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Zusammenfassung

Aktive Galaxienkerne (AGN) sind wegen ihrer hohen Variabilität in allen Spektren und

ihrer außergewöhnlichen Leuchtkraft von allgemeinem Interesse in der Astronomie. Au-

ßerdem überstrahlen sie normale Galaxien um Längen. Bis jetzt wurden zahlreiche Mo-

delle entwickelt und diskutiert, um deren Verhalten zu beschreiben, von Mechanismen

die für die Entstehung von Jets verantwortlich sind bis hin zu verschiedenen Strah-

lungsprozessen, welche die beobachteten Emissionen von AGNs beschreiben. Die mei-

sten AGN-Typen lassen sich über ihre Orientierung zum Beobachter beschreiben und

werden in dem ”Unification-Model” zusammengefasst, siehe Urry and Padovani (1995).

Um mehr über diese Quellen und ihre zeitliche Variabilität in Erfahrung zu bringen wer-

den die monatlich aufgezeichneten Lichtkurven im γ-Strahlen Spektrum mit Hilfe des

Bayesian-Block-Algorithmus (BBA) und des entwickelten Dominanz-Algorithmus (DA)

analysiert. Die Lichtkurven wurden mittels des ”Fermi Gamma-ray Space Telescope”

kurz Fermi/LAT aufgezeichnet. Dabei ist jede aufgezeichnete Messung mit einer Test-

statistik behaftet, welche der Messung eine Gewichtung zuordnet. Unter Zuhilfenahme

dieser Teststatistik werden die Lichtkurven mit einer 3 Sigma Konfidenzschwelle ge-

filtert, um deren Signifikanz festzustellen. Daraufhin wurde der BBA genutzt, um die

Lichtkurve zu parametrisieren. Der DA wird auf die normale und die parametrisier-

te Lichtkurve jeder Quelle angewendet, um deren Extremstellen sowie die zugehörigen

Anstiegs und Abstiegszeiten festzustellen. Die Evaluation der Resultate von fast 200

analysierten Lichtkurven zeigt, dass keine Tendenz in Bezug auf Abstieg und Anstieg

vorliegt, bezogen auf ein lokales Maximum. Das beweist jedoch nicht, dass alle Lichtkur-

ven symmetrisch sein müssen, da die Auswertung statistisch über alle Quellen durch-

geführt wurde, das heißt einzelne Quellen können immer noch asymmetrisch ausgeprägt

sein. Es lässt sich jedoch die Aussage treffen, dass im Allgemeinen keine Tendenz in

dieser Ausprägung der Lichtkurven vorliegt.





Abstract

Active Galactic Nuclei (AGN) are objects of general interest in astronomy due to their

high variability in all of their spectra and their extraordinary brightness. They outshine

normal galaxies by far. Up to this point, numerous models have been developed and

discussed in order to explain their behaviour, from different mechanisms to describe the

generation of jets to several radiative processes responsible for the emission observed by

AGN’s. Most of the different types of AGN’s can be distinguished by their orientation

to the observer and are summarised under the unification model, see Urry and Padovani

(1995). In order to gain new knowledge about these sources and their variability their

monthly binned light curves in the γ-ray spectrum are being analysed with the help of the

Bayesian-Block-Algorithm (BBA) and the developed Dominance-Algorithm (DA). The

light curves were observed with the Fermi Gamma-ray Space Telescope (Fermi/LAT),

and every recorded measurement comes with a test-statistic. With the help of the test-

statistic the sources were filtered with a 3-sigma confidence threshold to determine their

significance. Then the BBA is employed to parameterise the light curves. From there

on the DA is applied on the normal and the parameterised light curve to determine the

extreme points and their respective rise and decay times. The evaluation of the results

of almost 200 analysed sources shows that there is no tendency to either the rise or the

decay time of an observed peak. However, this does not proof the point that all peaks

must be symmetrical, since the evaluation was done statistically over all sources, single

sources can still be asymmetric. Nevertheless, this shows that there is no bias in the

overall shape of light curves.





Chapter 1

Introduction

1.1 Active Galactic Nuclei

According to Schneider (2014), active galactic nuclei (AGN), especially quasars, can

be some of the brightest sources of radiation, even exceeding the luminosity of normal

galaxies by a factor of thousand. The vast radiation bandwidths are a specific attribute

of these AGN’s indicating non-thermal radiation. AGN is just an umbrella term sub-

suming a multitude of different sources which nevertheless share a common build-up, a

supermassive black hole (SMBH) resides in the middle of the nucleus and is surrounded

by an accretion disk. Around this structure resides a torus which is able to absorb

emitted radiation. If it is a radio-loud source a jet is also emitted.

Although it was previously mentioned that there is a multitude of different AGN’s, both

Antonucci (1993) and Urry and Padovani (1995) state that most of the AGN classifi-

cations are just resulting from the orientation of the source towards the observer and

most of these classes can be subsumed under radio-loud and radio-quiet AGN’s. This is

referred to as the unification model. A summary of all classes and their orientation to

the observer can be seen in figure 1.1.

1.1.1 Structure and Processes

The SMBH is considered to be the central engine of the whole process and several argu-

ments can be made in favour of this statement. Schneider (2014) focuses on the efficiency

needed for the radiation at hand by comparing the efficiencies of nuclear fusion and ac-

cretion onto the black hole, he concludes that the efficiency of nuclear fusion is not high

enough. Tanaka et al. (1995) argue via the relativistic effects caused by a SMBH on the

radiation from the accretion disk and the ability to observe these effects.
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Figure 1.1: Representation of the unification model showing the different AGN classes
according to their orientation to the observer. The upper part illustrates radio-loud
galaxies and the lower part the radio-quiet galaxies. Credit: Beckmann and Shrader

(2012)

Assuming that the energy arises from the gravitational force of the SMBH this gravi-

tational pull accelerates the mass of the accretion disk onto the black hole in a circular

motion. By doing so the potential energy is converted into kinetic energy. If the parti-

cles of the accretion disk simply fall into the SMBH they would not have enough time

to radiate. However, since we expect the gas to have a finite angular momentum such

a process is not possible. Thus, resulting in a disk perpendicular to the angular mo-

mentum. Considering Kepler’s Laws, the angular velocity of the gas is dependent on

the radius, this results in internal friction, converting the kinetic energy into heat and

deceleration of the gas following an inward bound movement.

In the cases of FSRQ and BL Lac sources, the Blazars, there is also a collimated jet

consisting of plasma emanating near the AGN in both directions and perpendicular to

the accretion disk. According to Schneider (2014) the collimation follows from magnetic

field lines which are anchored in the accretion disk. Blandford and Payne (1982) also

discuss the accretion of matter with the help of a magnetic field. They state that a

centrifugally induced outflow is possible if the poloidal component of the magnetic field
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and the disk lie at an angle of maximum 60◦ to each other and that this outflow is then

collimated by the toroidal components of the field. On the other hand, Blandford and

Znajek (1977) presents an electromagnetic extraction of energy and angular momentum

following from a rotating black hole which is threaded by a magnetic field. This model

allows the acceleration of relativistic electrons without serious losses far away from the

black hole.

The radiative processes in such a jet are often discussed and most of the time syn-

chrotron radiation and inverse Compton scattering are mentioned as the main reason.

However, Blandford and Königl (1979) discuss the possibility of relativistic shockwaves

in jets resulting in doppler boosted fluxes. Mannheim (1993) adds to the relativistic

idea with the hadronic concept of a proton Blazar, this concept makes the assumption

that there can also be protons moving with relativistic velocities in the jet and resulting

in photomeson production. This can give rise to other radiative processes and will be

discussed in 1.2.1.

1.1.2 Classes of Active Galactic Nuclei

As discussed before in the beginning of 1.1, there are several different kinds of AGN.

The most important ones for this thesis will be discussed in this section following mostly

the explanation of Beckmann and Shrader (2012) if not stated otherwise.

1.1.2.1 Radio-Loud and Radio-Quiet Quasars

Quasi-stellar radio sources (quasars) are the brightest types of AGN. They were first

discovered via radio astronomy and are characterized by their blue star like appearance

in the optical spectrum. They also exhibit a distinct redshift easily exceeding z = 2.

However, only roughly 10% of quasars can be detected via their radio spectrum. The

other 90% are the so-called radio-quiet quasars. As the name indicates the radio output

of these sources is rather low, nevertheless, this does not imply that they are completely

radio-silent. Since there is still a rest radio signal left, it is assumed that a small-scale

jet with a vastly lower output than the usually observed ones powers the emission. The

detection of compact nonrelativistic velocities in the Seyfert Galaxy NGC4151 by Ulves-

tad et al. (2005) supports this claim. An expected smooth transition between the two

types of quasars has not yet been discovered. Because there is no real discrete distinc-

tion between radio-loud and radio-quiet the quietness is defined with the logarithmical

quotient of the radio and the optic flux. If the condition R∗ < 1 is satisfied the source

is radio-quiet.
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R∗ = log

(
fradio
foptical

)
< 1 (1.1)

The radio-loud quasars on the other hand feature a distinctive jet that is responsible

for the radio emission which is probably produced with synchrotron emission and their

host galaxies tend to be more massive.

1.1.2.2 Blazars

If the angle between the jet of an AGN and the point of view of an observer is small then

they are called Blazars. They are characterised by a very high variability and emissions

in the radio and x-ray domain and even higher energies (above 1Tev), e.g. γ-radiation.

The flux variations can develop in the time scale of days or even as far as years. Albert

et al. (2007) even show observed flux variations of Markarian 501 in a time scale of

minutes. Blazars can be separated into two main groups BL lac and FSRQ objects, BL

Lac’s in contrast to FSRQ often show no broad or narrow emission lines and if they

do, they are rather weak. This follows from the nonthermal continuous radiation which

overshadows the emission lines. According to Schneider (2014) the emitted light in the

optical spectrum is highly polarized, and if the BL Lac is quiescent the nonthermal ra-

diation is weak enough so that the emission lines are observable. If that is not the case

determining the redshift is nearly impossible.

The flat spectrum radio quasars (FSRQ) can be identified by their broad Balmer lines

despite the nonthermal continuum and therefore it is significantly easier to determine

their redshift. Another way to distinguish between BL Lac and FSRQ is by comparing

the ratios of their Eddington luminosity, here the BL Lac’s show lower ratios than the

FSRQ.

Urry and Padovani (1995) mention that the extended radio distributions of high-redshift

BL Lacs and FSRQ are distinguishable with a confidence level of 99,9%. This is not

the only distinction they found. The spectrum of the X-ray emissions is also systemat-

ically different in which the spectral indices of FSRQ’s are lower than the BL lac ones.

In addition, the polarization structure of the BL Lac sources implies a magnetic field

perpendicular to the jet axis, whereas the magnetic field of quasars resides parallel to

the jet axis. Figure 1.2 also shows a clear difference between the Mg II emission line

luminosities between the two classes.

Ghisellini et al. (2017) discusses the bolometric luminosity of BL Lac and FSRQ, citing

that the FSRQ’s show approximately the same spectral energy distribution (SED) as

the luminosity increases and consequently the X-ray spectra become harder for higher

luminosities. BL Lacs on the other hand become more red for increasing luminosities
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with a softer γ-ray slope and a larger dominance of the high energy peak. Figure 1.3

shows the original Blazar sequence indicating these features.

Figure 1.2: Mg II emission-line luminosities of 1 Jy BL Lacs(black circle) and 2
Jy FSRQ(open squares) plotted against their redshift. With some exceptions a clear

separation of the two is observable. Credit: Urry and Padovani (1995)

1.1.3 Jets

The origin of jets is still uncertain, however, there are different models discussing the

processes within a jet to explain the observed radiation. For instance Blandford and

Königl (1979) and Blandford and McKee (1977) explain that the relativistic electrons

needed for synchrotron and Compton processes have to be accelerated within the jet or

otherwise it would require a vast external power. To achieve this, they propose rela-

tivistic shock waves travelling through the plasma possibly following from an unsteady

velocity field or dense clouds getting accelerated by the flow. A cloud or a blob of gas

entering a supersonic jet will lead to a bow shock. A lot of the bulk kinetic energy flux

will then dissipate and a part of it may appear as ultra-relativistic electrons behind the

shock. That process also amplifies frozen-in magnetic fields which favours synchrotron

and inverse Compton radiation. The acceleration of the clouds inside of the jet may be

the cause for observed flux variations.
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Norman et al. (1982) argue that the supersonic jet propagates with high Mach numbers

(Mb ≈≥ 6). The jet structure is similar to the structure of supersonic laboratory jets.

They are dependent on the ratio of the jet pressure and the ambient pressure. If the

jet medium transitions from a high-pressure reservoir into a lower pressure medium it

is called an underexpanded jet. After the gas leaves through the orifice it experiences

so-called Prandtl-Meyer-expansions which lead to shocks and the Mach disk in the prop-

agating medium. A representation of this can be found in figure 1.5. However, there are

two major differences. The first one is that the observed jets of AGN’s generate their

own effective orifices and the second one is that in the rest frame of the Mach disk the

intergalactic medium (IGM) flows with supersonic velocity towards the Mach disk.

Sokolov et al. (2004) also takes into consideration that a possible shock wave collides

with the Mach disk and results in the creation of flares.

Konigl (1981) argues that relativistic jets take a big role in the production of high en-

ergy radiation such as X-ray and γ-radiation. The relativistic movement results in a

Doppler-shift of the higher frequencies if the point of view is close to the symmetry-axis.

This effect is called beaming.
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Figure 1.3: Blazar sequence consisting of 126 sources from radio and X-ray samples,
showing a characteristic form with 2 peaks. Credit: Ghisellini et al. (2017)

Figure 1.4: Structure of a supersonic jet with an underexpanded nozzle, the gas ema-
nating from the reservoir behind the nozzle has a higher pressure than the surrounding

medium. Credit: Norman et al. (1982)
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1.2 Gamma-Radiation

Since the postulation of the γ-radiation in the 1950’s numerous telescopes have been

launched. However, the satellites SAS-2 and COS-B were the first to enable detailed

observations of γ-ray-sources. Among other things they observed the first pulsars in

gamma range and confirmed the gamma background radiation. In the year 2008 the

Fermi Gamma-ray Space Telescope, with which the data discussed in this thesis was

generated, was launched, see Schneider (2014).

Gamma-rays are defined as Photons with an Energy above 100 keV, see Longair (2011).

The most common source of this radiation on earth is the radioactive decay. But these

high energy photons are also emitted in space. These emissions originate from differ-

ent processes, such as π0-decay, inverse Compton scattering, synchrotron radiation and

bremsstrahlung of ultra-relativistic charged particles.

1.2.1 Photomeson Production

The pion-decay is an elementary particle phenomenon which results from the inelastic

collision of highly relativistic protons with soft photons or nonrelativistic protons. In

the proton-proton case ”[m]ore than 50% of the energy released goes into neutrinos, the

remainder going into electrons or positrons and gamma rays[...]” Sikora et al. (1987).

Additionally, one has to consider pair production and photo-pion production in the case

of the proton-photon interaction. The photo-pion production may also be responsible

for high-energy cut-offs in cosmic rays, see Sikora et al. (1987).

If the energy of a photon is high enough and it is in vicinity of a massive particle such

as a nucleus, it is possible for the photon to convert into an electron positron pair,

other particle antiparticle pairs are also possible, under the condition that the energy is

higher than the rest mass of the produced pair. In this event, the energy is converted to

mass according to Einstein’s law and the nucleus receives repulsion. This has to happen

near a massive particle so that momentum is conserved. The newly formed electron-

positron-pair is now able to take part in other radiation processes such as annihilation

or synchrotron-radiation, see Beckmann and Shrader (2012).

1.2.2 Synchrotron Radiation

Synchrotron radiation is emitted when charged particles, like the electrons mentioned

beforehand, are accelerated in a magnetic field. The force produced by the field is

applied perpendicular to the moving direction of the charged particle. This Process
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can be deduced for a uniform and static magnetic field using the Lorentz-force. For

relativistic purposes the Lorentz-factor also has to be considered.

γ =
1√

1− v·v
c2

(1.2)

Here the charge is given by q = Ze.

m
d

dt
(γv) =

Ze

c
(v×B) (1.3)

The left-hand side of the equation can be simplified by executing the derivative.

mγ
dv

dt
=
Ze

c
(v×B) (1.4)

The velocity-vector of the particle can be split into its parallel v‖ and perpendicular v⊥

parts, respective to the magnetic field. It can be seen that the velocity parallel v‖ to the

field does not change. However, the perpendicular velocity v⊥ results in an acceleration

upright to plane of the field B and the velocity v, see Longair (2011).

γm
dv

dt
= zev⊥|B|(êv × êB) = ze|v||B|sinθ(êv × êB) (1.5)

”Thus, the motion of the particle consists of a constant velocity along the magnetic field

direction and circular motion with radius r about it, that is, a spiral path with constant

pitch angle θ. ”Longair (2011). The overall luminosity of this process is given by the

equation 1.6.

L =
2Z2e2

3c2
γ4[(

v⊥
dt

)2 + γ2(
v‖

dt
)2] (1.6)

1.2.3 Inverse Compton Scattering

In contrast to the synchrotron radiation, inverse Compton scattering does not produce

photons. However, it increases the photons energy by scattering processes. For example,

if a low-energy/frequency photon hits an ultra-relativistic electron the photon is able

to receive energy from the electron. In the frame of the relativistic electron the photon

energy is considerably smaller than that of the electron. Because of this the process can

be seen as Thomson scattering. This concludes that the energy of the photon does not

change in the electrons frame. Transforming this back into the laboratory frame shows

that the photon energy increases in proportion to the square of the Lorentz factor 1.2,

see Beckmann and Shrader (2012).
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1.2.4 Relativistic Beaming

The relativistic beaming, already mentioned in 1.1.3, that follows from superluminal

motion is already linked to the relativistic jets and their γ-radiation observed in Blazars.

This effect results in a blueshift of the emitted radiation and an increase of the radiated

intensity, see Longair (2011). However, these observations can be explained by geometry

and do not contradict with the postulates of special relativity. The following equations

1.7, 1.8 and explanation from Longair (2011) show that the transverse velocity, of an

object emitted by the jet, can be larger than the speed of light (v⊥ > c).

Let us assume that at point O an object is ejected at an angle Θ to the line of sight

of an observer at the distance D. The object holds a relativistic velocity. This happens

at time t0 and the emitted signal arrives at the time t = D
c . Also beginning at t0 the

object travels the distance vt1 and is observed at a projected distance vt1sinΘ. The

signal delivering this information to the observer arrives at the time

t2 = t1 +
D − vt1cosΘ

c
(1.7)

Since the signal now has to travel a shorter distance the transverse speed of the signal

is

v⊥ =
vt1sinΘ

t2 − t1
=

vt1sinΘ

t1 − vt1cosΘ
c

=
vsinΘ

1− vcosΘ
c

(1.8)

By differentiating v⊥ for Θ we find that the maximum transverse speed can be found at

Θ = v
c . This means that v⊥,max = γv where γ is the Lorentz-factor. This proves that

v⊥ ≥ c is true for high enough velocities(v).

1.2.5 Detection-Methods

There are several ways to detect the gamma radiation, one of the most common ones

on earth is an ionisation chamber which is used in Geiger counters to detect ionizing

radiation, e.g. from radioactive decay. To observe the radiation emanating from the

beforehand discussed processes other methods have to be used. Since the atmosphere

shields the earth from extraterrestrial gamma radiation direct observation of gamma-

rays has to take place outside of the atmosphere. Indirect measurements of the photons

are possible by observing air showers. These air showers originate from photons entering

the atmosphere and colliding with particles resulting in more particles capable of scat-

tering processes. There are two viable detection methods, either the generated particles

are detected with particle detectors or the Cherenkov-radiation resulting from the higher

velocity of the particles in comparison to the local light velocity, can be observed via

optical telescopes such as the H.E.S.S and the M.A.G.I.C., see Schneider (2014).
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The direct observation of the gamma radiation takes place on satellites like the Fer-

mi/LAT, which will be discussed in the following section.

1.3 Fermi Large Area Telescope

The Fermi γ-ray Space Telescope was launched by NASA in 2008. It’s purpose is to

observe the sky for gamma-radiation and to measure direction, energy and arrival time

of gamma-rays in a wide field of view and in an energy range from below 20 MeV to

more than 300 GeV.

Since gamma-radiation can neither be reflected nor refracted, the measurement uses the

pair-production of highly energetic photons near massive particles as discussed in 1.2.1.

To do so a precision converter track, a calorimeter and an anticoincidence detector are

used as measuring devices. Below the composition of the device will be briefly discussed,

see Atwood et al. (2009).

Figure 1.5: Schematic diagram of the Large Area Telescope. Credit:Atwood et al.
(2009)

1.3.1 Converter-Tracker

The converter-tracker is a device partially made of the high-Z material tungsten which

is aimed to favour the pair production of the impacting γ-rays. After the pair conversion

position sensitive detectors record the path of the charged particles through the tracker.

With this recording the direction of the incoming photon can be reconstructed.
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1.3.2 Calorimeter

The calorimeter serves two purposes, the first one is to measure the energy deposition of

the electromagnetic particle showers following the photon impact and the second one is

to map the shower development. The calorimeter is composed of caesium iodide which

is used as a scintillator and photodiodes mounted on the end of the crystals to measure

the scintillation light arriving at the end of the crystal.

1.3.3 Anticoincidence Detector

The γ-ray photons are not the only particles that can initiate a ”detection”-process in

the telescope. To suppress these false positives, produced by other particles, the an-

ticoincidence detector (ACD) is used. It is supposed to detect charged particles with

an efficiency of at least 0.9997. The ACD is composed of plastic scintillators the re-

sulting light is then collected by wavelength shifting fibres which are coupled with two

photomultipliers for redundancy. Atwood et al. (2009)

1.3.4 Mode of Operation

The Fermi/LAT is now continuously monitoring in an all sky scanning mode for over

a decade while it orbits at an altitude of 565km and an inclination of 25.5◦. Over this

time it produced a vast amount of data including many different sources like galaxies,

neutron stars, pulsars and AGN. The data collected of the AGN’s is the quintessence of

this bachelor’s thesis and will be discussed thoroughly in the following chapters.

1.4 Goal of this Work

The question emerging from the observation of the Blazar-variability phenomenon is:

Do the flux variations follow a particular pattern or are they random, i.e. of stochastic

nature?

To solve this question the plan is to analyse the observed flux variations employing two

statistical algorithms, accounting for the fact that the data were obtained with a flux-

limited experiment.

The first is the Bayesian-Block-Algorithm developed by Scargle et al. (2013). The second

is the Dominance-Algorithm which has been developed in this thesis project.
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Observational Data and Methods

2.1 Analysed Data and Coding Setup

The Data gained from the Fermi-spacecraft is processed by the instrument teams and

then listed in the fits-files. These fits-files include all important data concerning the

sources. In this case the used file consists of over two thousand light curves with monthly

binning over 10 years and an amplitude over 1GeV. Every light curve consists of 119

measurements and quality of every single data point is defined by a test-statistic value

associated with that data point. 1

This test-statistic value is used to filter the pool of light curves for robust sources and

is set so that a data point is accepted as significant enough if its test-statistic is above

9 which resembles a 3-sigma confidence threshold. To be used in the evaluation at least

50% of the light curves data points have to be accepted as significant. Following from

this only 184 out of 2278 sources are selected for the final analysis. All necessary data

is stored in an attached repository DVD.

All of the code and graphics were produced using the python (3.6.7) language and

corresponding software packages such as numpy (1.16.2), astropy (3.0.5), matplotlib

(3.0.2). Virtanen et al. (2019)

2.2 Bayesian-Block-Algorithm

The Bayesian-Block-Algorithm (BBA) discussed in Scargle et al. (2013) was used to

parameterise the light curves in order to find real peaks in the data. Hereinafter this

algorithm and its implementation in the rise and decay analysis will be discussed. An

1https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_

Likelihood/Likelihood_overview.html [12.2.2020]
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example of the Bayesian blocks on a light curve can be seen in figure 2.1.

Figure 2.1: Light curve of Markarian 421 with a monthly binned data set over 10 years
and Bayesian block parameterisation. The vertical extent of the flux points represents

the error.

The orientation of the algorithm lies on a nonparametric analysis of time series data

and it is able to analyse the data retrospectively and in real time. This happens with

so-called change point detection which separates the data into a number of blocks,

beginning and ending at a change-point. Scargle et al. (2013) defines, in regard to time

series literature, a change point as a point at which a statistical model undergoes an

abrupt transition. Because of the fact that a block always starts and ends with a change

point there cannot be any overlapping. Within these blocks, which are defined over a

time period, the intensity of the light curve is set to be constant in range of its errors,

this is called a piecewise constant model. However, the beginnings and endings of a data

set have to be treated differently, this will also be the case for the DA, the first point

of time cannot be a free parameter, since it always has to be the start point of the first

block and the first change point is the start of the second block. If the last data point is

considered to be a change point it will result in a single data block. In the case of gaps

in the data, a light curve is simply treated as if the data point after the gap follows right

after the one before the gap. The expected number of blocks is defined via a geometric
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prior, using only a single parameter γ.

P (Nblocks) = P0γ
Nblocks (2.1)

After normalising 2.1 the expected number of blocks follows as 2.2

〈Nblocks〉 = P0

N∑
Nblocks=0

Nblocksγ
Nblocks =

NγN+1 + 1

γN+1 − 1
+

1

1− γ
(2.2)

In conclusion, γ can be considered a free parameter whose alteration can differ the

structure of the Bayesian blocks.

This piecewise constant modelling is done by finding the optimal partition of a given time

interval. Partitions are a summary of the number of blocks Nblocks and the corresponding

edges defined by the indices of the data cells. In this case every cell consists of one

measurement. To be able to use the BBA in the python environment it has to be

imported via astropy. However, this implementation only generates the edges of the

Bayesian blocks. In order to plot and analyse the light curves the intensity of the curve

between two edges has to be determined and is then added to an array. For every block 3

different values were appended into separate arrays, the mean value, the minimum value

and the maximum value. Due to the fact that the BBA parameterises the light curve

every occurring turning point of the parameterisation is of significance. In order to find

the maxima and minima and their rise and decay times, the dominance algorithm with

a threshold of 1 will be used. That simply implies that every found turning point is

accepted as one, meaning that every block surrounded by one left and one right of lower

intensity is a maximum and every block surrounded by higher ones is a minimum, see

Figure 2.2. The turning point is then defined as the middle of the block, if its width is

uneven the middle will be rounded down, this follows from the discreteness of the data.

The direction of the rounding is simply by choice and has no impact on the statistics,

it simply shifts it one to the right or to the left. Following from this the rise and decay

times arise from the distance between the previously defined maxima and minima. Self-

explanatory the rise time is from minimum to maximum and the decay time vice versa.

There is still a problem with the endings and the beginnings of a light curve, since we

cannot know what was before and after the measurement it is not possible to determine

the rise and decay times at the edges properly. A possible solution would be to neglect

the first and the last peak in order to get rid of the flawed data, but by doing so light

curves with only one peak would then also be neglected. The code to this explanation

can be found in the appendix A.
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Figure 2.2: Bayesian block parameterisation of the Markarian 421 light curve and
peaks defined by the dominance algorithm. The peaks are coloured in black, the rise
in blue and the decay in red. The normal data points of the light curve have been

neglected in this plot for better visibility of the rise and decay times.

2.3 Dominance-Algorithm

The Dominance-Algorithm (DA) is inspired by the topographic isolation of mountains

used in geography. The DA analyses every data point and calculates the number of steps

it takes to get to a measurement with higher intensity, the corresponding code snippet

is discussed in listing A.1.

1 lefts = []

2 rights = []

3 for i in range(len(data)):

4 if len(np.where(data [0:i]>data[i])[0]) == 0:

5 left_dominance = i-1

6 elif np.max(np.where(data [0:i]>data[i])[0]) == i-1:

7 left_dominance = 0

8 else:

9 left_dominance = i-np.max(np.where(data [0:i]>data[i])[0])

10 if len(np.where(data[i+1:]> data[i])[0]+i+1) == 0:

11 right_dominance = (119-i)

12 elif np.min(np.where(data[i+1:]> data[i])[0]+i+1) == i+1:

13 right_dominance = 0
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14 else:

15 right_dominance = np.min(np.where(data[i+1:]> data[i])[0]+i+1) -(i+1)

16 lefts.append(left_dominance)

17 rights.append(right_dominance)

Listing 2.1: This code snippet elaborates the process of finding the distance to the

next point with a higher intensity. Here data is a list of all intensities of a light curve.

The np.where() commands are used to determine the dominance for left and right and

all of it happens in an ”in-range”-function to analyse all data points. The results are

then appended into the corresponding list.

By doing so every point in time gets a dedicated distance value for left and right, the

lower one of both then determines the dominance. Because it will always take at least

one step to get to the next measurement and also the time resolution is discrete, 1 is the

least possible dominance. Following from this a threshold under which a maximum will

not be accepted as one can easily be given. Through simple mirroring of the light curve

on the time-axis the DA can also be used to find minima with little to no extra effort.

After determining the maxima, this information is used to generate an array with the

same length as the intensity array. This array consists of two different values ones and

threes, the numbers were arbitrarily chosen. The threes simply hold the information

at which point a maximum resides in the array. Following from this, the array is used

to define the intervals between two maxima. These Intervals are then searched for

their minimum. The array is then adapted and the minimum-information is imbedded

as zeros. With the help of this array a second one is constructed following the same

number code but with the extra information of rise and decay by defining all rise-points

as ones and all decay-times as twos. That gives us an array with all the necessary data

as underlying structure to the normal intensity array. Using this structure, it’s not only

possible to easily colour code plots of the light curves but also to determine the rise and

decay times of their corresponding maximum. This can also be seen in figure 2.3.

From there on it is the same procedure as in the section before, the rise time is the

interval from minimum to maximum and the decay time the interval from maximum

to minimum, and is calculated via the array mentioned in the passage before. In the

end the 3 most vital values of a light curve are saved in a 3-dimensional numpy array.

The first dimension is for the maximum and its value sitting at the right position in

the time interval. The second one gives us the rise and sits at the same position as its

corresponding maximum and the last does the same but for the decay. This is mostly

done by using the numpy.where function and can be seen in the listing A.2.

1 final_data = np.zeros ((3 ,119))

2 #final_data [0] == maxima

3 #final_data [1] == rise

4 #final_data [2] == decay

5 for i in range(len(np.where(rise_decay_time == 3)[0])):

6
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7 final_data [0][np.where(rise_decay_time ==3) [0][i]]= data[np.where(rise_decay_time

==3) [0][i]]

8

9 final_data [1][np.where(rise_decay_time ==3) [0][i]]=np.where(rise_decay_time ==3)

[0][i]-

10 np.where(rise_decay_time ==0) [0][np.argmax(np.where(np.where(rise_decay_time ==0)

[0]<

11 np.where(rise_decay_time ==3) [0][i])[0])]

12

13 final_data [2][np.where(rise_decay_time ==3) [0][i]]=np.where(rise_decay_time ==0)

[0]

14 [(np.where(np.where(rise_decay_time ==0)[0]>

15 np.where(rise_decay_time ==3) [0][i])[0]) [0]]-np.where(rise_decay_time ==3) [0][i]

Listing 2.2: This code snippet elaborates the process of calculating the rise and decay

and assigning them to their maximum. This is done via the rise decay time array which

holds the information to which group a point belongs to in a number code. With the

help of numpy.where functions the flux value is assigned to its maximum and the rise

and decay are calculated by finding the distance to the surrounding minima.

However, there is still a problem with the beginning and the end of plots. If the first

turning point of a light curve is a local maximum the rise time can not be properly

identified. This is due to the fact that we cannot know how the source behaved before

the measurement. The same problem occurs if the last turning point is also a maximum,

in this case, however, the decay time cannot be identified. There are two possible ways

to solve this, the first one is to neglect the maximum and its rise and decay all together

and the second one is to accept the data as the minimal possible rise or decay time of

such a maximum. The second one was chosen due to the fact that there are only small

data samples with monthly binning. If e.g. a source with only one peak occurs the

source in its entirety would be neglected. An example of the DA can be seen in figure

2.3.

The code for this algorithm can be found in the appendix A.

The beforehand discussed threshold gives a parameter to neglect possible unwanted

maxima, this helps filtering out only supposed significant turning points because some

may be little peaks in the rise or the decay time of vast outbursts. The alteration of

the limit may change the amount of turning points and their ascents and descents in

single sources, but in summary it can be stated that all of the given data the statistical

outcome stays the same with a sole exception. If the limit is set to high, for example

half of the width of a light curve, there is a major chance that the algorithm will find no

peak at all. This results from the edges of our data set, the DA cuts of at the borders

and defines this distance as the dominance. In conclusion the threshold was set to allow

every point with a dominance higher or equal 6 as a maximum(th ≥ 6). However, this

also leads to the problem of peaks residing to near to the edge of a light curve. If a

maximum is less than 6 ”steps” away from the edge, the DA is not able to identify it
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Figure 2.3: Light curve of Markarian 421 with monthly binned data set over 10 years
and a graphical implementation of the dominance-algorithm. Here the red markings
represent the decay and the blue markings the rise. The corresponding extreme points
are black. The grey lines are Bayesian block parameterisation. The vertical extent of

the flux points represents the error.

since it can only count the dominance until it hits the edge, an example of this can be

seen in Figure 2.4. This will be thoroughly discussed in the upcoming section. Figure

2.5 shows the threshold and the dominance of every data point.
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Figure 2.4: Dominance of source 3FGL J0238.6+1636 clearly shows the edge problems
of the DA, since the peak cannot be identified as one because of its closeness to the

edge. The colour coding is the same as 2.3.
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Figure 2.5: Dominance of Markarian 421 plotted against the time. The black line
symbolises the threshold(th ≥ 6).





Chapter 3

Results

The light curves of all sources are analysed with the two algorithms and the correspond-

ing rise and decay times are illustrated with histograms. Just by looking at the plots

in figure 3.1 and 3.2 the resemblance of rise and decay from the DA and from the BBA

strikes out. To check this assumption a Kolmogorov-Smirnov-test (KS-test) is deployed

to see if the probability measures of both histograms coincide, see Hartung et al. (1993).

In both cases the percentaged acceptance outnumbers the 5% threshold by far. Hence,

we can assume that the rise and decay time both follow the same statistic, leading to

the conclusion that most flares should be symmetric or that at least there should be no

bias regarding their shape. However, this only refers to the width of a flare and not to

the shape of it. Even though the BBA and DA histograms slightly resemble each other,

their KS-test shows clearly that they do not follow the same statistic. The rise and decay

may still be different in shape. Also, one could argue that this algorithm does not take

into account that a flare might also be in a constant high or low and the algorithm only

considers point like peaks. Assuming that the peak also has a width would complicate

the algorithm and would surely result in different rise and decay times. The remaining

question is, would that change the statistics or the symmetry of said times?

This assumption is partially in agreement with the findings of Sokolov et al. (2004).

They modelled multifrequency Blazar emissions with rapid variability. According to

their paper the main amount of emission is produced through synchrotron radiation

(SR). The higher energy radiation occurs through inverse Compton scattering of the

(SR). They claim that the main reason for flares is the collision between a relativistic

shock wave travelling through the jet and a stationary feature in the jet. This clash leads

to forward and reverse shocks. They also found out that their simulated high-frequency

light curves peak at about half of the time it takes the shock to traverse the jet and

all of them appear to be symmetric for a wider range of frequencies. This symmetry

apparently directly follows from the geometry of the excitation region along the shock

25
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front.

Bhatta and Dhital (2019) also found symmetric behaviour in 20 Blazars, they analysed

weekly binned data and computed the percental rise and decay rates per day and came

to the same conclusion, that the rates are symmetric. They got to that conclusion by

also deploying the KS-test.



Chapter 3 Results 27

Figure 3.1: Histograms of all rise and decay times determined by an application of the
dominance algorithm on the Bayesian-block parameterisation. The KS-Test for the two
histograms yields p = 0, 774, concluding that the two statistics are not distinguishable.
This makes a strong argument about the bias of the flares, meaning that there might

be none.
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Figure 3.2: Histograms of all rise and decay times determined by an application of the
dominance algorithm on the unaltered light curve. The KS-Test for the two histograms
yields p = 0, 796, concluding that the two statistics are not distinguishable. This makes

a strong argument about the bias of the flares, meaning that there might be none.
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Conclusion and Outlook

The focus of this Thesis lies in the statistical properties of the rise and decay times

of the flux variations in the gamma-ray light curves of Blazars. The light curves of

more than two thousand sources observed with the Fermi/LAT were analysed. The

observation took place over a time interval of ten years and every flux measurement

was averaged over one month in this interval. Each of these measurements comes with

a test-statistic value describing the significance. With the help of this parameter the

pool of sources was filtered for their overall significance. This shrinks the quantity of

sources approximately by a factor of ten. The light curves were then analysed with

the Bayesian-Block-Algorithm (BBA) and the Dominance-Algorithm (DA). The BBA

parameterises the light curve and the DA checks the curve for extreme points. The DA

is employed on the parameterised and the normal curve, the only adjustable parameter

in this algorithm is a threshold value defining a dominance value as a threshold for the

acceptance of a peak as a maximum. Via the determined maxima the respective rise

and decay times are defined. The statistical analysis of rise and decay shows that there

is no bias concerning the shape of a light curve. This result is consistent for the normal

light curves and for the parameterised ones.

However, this method can still be improved, since the DA, so to speak, only deals in

extremes. There are only maxima, minima and rise and decay times, this leaves no room

for possible non active intervals or constant intervals in a maximum. If it is assumed

that a flaring state has two different states, a non-active one, where the flux is the

lowest, and an active one, where the flux is the highest, it cannot be neglected that

there is a high chance rise and decay times do not exactly begin and end at the first

encountered extreme point. If such intervals are existent, they are simply ignored. Also,

the identification of rise and decay times at the edges of light curves is not properly

possible. The effect of this problem can be reduced with wider data sets, e.g. daily

binned light curves. If non-active and highly active interval states are considered the

29
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rise and decay problem could be diminished. A higher resolution of the data could also

help reduce edge effects. The main problem is that the DA can not work intrinsically

on every set of light curves, because all follows from the arbitrarily chosen threshold at

the beginning of the algorithm.
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Stark, L. S., Takalo, L., Tavecchio, F., Temnikov, P., Tescaro, D., Teshima, M., Tor-

res, D. F., Turini, N., Vankov, H., Vitale, V., Wagner, R. M., Wibig, T., Wittek, W.,

Zandanel, F., Zanin, R., and Zapatero, J. (2007). Variable Very High Energy γ-Ray

Emission from Markarian 501. The Astrophysical Journal, 669(2):862–883.

Antonucci, R. (1993). Unified models for active galactic nuclei and quasars. Annual

Review of Astronomy and Astrophysics, 31:473–521.

Atwood, W. B., Abdo, A. A., Ackermann, M., Althouse, W., Anderson, B., Axelsson,

M., Baldini, L., Ballet, J., Band, D. L., Barbiellini, G., and et al. (2009). The large

31



32 BIBLIOGRAPHY

area telescope on the fermi gamma-ray space telescope mission. The Astrophysical

Journal, 697(2):1071–1102.

Beckmann, V. and Shrader, C. (2012). Active Galactic Nuclei. Active Galactic Nuclei.

Wiley.

Bhatta, G. and Dhital, N. (2019). Nature of γ-ray variability in blazars. arXiv e-prints,

page arXiv:1911.08198.

Blandford, R. D. and Königl, A. (1979). Relativistic jets as compact radio sources. The

Astrophysical Journal, 232:34–48.

Blandford, R. D. and McKee, C. F. (1977). Radiation from relativistic blast waves in

quasars and active galactic nuclei. Monthly Notices of the Royal Astronomical Society,

180:343–371.

Blandford, R. D. and Payne, D. G. (1982). Hydromagnetic flows from accretion disks

and the production of radio jets. Monthly Notices of the Royal Astronomical Society,

199:883–903.

Blandford, R. D. and Znajek, R. L. (1977). Electromagnetic extraction of energy from

Kerr black holes. Monthly Notices of the Royal Astronomical Society, 179:433–456.

Ghisellini, G., Righi, C., Costamante, L., and Tavecchio, F. (2017). The fermi blazar

sequence. Monthly Notices of the Royal Astronomical Society, 469(1):255–266.

Hartung, J., Elpelt, B., and Klösener, K. (1993). Statistik: Lehr- und Handbuch der

angewandten Statistik. Oldenbourg.

Konigl, A. (1981). Relativistic jets as X-ray and gamma-ray sources. The Astrophysical

Journal, 243:700–709.

Longair, M. (2011). High Energy Astrophysics. Cambridge University Press.

Mannheim, K. (1993). The proton blazar. Astronomy and Astrophysics, 269:67–76.

Norman, M. L., Winkler, K. H. A., Smarr, L., and Smith, M. D. (1982). Structure and

dynamics of supersonic jets. Astronomy and Astrophysics, 113:285–302.

Scargle, J. D., Norris, J. P., Jackson, B., and Chiang, J. (2013). The Bayesian Block

Algorithm. arXiv e-prints, page arXiv:1304.2818.

Schneider, P. (2014). Extragalactic Astronomy and Cosmology: An Introduction.

Springer Berlin Heidelberg.



BIBLIOGRAPHY 33

Sikora, M., Kirk, J. G., Begelman, M. C., and Schneider, P. (1987). Electron Injection

by Relativistic Protons in Active Galactic Nuclei. Astrophysical Journal, Letters,

320:L81.

Sokolov, A., Marscher, A. P., and McHardy, I. M. (2004). Synchrotron Self-Compton

Model for Rapid Nonthermal Flares in Blazars with Frequency-dependent Time Lags.

The Astrophysical Journal, 613(2):725–746.

Tanaka, Y., Nandra, K., Fabian, A. C., Inoue, H., Otani, C., Dotani, T., Hayashida, K.,

Iwasawa, K., Kii, T., Kunieda, H., Makino, F., and Matsuoka, M. (1995). Gravita-

tionally redshifted emission implying an accretion disk and massive black hole in the

active galaxy MCG-6-30-15. Nature, 375(6533):659–661.

Ulvestad, J. S., Wong, D. S., Taylor, G. B., Gallimore, J. F., and Mundell, C. G. (2005).

VLBA Identification of the Milliarcsecond Active Nucleus in the Seyfert Galaxy NGC

4151. Astronomical Journal, 130(3):936–944.

Urry, C. M. and Padovani, P. (1995). Unified Schemes for Radio-Loud Active Galactic

Nuclei. Publications of the Astronomical Society of the Pacific, 107:803.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
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Appendix A

Python-Code

1 import sys

2 import numpy as np

3 from numpy import inf

4 from astropy.io import fits

5 from astropy.time import Time

6 import matplotlib.pyplot as plt

7 import matplotlib.colors as colors

8 import astropy.stats.bayesian_blocks as bblocks

9 from matplotlib.backends.backend_pdf import PdfPages

10

11 df = fits.open(’MonthlyLC1GeV_cleaned_fixSpec_sourceListAll2283.fits ’)

12

13

14 #Bayesian -Blocks

15

16 def time(s):

17 return (df[1]. data[s][3]-df[1]. data[s][2]) /2+df[1]. data[s][2];

18

19 widths = []

20 dominance_rise = []

21 dominance_decay = []

22 bb_rise = []

23 bb_decay = []

24

25 for s in range(len(df[1]. data)):

26

27 ts = []

28 test_statistic = df[1]. data[s][23]

29

30 for i in range(len(test_statistic)):

31 if test_statistic[i] <= 9:

32 ts.append(test_statistic[i])

33

34 if len(ts) < 60:

35

36

39



40 Appendix A Python-Code

37 edges=bblocks(t=time(s), x=df[1]. data[s][51] , sigma=df[1]. data[s][44],

fitness=’measures ’)

38 #print(edges)

39

40 position =[]

41 for j in range(len(edges)):

42 position.append(np.min(np.where(time(s)>=edges[j])))

43 position=np.array(position)

44

45 mean_values =[]

46 mini_values =[]

47 maxi_values =[]

48 width_test =[]

49

50 for j in range(len(position) -1):

51

52 if j == len(position) -2:

53 mean_values.append(np.mean(df[1]. data[s][51][ position[j]:]))

54 mini_values.append(np.min(df[1]. data[s][51][ position[j]:]))

55 maxi_values.append(np.max(df[1]. data[s][51][ position[j]:]))

56 else:

57 mean_values.append(np.mean(df[1]. data[s][51][ position[j]: position

[j+1]]))

58 mini_values.append(np.min(df[1]. data[s][51][ position[j]: position[

j+1]]))

59 maxi_values.append(np.max(df[1]. data[s][51][ position[j]: position[

j+1]]))

60 widths.append(position[j+1]- position[j])

61 width_test.append(position[j+1]- position[j])

62

63 mean_values=np.array(mean_values)

64 mini_values=np.array(mini_values)

65 maxi_values=np.array(maxi_values)

66

67 mean=np.zeros (119)

68 mini=np.zeros (119)

69 maxi=np.zeros (119)

70 for k in range(len(mean_values)):

71 if k == len(mean_values) -1:

72 mean[position[k]:] = mean_values[k]

73 mini[position[k]:] = mini_values[k]

74 maxi[position[k]:] = maxi_values[k]

75 else:

76 mean[position[k]: position[k+1]] = mean_values[k]

77 mini[position[k]: position[k+1]] = mini_values[k]

78 maxi[position[k]: position[k+1]] = maxi_values[k]

79

80 bb_lefts = [] # left dominances

81 bb_rights = [] # right dominances

82 for i in range(len(mean_values)):

83 if len(np.where(mean_values [0:i]>mean_values[i])[0]) == 0:

84 if i-1 == 0:

85 left_dominance = 1

86 else:

87 left_dominance = i-1



Appendix A Python-Code 41

88 elif np.max(np.where(mean_values [0:i]>mean_values[i])[0]) == i-1:

89 left_dominance = 0

90 else:

91 left_dominance = i - np.max(np.where(mean_values [0:i]>mean_values

[i])[0])

92

93 if len(np.where(mean_values[i+1:]> mean_values[i])[0] + i+1) == 0:

94 right_dominance = (len(mean_values)-i)

95 elif np.min(np.where(mean_values[i+1:]> mean_values[i])[0] + i+1) == i

+1:

96 right_dominance = 0

97 else:

98 right_dominance = np.min(np.where(mean_values[i+1:]> mean_values[i

])[0] + i+1) - (i+1)

99

100 bb_lefts.append(left_dominance)

101 bb_rights.append(right_dominance)

102

103 # determine maxima from lefts and rights

104 bb_max_min = []

105 for i in range(len(mean_values)):

106 if bb_lefts[i] >= 1 and bb_rights[i] >= 1:

107 bb_max_min.append (3)

108 else:

109 bb_max_min.append (1)

110

111 # finding minima between two maxima

112 # max = 3

113 # min = 0

114

115 bb_max_min = np.array(bb_max_min)

116 bb_find_max = np.zeros ((2 ,119))

117 for i in range(len(np.where(bb_max_min == 3)[0])):

118 bb_find_max [0][(np.where(bb_max_min == 3)[0][i])] = 3

119 bb_find_max [1][(np.where(bb_max_min == 3)[0][i])] = np.where(

bb_max_min == 3)[0][i]

120 bb_max_id = []

121 bb_interval_between_max = []

122

123 for i in range(len(bb_find_max [0])):

124 if i == 0:

125 bb_max_id.append (0)

126 elif not bb_find_max [1][i] == 0:

127 bb_max_id.append(bb_find_max [1][i])

128 bb_max_id.append(len(mean_values))

129 for i in range(len(bb_max_id) -1):

130 bb_interval_between_max = mean_values[int(bb_max_id[i]):int(

bb_max_id[i+1])]

131 bb_max_min[int(bb_max_id[i]+np.argmin(bb_interval_between_max))]

= 0

132

133 bb_rise_decay = np.zeros ((3 ,119))

134 for i in range(len(bb_rise_decay [0])):

135 if bb_rise_decay [0][i] == 0:

136 bb_rise_decay [0][i] = 1
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137

138 for i in range(len(bb_max_min)):

139 if bb_max_min[i] == 3:

140 bb_rise_decay [0][ int(np.rint((np.sum(width_test [0:i]))+(

width_test[i]/2))) -1] = 3

141 elif bb_max_min[i] == 0:

142 bb_rise_decay [0][ int(np.rint((np.sum(width_test [0:i]))+(

width_test[i]/2))) -1] = 0

143

144 bb_rise_decay_time = []

145 rise_decay_bb = -1

146 # 1 = rise

147 # 2 = decay

148 # 0 = min

149 # 3 = max

150 for i in range(len(bb_rise_decay [0])):

151 if bb_rise_decay [0][i] == 0:

152 rise_decay_bb = 1

153 bb_rise_decay_time.append (0)

154 elif bb_rise_decay [0][i] == 3:

155 rise_decay_bb = 2

156 bb_rise_decay_time.append (3)

157 else:

158 bb_rise_decay_time.append(rise_decay_bb)

159

160

161 for i in range(len(bb_rise_decay_time)):

162 if bb_rise_decay_time[i] == 0:

163 bb_rise_decay_time [0:i] = [2]*(i)

164 break

165 elif bb_rise_decay_time[i] == 3:

166 bb_rise_decay_time [0:i] = [1]*(i)

167 break

168 bb_rise_decay_time = np.array(bb_rise_decay_time)

169

170 bb_final_data = np.zeros ((3 ,119))

171 # bb_final_data [0] == maxima

172 # bb_final_data [1] == rise

173 # bb_final_data [2] == decay

174 for i in range(len(np.where(bb_rise_decay_time == 3)[0])):

175 if len(np.where(np.where(bb_rise_decay_time == 0)[0]<np.where(

bb_rise_decay_time == 3)[0][i])[0]) == 0:

176 bb_final_data [1][np.where(bb_rise_decay_time == 3)[0][i]] = 0

177 else:

178 bb_final_data [0][np.where(bb_rise_decay_time == 3)[0][i]] = mean[

np.where(bb_rise_decay_time == 3)[0][i]]

179 bb_final_data [1][np.where(bb_rise_decay_time == 3)[0][i]] = np.

where(bb_rise_decay_time == 3)[0][i]-np.where(bb_rise_decay_time == 0)[0][np.

argmax(np.where(np.where(bb_rise_decay_time == 0)[0] < np.where(

bb_rise_decay_time == 3)[0][i])[0])]

180 bb_final_data [2][np.where(bb_rise_decay_time == 3)[0][i]] = np.

where(bb_rise_decay_time == 0)[0][(np.where(np.where(bb_rise_decay_time == 0)

[0] > np.where(bb_rise_decay_time == 3)[0][i])[0]) [0]]-np.where(

bb_rise_decay_time == 3)[0][i]

181 for i in range(len(bb_final_data [0])):
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182 if not bb_final_data [1][i] == 0:

183 bb_rise.append(bb_final_data [1][i])

184 if not bb_final_data [2][i] == 0:

185 bb_decay.append(bb_final_data [2][i])

186

187 # Dominance -Algorithm

188

189 data = df[1]. data[s][51]

190

191 lefts = [] # left dominances

192 rights = [] # right dominances

193

194 for i in range(len(data)):

195 if len(np.where(data [0:i]>data[i])[0]) == 0:

196 left_dominance = i-1

197 elif np.max(np.where(data [0:i]>data[i])[0]) == i-1:

198 left_dominance = 0

199 else:

200 left_dominance = i - np.max(np.where(data [0:i]>data[i])[0])

201

202 if len(np.where(data[i+1:]> data[i])[0] + i+1) == 0:

203 right_dominance = (119-i)

204 elif np.min(np.where(data[i+1:]> data[i])[0] + i+1) == i+1:

205 right_dominance = 0

206 else:

207 right_dominance = np.min(np.where(data[i+1:]> data[i])[0] + i+1) -

(i+1)

208

209 lefts.append(left_dominance)

210 rights.append(right_dominance)

211

212

213 # determine maxima from lefts and rights

214

215 max_min = []

216 for i in range(len(data)):

217 if lefts[i] >= 6 and rights[i] >= 6:

218 max_min.append (3)

219 else:

220 max_min.append (1)

221

222 # finding minima between two maxima

223 # max = 3

224 # min = 0

225

226 max_min = np.array(max_min)

227 find_max = np.zeros ((2 ,119))

228 for i in range(len(np.where(max_min == 3)[0])):

229 find_max [0][(np.where(max_min == 3)[0][i])] = 3

230 find_max [1][(np.where(max_min == 3)[0][i])] = np.where(max_min == 3)

[0][i]

231 max_id = []

232 interval_between_max = []

233

234 for i in range(len(find_max [0])):
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235 if i == 0:

236 max_id.append (0)

237 elif not find_max [1][i] == 0:

238 max_id.append(find_max [1][i])

239 max_id.append(len(data))

240 for i in range(len(max_id) -1):

241 interval_between_max = data[int(max_id[i]):int(max_id[i+1])]

242 max_min[int(max_id[i]+np.argmin(interval_between_max))] = 0

243 rise_decay_time = []

244 rise_decay = -1

245 # 1 = rise

246 # 2 = decay

247 # 0 = min

248 # 3 = max

249 for i in range(len(max_min)):

250 if max_min[i] == 0:

251 rise_decay = 1

252 rise_decay_time.append (0)

253 elif max_min[i] == 3:

254 rise_decay = 2

255 rise_decay_time.append (3)

256 else:

257 rise_decay_time.append(rise_decay)

258

259

260 for i in range(len(rise_decay_time)):

261 if rise_decay_time[i] == 0:

262 rise_decay_time [0:i] = [2]*(i)

263 break

264 elif rise_decay_time[i] == 3:

265 rise_decay_time [0:i] = [1]*(i)

266 break

267 rise_decay_time = np.array(rise_decay_time)

268 final_data = np.zeros ((3 ,119))

269 # final_data [0] == maxima

270 # final_data [1] == rise

271 # final_data [2] == decay

272 for i in range(len(np.where(rise_decay_time == 3)[0])):

273 final_data [0][np.where(rise_decay_time == 3)[0][i]] = data[np.

where(rise_decay_time == 3)[0][i]]

274 final_data [1][np.where(rise_decay_time == 3)[0][i]] = np.where(

rise_decay_time == 3)[0][i]-np.where(rise_decay_time == 0)[0][np.argmax(np.

where(np.where(rise_decay_time == 0)[0] < np.where(rise_decay_time == 3)[0][i

])[0])]

275 final_data [2][np.where(rise_decay_time == 3)[0][i]] = np.where(

rise_decay_time == 0)[0][(np.where(np.where(rise_decay_time == 0)[0] > np.

where(rise_decay_time == 3)[0][i])[0]) [0]]-np.where(rise_decay_time == 3)[0][

i]

276 for i in range(len(final_data [0])):

277 if not final_data [1][i] == 0:

278 dominance_rise.append(final_data [1][i])

279 if not final_data [2][i] == 0:

280 dominance_decay.append(final_data [2][i])

281

282 #Plots
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283

284 with PdfPages (’./ Rise_Decay/’ + df[1]. data[s][56] + ’_’ + str(s) + ’

_ts_filtered.pdf ’) as pdf:

285

286 #Plot zur Dominanz

287

288 plt.plot((df[1]. data[s][3]-df[1]. data[s][2]) /2+df[1]. data[s][2], data)

289 plt.plot((df[1]. data[s][3]-df[1]. data[s][2]) /2+df[1]. data[s][2],mean ,

label=’Bayesian_Blocks ’, c = ’grey ’)

290 for i in range(len(data)):

291 if rise_decay_time[i] == 1:

292 plt.errorbar(x = (df[1]. data[s][3][i]-df[1]. data[s][2][i])/2+

df[1]. data[s][2][i], y = df[1]. data[s][51][i],yerr=df[1]. data[s][44][i],

ecolor=’B’,elinewidth =1, linewidth =0.5, marker=’+’,c = ’B’)

293 elif rise_decay_time[i] == 2:

294 plt.errorbar(x = (df[1]. data[s][3][i]-df[1]. data[s][2][i])/2+

df[1]. data[s][2][i], y = df[1]. data[s][51][i],yerr=df[1]. data[s][44][i],

ecolor=’R’,elinewidth =1, linewidth =0.5, marker=’+’,c = ’R’)

295 else:

296 plt.errorbar(x = (df[1]. data[s][3][i]-df[1]. data[s][2][i])/2+

df[1]. data[s][2][i], y = data[i],yerr=df[1]. data[s][44][i],ecolor=’k’,

elinewidth =1, linewidth =0.5, marker=’+’,c = ’k’)

297 plt.title(’Rise and Decay with Dominance -Algorithm ’)

298 plt.ylabel(’amplitude erg/s’)

299 plt.xlabel(’time mjd ’)

300 plt.legend ()

301 pdf.savefig ()

302 plt.close()

303

304 #Plot zu BB

305 plt.errorbar(x = time(s), y = mean , linewidth=2, label=’

Bayesian_Blocks ’, marker=’_’,c = ’c’)

306 plt.errorbar(x = time(s), y = df[1]. data[s][51], yerr=df[1]. data[s

][44], ecolor=’grey ’,elinewidth =1,label=’Flux ’, linewidth =0.1, marker=’+’,c = ’

grey ’)

307 for i in range(len(mean)):

308 if bb_rise_decay_time[i] == 3:

309 plt.errorbar(x = time(s)[i], y = mean[i], ms=10, marker=’+’,c

= ’black ’)

310 elif bb_rise_decay_time[i] == 0:

311 plt.errorbar(x = time(s)[i], y = mean[i], ms=10, marker=’+’,c

= ’black ’)

312 elif bb_rise_decay_time[i] == 2:

313 plt.errorbar(x = time(s)[i], y = mean[i], ms=10, marker=’+’,c

= ’red ’)

314 elif bb_rise_decay_time[i] == 1:

315 plt.errorbar(x = time(s)[i], y = mean[i], ms=10, marker=’+’,c

= ’blue ’)

316 plt.title(’Rise and Decay with Bayesian_Blocks ’)

317 plt.ylabel(’amplitude erg/s’)

318 plt.xlabel(’time mjd ’)

319 plt.legend ()

320 pdf.savefig ()

321 plt.close()

322



46 Appendix A Python-Code

323

324 dominance_rise = np.array(dominance_rise)

325 np.save(’dominance_rise ’,dominance_rise)

326 dominance_decay = np.array(dominance_decay)

327 np.save(’dominance_decay ’,dominance_decay)

328 bb_rise = np.array(bb_rise)

329 np.save(’bb_rise ’,bb_rise)

330 bb_decay = np.array(bb_decay)

331 np.save(’bb_decay ’,bb_decay)

Listing A.1: This code shows the process of finding the distance to the next point

with a higher intensity. Data is a list of all intensities of a source. The np.where()

commands are used to determine the dominance for left and right and all of it happens

in an ”in-range”-function to analyse all data points. The rise and decay of both DA

and BBA are saved in numpy arrays see code A.2.

1 df = fits.open(’MonthlyLC1GeV_cleaned_fixSpec_sourceListAll2283.fits ’)

2

3 bb_decay = np.load(’bb_decay.npy ’)

4 bb_rise = np.load(’bb_rise.npy ’)

5 dominance_rise = np.load(’dominance_rise.npy ’)

6 dominance_decay = np.load(’dominance_decay.npy ’)

7

8 plt.hist(bb_rise ,bins = np.arange (0 ,30+2 ,2),color = ’blue ’,label = ’Rise_Time

with BB_Algorithm ’,edgecolor = ’k’)

9 plt.ylabel(’Quantity of Rise_Time ’)

10 plt.xlabel(’Rise_Time/mjm ’)

11 plt.legend ()

12 plt.savefig(’Rise_Time with BB_Algorithm.png ’, dpi =1000)

13 plt.close()

14

15 plt.hist(bb_decay , bins = np.arange (0 ,30+2 ,2),color =’red ’,label = ’Decay_Time

with BB_Algorithm ’,edgecolor = ’k’)

16 plt.ylabel(’Quantity of Decay_Time ’)

17 plt.xlabel(’Decay_Time/mjm ’)

18 plt.legend ()

19 plt.savefig(’Decay_Time with BB_Algorithm.png ’, dpi =1000)

20 plt.close()

21

22 plt.hist(dominance_rise ,bins = np.arange (0 ,30+2 ,2),color = ’blue ’,label = ’

Rise_Time with Dominance_Algorithm ’,edgecolor = ’k’)

23 plt.ylabel(’Quantity of Rise_Time ’)

24 plt.xlabel(’Rise_Time/mjm ’)

25 plt.legend ()

26 plt.savefig(’Rise_Time with Dominance_Algorithm.png ’, dpi =1000)

27 plt.close()

28

29 plt.hist(dominance_decay , bins = np.arange (0 ,30+2 ,2),color =’red ’,label = ’

Decay_Time with Dominance_Algorithm ’,edgecolor = ’k’)

30 plt.ylabel(’Quantity of Decay_Time ’)

31 plt.xlabel(’Decay_Time/mjm ’)

32 plt.legend ()

33 plt.savefig(’Decay_Time with Dominance_Algorithm.png ’, dpi =1000)

34 plt.close()
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35

36 print(ks(dominance_rise ,dominance_decay))

37 print(ks(bb_rise ,bb_decay))

38 print(ks(bb_decay ,dominance_decay))

39 print(ks(bb_rise ,dominance_rise))

Listing A.2: In this code the final data saved in code A.1 is tested with the KS-Test

and the histograms are plotted.
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