded red, BLLs dotted blue, and UCs contoured gray. The table underneath con-

tains the statistical moments (see Eq. 2.1.1) of each distribution. Each of these values is

comparable with the value for the whole sample (see Fig. 2.14). Based on a KS test, it

cannot be rejected that either combination of classes (from the same method) is drawn

from the same distribution. Neither class shows a tendency for asymmetry or symmetry

in their flux variations, based on these two methods. The distinction by blazar class

does not yield a di↵erence of rise and decay behavior of the corresponding flares.
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2.4. Daily Flares

In the same manner, both flare finding methods were applied to the daily sample. 160

flares are obtained with the baseline methods, while the half-clap method yields 346

flares for the eight sources. Out of these, 66 and 171 are single-block flares, respectively.

The discrepancy between the two methods is due to the fact that there are several

flux variations that lie under the corresponding mean of the light curve. The daily

light curves are plotted along with their monthly counter part in Figs. A.1-A.8 of the

Appendix where the flares of each method are highlighted. Since the sampling of the

daily sample is very dense, it is recommended to look at these light curves in the online

version of this thesis17. Characteristics of the two flare finding algorithms are discussed

in Sec. 3.2.1. The asymmetry measure for all flares of the eight daily sources is calculated

according to Eq. 2.2.1. The resulting distributions Ãd,bl and Ãd,hc are shown in Fig. 2.16

on the left and right for the baseline and half-clap method, respectively. While the

purpose of this work is to perform a sample study, discussion of individual flares and

sources can be found elsewhere18

Also in this sample, there is an excess of A = 0, indicating a large proportion of

symmetric flares. Exclusion of the single-block flares results in the distributions Ad,bl

and Ad,hc shown in Fig. 2.16. This shows that also in this case the excess of symmetric

flares is due to the ones of which the structure was not resolved detailed enough (see

Sec. 3.2. Hence, the single-block flares are neglected for this sample as well. The table

in that figure lists the values of the statistical moments of the distribution of asymmetry

measures for each method excluding single-block flares.

In analogy to the results of the monthly sample, there is no tendency for asymmetry

nor symmetry of the flux variations of the daily light curves based on the methods

applied here.

17 Thesis archive of the astronomy department Wuerzburg: https://www.physik.uni-wuerzburg.

de/astro/archiv/theses-archive/, 24.05.2020
18 Information on individual sources or particular flaring events can be found on the simbad website of

the corresponding source, which is linked in Tab. 1.1.
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baseline stat. moment half-clap
0.019 mean -0.070
0.302 variance 0.326
0.077 skew 0.170
-1.216 kurtosis -1.337

Figure 2.16.: Distribution of asymmetry measures for all detected flares of the eight
sources in the daily sample derived with the baseline method (top left) and half-clap
method (top right). As in the monthly sample (Fig. 2.14), both methods yield each kind
of asymmetry to a comparable degree when excluding single-block flares (bottom), as
shown by the statistical moments of these distributions listed in the table.
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3. Discussion

The focus of the first section of the discussion is on the flux distributions of the monthly

and daily sample. Along with examples of the literature it is shown that the interpre-

tation of flux distributions can basely lead to physical conclusions. In the second part,

the two flare finding methods and their results are compared. Both yield symmetric

and either kind of asymmetric flare shapes. The large fraction of single-block flares in

both samples indicates that the true shape of the variations is not represented detailed

enough. It is shown that this could be due to too wide time binning which suggests

that the gamma-ray flux variations of blazars take place on sub-daily timescales. This

is in accordance with other studies that detect gamma-ray flux variability on sub-hour

timescales.

3.1. Interpretation of Flux Distributions

3.1.1. Monthly flux distributions

The illustration of the distribution of all monthly, scaled log-fluxes in Fig. 2.1 clearly

shows that the raw light curves contain a distinct distribution of background/noise mea-

surements, which has to be filtered. Requiring TS > 4 for each flux bin and that at

least 50% of the flux bins in a light curve have to fulfill this criteria leaves 335 sources

of the initial monthly sample that are suitable for the analysis. All of these sources are

assumed to be blazars (see Sec. 2.1.1).

The statistical moments for each source of the monthly sample are as computed ac-

cording to Eq. 2.1.1 in Sec. 2.1.1. Comparing the distribution of statistical moments

according to source classes yields the following. Since the measured fluxes are distance

dependent, comparison of the means is not meaningful here. It merely shows that each

source class is measured to a comparable level. The variance, by contrast, is systemati-
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cally larger for FSRQs than for BLLs. This means the former are more variable than the

latter as has been found in previous studies (Ackermann et al., 2015). The hypothesis

that the variance distributions of the two source classes are from the same distribution

can be rejected with a p-value of 5% based on a KS test. For the skewness and kurtosis,

this hypothesis can not be ruled out indicating that there is no significant distinction

between the source classes based on the third or fourth statistical moment.

3.1.2. Daily flux distributions

In the daily sample, four sources have already been studied along with two other bright

FSRQs in Meyer et al. (2019) (see Tab. 1.1). In Sec. 3 of that paper the authors present

the flux distributions of weekly binned flux values (as opposed to daily binned flux values

analyzed here).

The color coding in the daily histograms (see Figs. 2.3-2.10) aims to visualize sta-

tionarity. If each color spreads about the same mean value, the distribution can be

assumed to be stationary. Another indication of stationarity is given by the time in-

variance of the mean value, which is estimated through computing segment-mean values

and their variance. This only holds for the considered observation period (3600 days),

while a longer or shorter stretch of the same data could yield di↵erent results. Fur-

thermore, the considered steps of color coding and the size of segments for estimation

of time invariance could change this conclusion. Bearing this in mind, the histograms

suggest that three sources (OJ 287, PKS 0208-512, and PKS 2155-304) are stationary,

two sources (3C 279 and 3C 454.3) appear non-stationary, and three are intermediate

(PKS 0235+164, PKS 1510-089, and 3C 273).

The consideration of stationarity of the observed flux distributions is helpful for the-

oretical models about the production of the gamma-radiation. While it is very di�cult

to claim general (non-)stationarity by the observed data, these findings can be used to

check blazar emission models. These need to be able to explain the rather stationary case

such as PKS 2155-304 just as well as the rather non-stationary examples like 3C 454.3.

Consistency checks should be conducted with various time scales and sizes of segments.

The color coded histograms have proven to lead to the same conclusions concerning

this stationarity as the time invariance of the mean does. In fact, the colors visualize
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the mean over time in the histogram. One can thereby represent more information than

through an ordinary histogram. Nevertheless, firm conclusions on the stationarity of a

distribution remain di�cult.

3.1.3. Previous works on gamma-ray flux distributions

In Meyer et al. (2019) it is stated that the flux distributions of the considered FSRQs

are well described by a log-normal or broken power law fit. The latter is motivated by

self-organized criticality which is commonly observed in solar-flares as well (Aschwanden

et al., 2016). The former is said to be often observed in the gamma-regime as discussed

based on previous examples from the literature in the following.

The the most recent catalog of Fermi -detected AGN (4LAC The Fermi-LAT collab-

oration, 2019) does not provide flux distributions of individual sources. The previous

version, 3LAC (Ackermann et al., 2015), covers 414 FSRQs and 604 BLLs from four

years of observation. The flux values are binned monthly, resulting in 48 values that are

then fitted with a log-normal function for each source. The motivation for this proce-

dure, again, is based on the fact that a log-normal “has commonly been used to model

blazar flux distributions.” It is further stated that this “provides reasonable fits for most

sources of [the] large sample.”

Similarly, Shah et al. (2018) select data of 19 FSRQs and 19 BLLs covering about

100 months. They compare normal to log-normal fits for each flux distribution choosing

adaptive binning for the histograms. This results in five bins for each distribution. For

almost all sources the log-normal shape is preferred.

Tluczykont et al. (2010) is referred to as one of the common examples for log-normality

in blazars. They analyze long-term VHE gamma-ray data, reporting that the flux dis-

tribution of the blazar Mrk 421 is best described with the sum of a Gaussian and a

log-normal function.

The first reference of this kind with respect to blazars was Giebels & Degrange (2009).

This research note reports a log-normal distribution of X-ray flux of the source BL Lacer-

tae. All of the above publications refer to this work, particularly for posing implications

on the observed log-normality, as shall be discussed later.
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Source Type Ag µg �g �2
R Nbins skew kurtosis

OJ 287 BLL 89.038 -0.067 0.259 0.0713 26 0.079 -0.336
PKS 0208-512 BLL 178.707 -0.112 0.243 0.091 14 -0.133 -0.476
PKS 0235+164 BLL 99.153 -0.085 0.318 0.092 25 0.039 -0.503
PKS 1510-089 FSRQ 210.797 -0.169 0.379 0.190 42 0.087 0.170
PKS 2155-304 BLL 123.346 -0.090 0.241 0.158 30 -0.068 -0.433

3C 273 FSRQ 115.278 -0.071 0.321 0.263 42 0.324 0.447
3C 279 FSRQ 184.454 -0.229 0.384 0.240 42 0.385 0.797
3C 454.3 FSRQ 187.246 -0.177 0.408 0.204 51 0.002 0.854

Table 3.1.: Gaussian fit parameters and statistical moments of the logarithmic flux dis-
tribution of each source in the daily sample.

3.1.4. Log-normalcy of the daily flux distributions

In Sec. 2.1.2 of this work, the daily binned fluxes are fitted with a log-normal1 as well.

The obtained parameters are summarized in Tab. 3.1. The best-fit mean value µg of each

log-normal distribution is systematically < 0. In the utilized scale, this means that the

mean of the n logarithmic flux values fi is always less than the logarithm of the mean

of the flux values, i.e.
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which is mathematically expected for small values of fi.

The variance �g is considered as a measure for the variability. Based on this, the

statement that FSRQs are more variable than BLLs (Ackermann et al., 2015, also con-

firmed for monthly sample in the previous section) can be confirmed. The variability

of PKS 0235+164 is closer to the order of the FSRQs than to the BLLs. As noted in

the beginning, its classification as BLL is from simbad2, while the Fermi -classification

is uncertain.

The log-normal distribution seems to be an accurate representation of the daily flux

histograms of OJ 287, PKS 0235+164, PKS 2155-304, and 3C 279. Besides the unnatu-

1 Implemented by fitting a normal to the logarithmic flux distribution
2 PKS 0235+164: http://simbad.u-strasbg.fr/simbad/sim-id?Ident=PKS+0235%2B164,
24.05.2020
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rally high bin (see Sec. 2.1.2), also 3C 454.3 appears to be represented by the fit. Despite

the fact that the sources PKS 0208-512, PKS 1510-089, and 3C 273 show an overall sim-

ilar shape, the best fit appears o↵. As already mentioned in Sec. 2.1.2, this is due to the

bias towards smaller bins given the Poissonian error estimation of the histogram bins.

Rather than judging the fits by eye, a chi-squared test allows to quantify the goodness

of the fit. The fact that systematically �2
R < 1 indicates that the errors were estimated

too large. A quantitative comparison to the above studies is di�cult because most of

them do not note how (if at all) the flux uncertainty is propagated to the error of the

histogram bins. Only Meyer et al. (2019) explain a way to propagate the error, which

shall be applied in future work.

Of those who consider larger samples, only Shah et al. (2018) present values of �2
R

for all of their log-normal fits. They range from 0.13 to 3.88 with most of the values

< 1. This indicates that the errors were overestimated in most cases in this study as

well. Since the procedure for computing this error is not elaborated, comparison is not

possible.

Another way to analyze the log-normalcy of a distribution is to compare the statistical

moments of the logarithmic values to a Gaussian. The skewness and kurtosis (Eq. 2.1.1)

of the logarithmic flux values are listed in Tab. 3.1. The skewness, as introduced in the

beginning of Sec. 2, quantifies the symmetry of a data sample. For symmetric distribu-

tions, such as a Gaussian or a centered box function, the skewness is zero. A negative

(left) or positive (right) skew is denoted by the corresponding sign and is due to a large

tail of low or high values. An absolute value of skewness > 1 is interpreted to indicate

high skew (asymmetry). Any skew value between -0.5 and 0.5 is considered to have

approximately no skew. All of the daily data sets analyzed in this study fall in the latter

range and are therefore assumed to be symmetric. The sources 3C 273 and 3C 279 show

the highest skew, with 0.324 and 0.385, as can be verified in the histograms (see Figs. 2.8

and 2.9). This means, based on the skewness, the distribution of logarithmic fluxes are

similar to a Gaussian, which accounts for the log-normalcy of these fluxes.

The values for the kurtosis range from -0.503 to 0.854, which scatters about zero, as

expected for a Gaussian.

Based on the results of this work, it is not feasible to draw firm conclusions on the

log-normalcy of the daily flux distributions. The previous studies listed above do state

that a log-normal behavior is possible. Yet it is often missed to point out how vague the
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procedure is.

3.1.5. Implications of log-normal flux distributions

Assume that the distribution of the observed fluxes does follow the log-normal function.

All of the above publications refer to Giebels & Degrange (2009) for physical interpreta-

tion. These authors first observed a log-normal flux distribution of a blazar, specifically

X-ray flux of BL Lacertae. It is mistakenly claimed that such a log-normal flux distribu-

tion is indicating multiplicative physical processes as first raised by Uttley et al. (2005).

In many papers referring to Giebels & Degrange (2009), the claim for multiplicativity

and the physical explanation have been adapted. The theoretical model consulted is

often based on variations in the accretion flow as proposed by Lyubarskii (1997). The

author illustrates, that fluctuations in the (outer) accretion-disk propagate inwards and

a↵ect fluctuations in the accretion rate. This directly translates to flicker-noise type

fluctuations in luminosity for the instance of X-ray binaries. Starting with Giebels &

Degrange (2009), AGN-scientists adapt this explanation for gamma-rays by assuming

that this behavior is, in a not further defined way, inherited by the jet. This does provide

a possible explanation for the flicker-noise observed in gamma-rays. Alternatively, the

fractal break-up of large coronal flares (magnetic reconnection) and further examples, for

instance, listed in Rieger (2019) resemble a multiplicative process that could be present

in blazars and accreting systems in general.

Often it is further mistaken that a linear relation between flux variability and the flux

itself indicate multiplicative processes. This relation is given by the standard deviation

and the mean of flux in a small interval of the light curve. Uttley & McHardy (2001)

claim that such a linear relation is a common feature for compact accreting systems and

suggest that the underlying physical process has to be multiplicative such as the ones

mentioned above.

Scargle (2020) disproves conclusions like this. While log-normality and the rms-flux re-

lation can be consequences of such models, it is wrong to assume that these properties

necessarily trace back to only these models or multiplicativity in general, as is but to

frequent in recent works (e.g. Rieger, 2019). Log-normality can also be obtained by an
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3.2. Characterization of flux variations in light curves

additive process, specifically an auto regressive process, e.g.

X(n) =
X

k

ckR(n� k) +D(n) ! log-normal or normal (3.1.2)

(from Scargle, 2020) where Rk(n) represents an uncorrelated random process, ck is a set

of constant moving average coe�cients, and D(n) is a deterministic process (in practice

often a constant). This disproves that log-normalcy can be asserted to certain processes

underlying an astrophysical system. That is further a�rmed by Burd et al. (in prep.),

who found the best parameters for describing real light curves with an additive auto re-

gressive process3. The authors show that the artificial light curves obtained from these

parameters produce flux distributions of various kinds.

To conclude, a histogram appears to be a very simple first step to conduct when inves-

tigating data. However, as soon as further interpretation such as fits to this distribution

are applied, careful consideration is necessary. This includes a comprehensive way to

determine the binning, a reasonable error estimation for the height of the bins, and a

measure for the goodness of possible fits. Without such quantitative measures, one can

merely state phrases along the line “the fit describes the data well.” Given that adequate

procedures results in evidence for log-normality of the flux distribution, multiplicative

processes such as variations in the accretion flow or flaring due to magnetic reconnection

are possible explanations. Notwithstanding the lack of this evidence, it is not possible

to rule out simpler, additive models that produce log-normal flux distributions (Burd et

al., in prep. and Scargle, 2020). Thus, it is not possible to draw conclusions about the

underlying physical process (either additive, multiplicative or a mixture of both) based

on the distribution of observed fluxes.

3.2. Characterization of flux variations in light curves

The second approach to constrain the emission processes responsible for the high energy

emission of blazars is to study flux variations by defining flares with the baseline and

the half-clap method. These are discussed and compared in the following with a focus

3 Ornstein-Uhlenbeck process
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on time asymmetry. The results obtained in this analysis suggest that the variability of

the high-energy emission of BLLs is not di↵erent to the one of FSRQs. Explanations for

the various observed flare asymmetries are discussed.

3.2.1. Comparison of baseline and half-clap method

The two flare finding methods build up on the Bayesian Block algorithm. For the base-

line method, one assumption is su�cient to objectively characterize flares in all the light

curves: determining the value of the baseline that defines the onset and o↵set of a flare.

As can be seen in Figs. A.1-A.8, this does capture the strong flux variations very well.

Variations under the baseline flux are not considered. A severe problem is flux varia-

tions taking place above the baseline as a whole. These cases are interpreted as one flare

consisting of several fluctuations with the peak at the highest block. For Fig. A.4 for

instance, the fluctuations after MJD 57000 are interpreted as one flare. Moreover, it is

not certain whether the sources can be assumed to have the same baseline throughout

the whole observation period (i.e. assumed to be stationary, see Sec. 3.1). 3C 454.3,

for instance, shows flux variations at di↵erent levels. The variation at MJD 55500 in

Fig.A.8 is interpreted as one flare with this method, while this could also be several flux

variations at a higher level than on other stretches of the light curve.

The assumption for the half-clap method is that the light curve consists of a quiescent

state superposed with flaring events from the blazar. The rising and falling behavior of

the flare can be extrapolated by clapping the adjacent block onto the block representing

the quiescent level (generally long, low flux blocks). In case where two flares overlap,

the middle of the block in between is considered as change point. The advantage of

this method is that every local maxima of a flux variation is considered as its own flare.

Naturally this a↵ects that the half-clap method detects more flares than the baseline

method. A disadvantage is that sometimes the blocks considered as quiescent state show

minor variations themselves, which unnaturally stretches the extent of the flare. An ex-

ample for this is the daily light curve of PKS 2155-304 in Fig.A.5. Due to the minor

variation before MJD 56000, the rapid flare at MJD 56800 gets stretched.

A solution could be to combine the methods e.g. approach the concept with the

half-clap method and only consider variations above a certain baseline limit. The HOP

algorithm, introduced in Meyer et al. (2019), represents such a combination. The au-
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thors further do not base their flares on the Bayesian blocks but fit every peak with an

exponential rise and decay. Such improvements are going to be investigated in future

work.

Based on the two methods applied here, the following features are systematically

expected:

• Long half-clap flares due to variations in the quiescent state (e.g. Fig. A.5 at MJD

56000)

• Long baseline flares due to multiple peaks and/or a high state of the source (e.g.

Fig. A.8 at MJD 55500)

• For a light curve with with many variations (daily), more half-clap than baseline

flares are expected (multiple peaks)

• For a light curve with with little variations (monthly), it can happen that there are

comparably few or no half-clap flares due to the conservative conditions applied

here (e.g. start and end of light curve in Fig.A.2)

• Single block flares result in symmetric flares and cause a bias for A = 0

• Variations consisting of two Bayesian blocks with one data bin each cause a bias

towards A = ±0.5 (e.g. Fig. A.4 at MJD 55100)

To take into account the former two features, a length filter or an upper limit for the

asymmetry measure could be applied. This would, however, impose more assumptions

on the expected shape of the variations. Since the goal of this work is to objectively

study this shape, no such filter is invoked.

The remaining points are in accordance with the results presented in Sec. 2.3 and 2.4

(see Figs. 2.14 and 2.16). It is evident that there is a strong bias towards A = 0 which

requires filtering for single block flares in both methods (see Sec. 3.2.4). The mentioned

bias towards A = ±0.5 is neglected here.

3.2.2. Comparison of BLL vs FSRQ flares

The monthly asymmetry measures based on the flares consisting of more than one block

are separated by source class in Fig. 2.15. The asymmetry measure for all classes are
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very similar. Based on a KS test it can not be ruled out that the asymmetry measures

of each class are drawn from the same distribution. That means, based on the findings

of this work, the observed flux variations in FSRQs and BLLs are not distinguishable.

3.2.3. Meaning of the asymmetry measure

Connecting observed flux variations to their emission processes generally bears di�-

culties. After their initial emission, the photons could be absorbed and re-emitted.

Additionally, the same process could take place at several locations at the same time

and/or be superimposed with other processes (of di↵erent energies). Afterwards, the

photon has to travel to and be measured by the detector. All of these steps correspond

to convolutions that are important for such considerations.

Bearing these factors in mind, this work aims to give a systematic approach to charac-

terize the shape of flux variations in term of defining flares with the baseline and the half-

clap method. The detected flares in the eight daily and 2287 monthly binned Fermi light

curves are then analyzed with respect to their asymmetry measure (Eq. 2.2.1). Based

on this, three general types of flares can be distinguished, as discussed in the following.

For now, it is assumed that each individual flare is due to a single event of a certain

emission process. Later on, also superposition of the same process at di↵erent locations

is considered. Taking into account more of the above di�culties lies beyond the scope

of this thesis.

Negative asymmetry

A negative asymmetry measure or A ! �1 equals tr < td. One exemplary case for

this is a fast rise with an exponential decay (so-called FRED), as shown on the left of

Fig. 2.13.

Flare shapes like these are for instance observed for supernovae of type 1a4. As pointed

out in Hillebrandt et al. (2013), the uniformity of the SN1a luminosity variation is used

as standard candle. It allows to determine the Hubble constant, which is topic of recent

4 Thermonuclear explosion of a white dwarf that accretes matter from another companion. The white
dwarf is teared apart by a shock wave forming a so-called ejecta. The heavier elements created via
nuclear fusion emit photons through radioactive decay (56Ni ! 56Co ! 56Fe).
https://d-nb.info/999423169/34, 18.05.2020
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research in cosmology (Dhawan et al., 2018).

With respect to AGN and blazars, a negatively asymmetric high-energy flare shape

could occur if a moving shock collides with a stationary formation associated with the

core of the jet (Sokolov et al., 2004). Such collisions cause a forward and reverse shock5

that are assumed to produce separate flares through both synchrotron and synchrotron

self Compton emission. The plasma frame light curve obtained in such a scenario is

shown in Fig. 3.1 for 1012 Hz (bottom) and 1017Hz (top). Sokolov et al. (2004) point

out that each flare is composed by the superposition of reverse and forward (shock) flare

such as depicted. Within the frame of their assumptions, it is concluded that colliding

shocks can explain symmetric or negatively asymmetric flares while flares with positive

asymmetry (a broad, weak outburst followed by a spike of emission at the end) are not

possible.

The shock-in-jet model was first suggested by Marscher & Gear (1985) in order to

explained a millimeter-to-infrared flare6 of 3C 273 (see Wagner, 2018, for an illustration).

This theory is also evoked to explain the characteristic radio knots seen in the VLBI

observations of AGN jets (Jorstad et al., 2017). The moving shock described in Sokolov

et al. (2004) could cause the ejection of a new radio component like that by colliding

with the stationary feature (Jorstad et al., 2001). It is stressed that this scenario is

di↵erent to the collision of two moving shocks downstream of the stationary component

associated with the jet core.

Symmetry

If the rise time is of the same order as the decay time, the asymmetry measure gets close

to zero A ! 0. As pointed out previously, a large portion of the flares detected here are

exactly zero. This is the case for single-block flares, which will be discussed separately

in Sec. 3.2.4. This section focuses on flares that are traced with more than one block but

still show a symmetric shape such as shown in the middle of Fig. 2.13.

One possible explanation for symmetric flares is streams of particles (electrons) within

the plasma producing inverse Compton emission while they cross the line of sight. Gi-

annios et al. (2009) propose a Poynting flux-dominated jet where magnetic reconnection

5 Forward and reverse in the plasma frame; both forward in the rest frame of the AGN.
6 At that time the theory of a uniformly expanding source was favored to explain blazar variability.
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Fig. 15. from Synchrotron SelfCompton Model for Rapid Nonthermal Flares in Blazars with Frequencydependent Time Lags
Sokolov, Marscher, & McHardy 2004 ApJ 613 725 doi:10.1086/423165
http://dx.doi.org/10.1086/423165
© 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Figure 3.1.: Simulated forward, reverse, and overall light curves for 1017Hz (inverse
Compton; top) and 1012 Hz (synchrotron flux; bottom) in the plasma rest frame,
depicted with dotted, dashed, and solid line respectively. The time axis is normalized
to the apparent crossing time. Figure adapted from Sokolov et al. (2004)
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takes place. Material that flows out from the reconnection region can have very high

Lorentz factors. This can produce flares via synchrotron self Compton emission. Con-

sidering the structure of the dissipation region producing the so-called jets in a jet7 it

is conceivable that these have an angular velocity with respect to the observer. For a

constant angular velocity, the flux observed from such an event would steadily increase

up to the maximum when the mini jet is pointed towards us8. The following decrease

would have the same form as the increase resulting in a symmetric flare.

Ghisellini et al. (2009) suggest that electrons could stream along magnetic field lines

in the jet causing beams. If these lines change their orientation, the beam could cross

the line of sight, causing a symmetric flare in analogy to the scenario above.

Both of these theories refer mainly to TeV photons but could also be possible in the

Fermi -regime.

Positive asymmetry

If tr > td the asymmetry measure is positive or A ! +1. Physical models for emission

processes that cause a flux variation of this form are challenging. External influences

such as obscuration could pose a possible explanation for a rapid decline of flux like

that.

Another explanation could be that the observed variability is, in fact, composed of

a superposition of single events. Any form of asymmetric flare could be composed of

several symmetric flux variations. Comparing the shape of single flares to overlapping

ones, as planned for future work, could help to give insights on that.

3.2.4. Comparison of monthly and daily flares

The flares of the monthly and daily sample show similar distributions of asymmetry

measures. In both Fig. 2.14 and Fig. 2.16 every type of asymmetry occurs. Flares with

an asymmetry of almost zero are the most abundant in both methods for both samples.

Filtering single-block flares shows that these are the reason for that bias. A single block

is not su�cient to represent the ground laying shape of the flux variation.

7 See Fig. 1 in Giannios et al. (2009).
8 Amplified due to Doppler boosting.
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Consider for instance a negatively asymmetric9, symmetric10, or positively asymmet-

ric11 flux variation as shown on the left, middle, and right of the top row in Fig. 3.2.

For simplicity12, flux measurements of these artificial flare shapes are assumed to be the

y-axis value of the corresponding shape at a certain time on the x-axis. A relative y-axis

error of 10% is considered for measurement uncertainty. Su�ciently small steps on the

x-axis (“time binning”), as shown in the middle row, allows to reproduce the initial flare

shape with Bayesian blocks. However, if the steps on the x-axis (“time binning”) are

too large, each of the flare shapes results in a single block. Since this is due to the data

binning, this e↵ect remains regardless of the parameters of the Bayesian block algorithm.

Thus, flares that consist of one block only are conservatively dismissed in this analysis.

In the monthly sample this a↵ects about 50% of all flares in both methods. This is in

accordance with the result that variability on the timescales of days is found in the cor-

responding daily light curves. An example for this is shown in Fig. 3.3. For the purpose

of this work the di↵erent energy ranges for the monthly and daily sample (E > 1GeV

and E > 100MeV, respectively) are neglected13. The flux variations on timescales of

days are integrated over 28 days and thereby washed out in monthly binning. When

applying the Bayesian block algorithm, this often results in blocks containing one bin

only (see top panel). In addition to that, it has to be taken into account that flares that

consist of several blocks in the monthly sample usually trace back to distinct variations

on smaller time scales. A clear instance for this is the flux behavior in the end of the

light curves in Fig. 3.3. Further examples (Figs. A.1-A.8) prove that the flux fluctuations

on monthly timescales are typically due to shorter variations traced in daily binning. It

is therefore concluded that the gamma-ray variability of blazars takes place on smaller

timescales than months.

In the daily sample, 21 and 37 out of 50 and 54 flares (42% and 68%) consist of one

block only, for the baseline and half-clap method respectively. Following the previous

paragraph, this could indicate that the gamma-ray variability of blazars takes place on

sub-daily timescales.

9 F (t) = [exp (t/td)) + exp (�t/tr)]
�1, from Meyer et al. (2019) with tr = 5; td = 50

10 F (t) =
p
2⇡�exp

�
�x2/2�2

�
, Gaussian

11 F (t) = [exp (t/td)) + exp (�t/tr)]
�1, from Meyer et al. (2019) with tr = 50; td = 5

12 Flux bins of the Fermi light curves represent integrated flux over the given time bin.
13 While details of the light curve can di↵er for di↵erent energy ranges within Fermi, the overall shape

is fairly similar (see e.g. Ackermann et al., 2016).
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3.2. Characterization of flux variations in light curves

Figure 3.2.: The Bayesian block representation of flares is a↵ected by the time binning
of the data. The top row shows the “true” flare shape, while the middle and bottom
row are “measurements” of these shapes at specific times with an uncertainty of 10%.
While the binning in the middle panel is su�ciently small to represent the flare shape
with Bayesian blocks, the binning in the bottom panel washes out the flare shape. This
results in a single-block flare for every shape.
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Figure 3.3.: Light curve of 3C 279 in monthly binning for energies over 1GeV (top)
and daily binning for energies over 100MeV (bottom). Too wide of time binning can
obscure the variability timescales of gamma-ray flux from blazars.
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Ackermann et al. (2016) show with the instance of 3C 279 that high energy flux vari-

ations of blazars can take place on minute timescales. This extreme event was observed

with Fermi -LAT on the 16th of June 2016 and is also visible in Fig. 3.3 at MJD 57189.

The minute scale variability is washed out even in daily binning.

Meyer et al. (2019) reproduce this result and find minute scale variability for the blazar

CTA 102 as well. The authors lay out that further FSRQs show flux variations on sub-

hour time scales.

The limitation to resolve such timescales also at lower flux levels is that there must be

enough photons to provide good statistics for the measurements. It is possible that this

limitation precludes observation of the true gamma-ray variability timescales of blazars.

3.3. Conclusions and Outlook

Analysis of the statistical moments of the log-flux distributions from 335 monthly binned

Fermi -sources according to their source type shows that the variance is significantly

larger for FSRQs than for BLLs. The conclusion that FSRQs are more variable than

BLLs is in accordance with previous results. Neither of the other three statistical mo-

ments shows significant di↵erence between the source classes.

This result can be reproduced for eight of these sources in daily binning as well.

Moreover, Color coded histograms on the one hand and time invariance of the mean

on the other hand indicate that the flux distributions of these blazars range from non-

stationarity to stationary (with respect to observation period). Possible emission models

are required to reproduce either of these cases.

The log-normalcy of the daily flux distributions is ambiguous. Generally, the shape

of a flux distribution is not suited to draw firm conclusions on (the multiplicativity or

additivity of) the ground laying physical processes.

The two approaches to define flares (baseline and half-clap method) yield an excess of

symmetric flares in the monthly as well as in the daily binning. In both samples, this is

due to single-block flares. Since these result from variations that are not resolved detailed

enough, this is a hint for too wide time binning. Either kind of (a)symmetry and sym-

metry occur to a comparable degree in both samples, when excluding such single-block

flares. Consequently, it is not possible that one particular emission process (causing only
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a positively/negatively asymmetric or a symmetric flare on the observed timescales) is

responsible for the individual flux variations. It is very likely that the observed flux

variations are a superposition of distinct events that take place on sub-daily timescales.

Resolving such flux fluctuations is limited by the statistics of measuring gamma-photons

with Fermi.

The following tasks are planned for future work:

• Constraining physical expectations from the emission models (i.e. what are the

expected timescales?)

• Taking into account flux bins with low significance (TS) for the Bayesian block

analysis (e.g. “upper limits”)

• Propagating the uncertainty of the flux measurements to the histogram bins of the

distribution (Meyer et al., 2019)

• Combining baseline and half-clap method to a more powerful flare finding algo-

rithm.

• Applying these methods to more/other data such as the first GeV outburst of the

radio-loud narros-line Seyfert 1 galaxy PKS 2004-447 (Gokus et al., in prep.) or to

synthetic light curves produced with Ornstein-Uhlenbeck parameters derived from

real Fermi measuremetns (Burd et al., in prep.)

• Combine this method with physical models (e.g. with exponential fits, see Gar-

rappa et al., in prep.)
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A. Appendix

A. Appendix

A.1. Bayesian Block Implementation

In [1]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import astropy.stats.bayesian_blocks as bblocks

def BB_4_LC(time, flux ,flux_error, gamma_value=None, p0_value=None):
block_pbin=np.zeros(len(flux))
if gamma_value is None and p0_value is None:

edges = bblocks(t=time, x=flux, sigma=flux_error, fitness='measures')
elif gamma_value is None:

edges = bblocks(t=time, x=flux, sigma=flux_error, fitness='measures',
p0=p0_value)

elif p0_value is None:
edges = bblocks(t=time, x=flux, sigma=flux_error, fitness='measures',

gamma=gamma_value)
else:

edges = bblocks(t=time, x=flux, sigma=flux_error, fitness='measures',
gamma=gamma_value, p0=p0_value)

if len(edges) <= 2:
# print('This LC is constant, only one Bayesian Block found')
return block_pbin, np.zeros(0), np.zeros(0), 0, edges

else:
#get edge_index to access other arrays
edge_index = np.array([np.where(time >= edges[i])[0][0]

for i in range(len(edges))])
#change last entry such that loop over [j:j+1] gives all BBs
edge_index[-1] += 1

#determine flux value (mean) and error (Gaussian propagation)
block_val = np.zeros(len(edge_index)-1)
block_val_error = np.zeros(len(edge_index)-1)
for j in range(len(edge_index)-1):

block_val[j] = np.mean(flux[edge_index[j]:edge_index[j+1]])
block_val_error[j] = np.sqrt(np.sum(flux_error[edge_index[j]:

edge_index[j+1]]**2))/(edge_index[j+1]-edge_index[j])

#create BB array corresponding to data
for k in range(len(block_val)):

block_pbin[edge_index[k]:edge_index[k+1]] = block_val[k]

return block_pbin, block_val, block_val_error, edge_index, edges
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A.2. Flare Finding Baseline Method

In [1]: def FF_baseline (baseline, block_val, edges,
LC_edges='neglect', talking=False):

#handeling edges of LC:
#LC_edges == 'add' -> start/ end is artificially added at start/end of LC
#LC_edges == 'neglect' -> incomplete flares are conservatively neglected

diff = np.diff(block_val)

#all local peaks over baseline
peak_time=[]
peak_block=[]
for i in range(1,len(diff)):

#previous rising; this falling
if diff[i-1]>0 and diff[i]<0:

if block_val[i]>baseline:
peak_time.append(edges[i] + (edges[i+1]-edges[i])/2)
peak_block.append(i)

peak_time=np.array(peak_time)
peak_block=np.array(peak_block)

#all possible starts and ends (crossing baseline)
start_time=[] #starts with first block over baseline
start_block=[] #left block under baseline
end_time=[] #ends with last block over baseline
end_block=[] #right block under baseline
for i in range(len(block_val)-1):

if block_val[i]<baseline and block_val[i+1]>baseline:
start_time.append(edges[i+1])
start_block.append(i)

if block_val[i]>baseline and block_val[i+1]<baseline:
end_time.append(edges[i+1])
end_block.append(i+1)

start_time=np.array(start_time)
start_block=np.array(start_block)
end_time=np.array(end_time)
end_block=np.array(end_block)

## HANDELING EXCEPTIONS same as baseline method
#at least one full flare has to be found (*)
if len(peak_block)<1:

if talking==True:
print('not variable enough, no peak found')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block,0)

if len(start_block)<1 or len(end_block)<1:
if talking==True:

print('not variable enough, missing start or end')

1
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return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block,0)

#single end at end of LC is deleted
if end_time[0]<peak_time[0]:

end_block = np.delete(end_block,0)
end_time = np.delete(end_time,0)
if talking==True:

print('deleted single end in beginning of LC')
if len(end_time)<1:

if talking==True:
print('this was the only end, not variable enough')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block,0)

#single start at beginning of LC is deleted
if start_time[-1]>peak_time[-1]:

start_block = np.delete(start_block,-1)
start_time = np.delete(start_time,-1)
if talking==True:

print('deleted single start in end of LC')
if len(start_time)<1:

if talking==True:
print('this was the only start, not variable enough')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block,0)

#peak without start in beginning of LC
#(there must be at least one other full flare bc of (*))
if peak_time[0]<start_time[0]:

#artificially add flare
if LC_edges == 'add':

start_time = np.insert(start_time,0,edges[0])
start_block = np.insert(start_block,0,-1)
if talking==True:

print('inserted single start in beginning of LC')
#conservatively dismiss first peak if there are multiple peaks
while LC_edges == 'neglect' and end_time[0]>peak_time[1]:

peak_time = np.delete(peak_time,0)
peak_block = np.delete(peak_block,0)
if talking==True:

print('neglected 1st multiple peak in beginning of LC')
#conservatively dismiss first peak and first end
if LC_edges == 'neglect' and end_time[0]<peak_time[1]:

peak_time = np.delete(peak_time,0)
peak_block = np.delete(peak_block,0)
end_time = np.delete(end_time,0)
end_block = np.delete(end_block,0)
if talking==True:

2
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print('neglected peak + end in beginning of LC')
if len(peak_block)<1 or len(end_block)<1:

if talking==True:
print('not variable enough')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block,0)

#peak without end in end of LC
#(there must be at least one other full flare bc of (*))
if peak_time[-1]>end_time[-1]:

#artificially add flare
if LC_edges == 'add':

end_time = np.append(end_time,edges[-1])
end_block = np.append(end_block,len(block_val))
if talking==True:

print('inserted single end in end of LC')
#conservatively dismiss last peak if there are multiple peaks
while LC_edges == 'neglect' and start_time[-1]<peak_time[-2]:

peak_time = np.delete(peak_time,-1)
peak_block = np.delete(peak_block,-1)
if talking==True:

print('neglected last multiple peak in end of LC')
#conservatively dismiss last peak and last start
if LC_edges == 'neglect' and start_time[-1]>peak_time[-2]:

peak_time = np.delete(peak_time,-1)
peak_block = np.delete(peak_block,-1)
start_time = np.delete(start_time,-1)
start_block = np.delete(start_block,1)
if talking==True:

print('neglected peak + start in end of LC')

##single-peak mask to flag multiple peaks within start and end
peak_mask = np.zeros(len(peak_block), dtype =bool)
for x in range(len(end_block)):

real_peak_block = start_block[x] +
np.argmax(block_val[start_block[x]:end_block[x]])

mask_index = np.where(peak_block == real_peak_block)[0][0]
peak_mask[mask_index] = True

return(peak_time, peak_block, start_time,
start_block, end_time, end_block, peak_mask)
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A.3. Flare Finding Half Clap Method

In [1]: def FF_sarah (block_val, edges,
method = 'halfclap', LC_edges = 'neglect', talking = False):

# method = how is start and end defined
# 'half' -> start and end are at the middle of change block
# 'halfclap' -> min(middle and clap)
# 'sharp' -> ignore change block, cut out rest

diff = np.diff(block_val)
peak_block = []
peak_time = []
start_block = []
start_time = []
end_block = []
end_time = []

#all local peaks and changes
for i in range(1,len(diff)):

#previous rising; this falling
if diff[i-1]>0 and diff[i]<0:

peak_block.append(i)
peak_time.append(edges[i] + (edges[i+1]-edges[i])/2)

#previous falling; this rising
if diff[i-1]<0 and diff[i]>0:

half_block_time = (edges[i+1]-edges[i])/2
start_block.append(i)
end_block.append(i)
if method == 'half':

start_time.append(edges[i+1] - half_block_time)
end_time.append(edges[i] + half_block_time)

if method == 'halfclap':
start_time.append(edges[i+1] - np.minimum(

half_block_time, edges[i+2]-edges[i+1]))
end_time.append(edges[i] + np.minimum(

half_block_time, edges[i]-edges[i-1]))
if method == 'sharp':

start_time.append(edges[i+1])
end_time.apend(edges[i])

## HANDELING EXCEPTIONS same as baseline method
#at least one full flare has to be found (*)
if len(peak_block)<1:

if talking==True:
print('not variable enough, no peak found')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block)

if len(start_block)<1 or len(end_block)<1:
if talking==True:

1
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print('not variable enough, missing start or end')
return(np.array([0]), peak_block, start_time,

start_block, end_time, end_block)

#single end at end of LC is deleted
if end_time[0]<peak_time[0]:

end_block = np.delete(end_block,0)
end_time = np.delete(end_time,0)
if talking==True:

print('deleted single end in beginning of LC')
if len(end_time)<1:

if talking==True:
print('this was the only end, not variable enough')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block)

#single start at beginning of LC is deleted
if start_time[-1]>peak_time[-1]:

start_block = np.delete(start_block,-1)
start_time = np.delete(start_time,-1)
if talking==True:

print('deleted single start in end of LC')
if len(start_time)<1:

if talking==True:
print('this was the only start, not variable enough')

return(np.array([0]), peak_block, start_time,
start_block, end_time, end_block)

#peak without start in beginning of LC
#(there must be at least one other full flare bc of (*))
if peak_time[0]<start_time[0]:

#artificially add flare
if LC_edges == 'add':

start_time = np.insert(start_time,0,edges[0])
start_block = np.insert(start_block,0,-1)
if talking==True:

print('inserted single start in beginning of LC')
#conservatively dismiss first peak if there are multiple peaks
while LC_edges == 'neglect' and end_time[0]>peak_time[1]:

peak_time = np.delete(peak_time,0)
peak_block = np.delete(peak_block,0)
if talking==True:

print('neglected 1st multiple peak in beginning of LC')
#conservatively dismiss first peak and first end
if LC_edges == 'neglect' and end_time[0]<peak_time[1]:

peak_time = np.delete(peak_time,0)
peak_block = np.delete(peak_block,0)
end_time = np.delete(end_time,0)
end_block = np.delete(end_block,0)

2

71



A. Appendix

if talking==True:
print('neglected peak + end in beginning of LC')

if len(peak_block)<1 or len(end_block)<1:
if talking==True:

print('not variable enough')
return(np.array([0]), peak_block, start_time,

start_block, end_time, end_block)

#peak without end in end of LC
#(there must be at least one other full flare bc of (*))
if peak_time[-1]>end_time[-1]:

#artificially add flare
if LC_edges == 'add':

end_time = np.append(end_time,edges[-1])
end_block = np.append(end_block,len(block_val))
if talking==True:

print('inserted single end in end of LC')
#conservatively dismiss last peak if there are multiple peaks
while LC_edges == 'neglect' and start_time[-1]<peak_time[-2]:

peak_time = np.delete(peak_time,-1)
peak_block = np.delete(peak_block,-1)
if talking==True:

print('neglected last multiple peak in end of LC')
#conservatively dismiss last peak and last start
if LC_edges == 'neglect' and start_time[-1]>peak_time[-2]:

peak_time = np.delete(peak_time,-1)
peak_block = np.delete(peak_block,-1)
start_time = np.delete(start_time,-1)
start_block = np.delete(start_block,-1)
if talking==True:

print('neglected peak + start in end of LC')

return(peak_time, peak_block, start_time, start_block, end_time, end_block)

3
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A.4. Light curves and flares of the daily sample

The following plots show the light curves of the sources in the daily sample. The daily

binned light curve is plotted underneath the corresponding monthly binned light curve

along the same time axis in MJD. The data and errorbars are shown in a light blue,

overlaid with the Bayesian blocks (obtained with default parameters) in blue.

The blocks that belong to flares defined with the baseline method are filled with

turquoise. Flares detected with the half-clap method are alternately shaded in orange

and orchid over the whole y-axis of the light curve since they are typically longer than

the baseline flares (See Sec. 3.2.1 for discussion of the methods). Comparison of monthly

and daily blocks shows that variations typically take place on smaller timescales than

months.

A closer investigation of the crowded daily light curves is recommended in the online-

version of this thesis1.

1 See: https://www.physik.uni-wuerzburg.de/astro/archiv/theses-archive/, 26.05.2020)
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