Themenschwerpunkt A

Mechanik

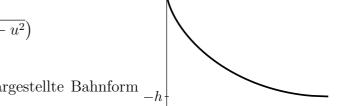
Aufgabe 1: Bewegung auf der Brachistochrone

Ein Punktteilchen der Masse m bewege sich in der (x, z)-Ebene reibungsfrei auf einer Schiene in einem homogenen Gravitationsfeld, das in die negative z-Richtung wirkt. Die Schiene verbinde den Ursprung mit dem Punkt $(\pi h/2, -h)$, wobei h > 0 sei.

a) Nehmen Sie zunächst an, dass Anfangs- und Endpunkt durch eine gerade Schiene verbunden sind, und berechnen Sie die Zeit T_1 , welche die Punktmasse benötigt, um aus der Ruhe startend unter dem Einfluss der Gewichtskraft vom Anfangs- zum Endpunkt zu gelangen. (8 Punkte)

Nun soll die Schiene durch die folgende parametrische Darstellung gegeben sein, in welcher der Parameter u von 0 bis 1 läuft:

$$x(u) = h\left(\arcsin(u) - u\sqrt{1 - u^2}\right)$$
$$z(u) = -hu^2.$$



Diese in der nebenstehenden Abbildung dargestellte Bahnform wird auch als Brachistochrone bezeichnet.

b) Berechnen Sie die Ableitungen von x und z nach u, und bestimmen Sie daraus die Steigung der Schiene am Anfangs- und Endpunkt.

Hinweis:
$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$
 (5 Punkte)

c) Wählen Sie u als verallgemeinerte Koordinate, und bestimmen Sie die Gesamtenergie $E(u,\dot{u})$ der Punktmasse. Berechnen Sie daraus die Zeit T_2 , welche die aus der Ruhe startende Punktmasse benötigt, um vom Anfangs- zum Endpunkt der Schiene zu gelangen.

Zur Kontrolle: Der Ausdruck für die Energie hat die Form $E = A \frac{u^2}{1 - u^2} \dot{u}^2 - Bu^2$. (10 Punkte)

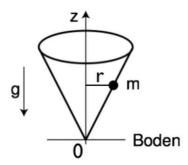
d) Vergleichen Sie Ihr Ergebnis für T_2 mit der Zeit T_1 , die Sie in Teilaufgabe a erhalten haben. (2 Punkte)

Aufgabe 2: Teilchen in kegelförmiger Schale

Auf der Innenseite des Kegelmantels, definiert durch die Gleichung

$$z = a\sqrt{x^2 + y^2} \quad \text{mit} \quad a > 0 \,, \tag{1}$$

soll sich eine Punktmasse m reibungsfrei bewegen. Die z-Achse ist dem homogenen Schwerefeld (Erdbeschleunigung g) entgegengerichtet. Die Bewegung soll in Zylinderkoordinaten (r, φ, z) beschrieben werden.



- a) Wieviele Freiheitsgrade hat der Massenpunkt beim Gleiten auf dem Kegelmantel? (3 Punkte)
- b) Wie lautet die Lagrange-Funktion in den Koordinaten r und φ ? (5 Punkte)
- c) Leiten Sie aus der Lagrange-Funktion die Bewegungsgleichungen ab. (5 Punkte)
- d) Welche Erhaltungssätze der Bewegung gibt es? (4 Punkte)
- e) Wie groß muss die z-Komponente des Drehimpulses $L_z(h)$ sein, damit sich der Massenpunkt auf einer horizontalen Kreisbahn in der Höhe h über dem Boden bewegt? (3 Punkte)
- f) Berechnen Sie die Frequenz ω von kleinen Schwingungen um diese Kreisbahn bei festem $L_z(h)$ durch eine Entwicklung der Bewegungsgleichungen in linearer Ordnung von $\delta r = r h/a$.

(5 Punkte)

Themenschwerpunkt B

Elektrodynamik/Optik

Aufgabe 1: Elektromagnetische Wellen im Vakuum

Die wichtigsten Eigenschaften elektromagnetischer Wellen im Vakuum sollen anhand der Maxwell-Gleichungen diskutiert werden.

a) Geben Sie die Maxwell-Gleichungen im Vakuum für die elektrische Feldstärke \vec{E} und die magnetische Induktion \vec{B} an. (5 Punkte)

Lösen Sie nun die Maxwell-Gleichungen mit Hilfe des Exponentialansatzes

$$\vec{E}(\vec{r},t) = \vec{E}_{\vec{k}} e^{i(\vec{k}\vec{r}-\omega t)}, \quad \vec{B}(\vec{r},t) = \vec{B}_{\vec{k}} e^{i(\vec{k}\vec{r}-\omega t)}, \tag{1}$$

und beantworten Sie die folgenden Fragen anhand Ihrer Lösung:

- b) Welche Eigenschaften der Maxwell-Gleichungen garantieren, dass man sie überhaupt mit einem Exponentialansatz vom Typ (1) lösen kann?
- c) Warum ist es legitim, einen komplexen Ansatz für die Felder zu verwenden?
- d) Leiten Sie die Dispersionsrelation zwischen ω und \vec{k} her.
- e) Charakterisieren Sie die relative Orientierung der Vektoren \vec{k} , \vec{E} , \vec{B} .
- f) In welche Richtung weist der Poynting-Vektor (Energiestrom)?
- g) Wie viele unabhängige Polarisationszustände hat die elektromagnetische Welle im Vakuum?
- h) Bestimmen Sie das Verhältnis der Beträge von $\vec{E}_{\vec{k}}$ und $\vec{B}_{\vec{k}}.$
- i) Wie lautet die allgemeine Lösung der Maxwell-Gleichungen im Vakuum?

$$(8 \times 2.5 = 20 \text{ Punkte})$$

Aufgabe 2: Elektrisch geladener langer Zylinder

Ein unendlich langer Zylinder mit Radius R sei homogen geladen mit der elektrischen Raumladungsdichte ρ_0 . Verwenden Sie im Folgenden Zylinderkoordinaten (r, φ, z) .

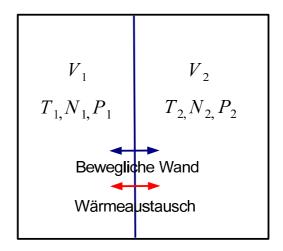
- a) Was kann man aufgrund der Symmetrie des Problems über das elektrische Feld $\vec{E}(\vec{r})$ und das elektrische Skalarpotential $\phi(\vec{r})$ aussagen? (4 Punkte)
- b) Bestimmen Sie das elektrische Feld $\vec{E}(\vec{r})$ innerhalb und außerhalb des Zylinders mit dem Gesetz von Gauß. Führen Sie τ als Ladung pro Länge ein. (8 Punkte)
 - $\mathit{Hinweis}$: Für die Verwendung des Gesetzes von Gauß betrachen Sie einen (anderen) Zylinder endlicher Länge L.
- c) Bestimmen Sie das elektrische Skalarpotential $\phi(\vec{r})$ mit der Randbedingung $\phi(0) = 0$ innerhalb und außerhalb des Zylinders aus dem elektrischen Feld. (9 Punkte)
- d) Skizzieren Sie die radiale Ortsabhängigkeit von $E = |\vec{E}|$ und ϕ . (4 Punkte)

Themenschwerpunkt C

Thermodynamik

Aufgabe 1: Wärmeaustausch

Ein kastenförmiges Volumen V ist durch eine reibungsfrei bewegliche Wand in zwei Teilvolumina V_1 und V_2 getrennt. In den Volumina V_i befinde sich jeweils ein ideales Gas aus $N_1 = N_2 = N$ Teilchen bei der Temperatur T_i , mit i = 1, 2. Zur Zeit t = 0 sei $T_1 > T_2$ und der Druck in beiden Gasen gleich P_0 . In der Folge tauschen die beiden Systeme durch die Wand Wärme aus, bis sich ein Temperaturgleichgewicht bei der Temperatur T einstellt. Dabei verschiebt sich die Wand so, dass sich ein Kräftegleichgewicht einstellt. Der Prozess wird als quasi-statisch angenommen. Das System ist geschlossen und nach außen thermisch isoliert.



- a) Geben Sie drei einfache extensive Zustandsgrößen an, die in diesem Prozess erhalten sind. (3 Punkte)
- b) Begründen Sie allgemein aus dem zweiten Hauptsatz, warum die Entropie keine Erhaltungsgröße sein kann. Zeigen Sie genauer, dass zu jedem Zeitpunkt d $S \ge 0$ gilt. (5 Punkte)

Es wird nun angenommen, dass die Wärmekapazität der beiden Gase gleich ist, $C_{V,1} = C_{V,2} = C_V$.

- c) Berechnen Sie die Gleichgewichtstemperatur T. (3 Punkte)
- d) Berechnen Sie die Drücke P_i^* in den beiden Teilvolumina am Ende des Prozesses als Funktion des Anfangsdrucks P_0 . (4 Punkte)
- e) Berechnen Sie die Entropieänderung ΔS des gesamten Prozesses aus dem zweiten Hauptsatz, und überprüfen Sie, dass $\Delta S>0$ gilt. (6 Punkte)
- f) Zeichnen Sie den Prozess für das System 1 in ein (T, V)-Diagramm. Wie in Teilaufgabe d) gezeigt wurde, ist der Druck P_1 des Systems während des Prozesses konstant. Geben Sie die Temperatur an den beiden Endpunkten im Diagramm an. (4 Punkte)

Aufgabe 2: Photonen-Gas

Gegeben sei ein Photonen-Gas mit den Zustandsgleichungen

$$U = 3pV$$
 und $p = \frac{1}{3}\sigma T^4$.

- a) Bestimmen Sie die Entropie S(p, V) und S(T, V) mithilfe der Euler-Relation U = TS pV (das chemische Potential verschwindet für ein Photonen-Gas). (6 Punkte)
- b) Bestimmen Sie die Wärmekapazität $C_V(T, V)$. (3 Punkte)
- c) Das Photonen-Gas bei einem Anfangsdruck von p_0 und Anfangsvolumen V_0 werde auf ein Endvolumen $V_1 = \frac{1}{2}V_0$ komprimiert. Bestimmen Sie die Arbeiten $\Delta A = -\int p \, dV$, welche an dem Gas bei einem isobaren, bei einem isothermen und schließlich bei einem adiabatischen Prozess verrichtet werden (jeweils als Funktion von p_0 und V_0). (16 Punkte)

Themenschwerpunkt D

Quantenmechanik

Aufgabe 1: Teilchen im Zentralpotential

Betrachtet wird ein Teilchen in drei Dimensionen in einem Zentralpotential V(r), von dem bekannt ist, dass es nur vom Radius $r = \sqrt{x^2 + y^2 + z^2}$ abhängt. Der ortsabhängige Teil der Wellenfunktion in einem stationären Zustand sei gegeben durch

$$\psi(x, y, z) = C xy e^{-\alpha r} \qquad 0 < \alpha \in \mathbb{R},$$
(1)

mit einer Normierungskonstanten C.

- a) Die z-Kompnente des Drehimpulsoperators ist $L_z = xp_y yp_x$, wobei p_i die Komponenten des Impulsoperators bezeichnen. Berechnen Sie den Eigenwert des Operators L_z^2 im gegebenen Zustand.
 - (*Hinweis*: Zeigen Sie zunächst $L_z r = 0$, und verwenden Sie diese Relation zur Vereinfachung der Ableitungen.
 - Ergebnis zur Kontrolle und zum Weiterrechnen: Der Eigenwert ist $4\hbar^2$.) (5 Punkte)
- b) Geben Sie den allgemeinen Ausdruck für den Erwartungswert des Operators L_z an, und zeigen Sie, dass er im gegebenen Zustand verschwindet. Leiten Sie hieraus und aus dem Ergebnis von Teilaufgabe a) die möglichen Messwerte für den Operator L_z und deren Wahrscheinlichkeiten ab. (5 Punkte)
- c) Im betrachteten Zustand ist der Eigenwert von L_x^2 gleich \hbar^2 . Welchen Eigenwert hat der Operator \vec{L}^2 , wobei \vec{L} den Gesamtdrehimpulsoperator bezeichnet? (5 Punkte)

Die Wirkung des Laplace-Operators $\Delta = (\frac{\partial}{\partial x})^2 + (\frac{\partial}{\partial y})^2 + (\frac{\partial}{\partial z})^2$ auf die Wellenfunktion ψ in (1) ergibt

$$\Delta \psi = \left(-\frac{6\alpha}{r} + \alpha^2 \right) \psi \,.$$

- d) Bestimmen Sie nun das Potential V(r), für das die Wellenfunktion ψ in (1) eine Energieeigenfunktion darstellt. Bestimmen Sie den konstanten Teil von V(r) aus der Randbedingung $\lim_{r\to\infty}V(r)=0$. Geben Sie ein physikalisches Beispiel, in dem ein Potential dieser Art auftritt. (5 Punkte)
- e) Für welchen Bereich der Energie E erwartet man Bindungszustände? Welche Energie hat der betrachtete Zustand? Ist er gebunden? (5 Punkte)

Aufgabe 2: Teilchen im Kasten

Ein Teilchen der Masse m, das sich in einem eindimensionalen, unendlich hohen Potentialtopf

$$V(x) = \begin{cases} 0 & \text{für } |x| < a \\ \infty & \text{für } |x| \ge a \end{cases}$$

bewegt, habe die normierte Wellenfunktion

$$\Psi(x) = \frac{1}{4} \sqrt{\frac{15}{a^5}} \left(a^2 - x^2\right) \times \left\{ \begin{array}{ll} 1 & \text{für} & |x| \leq a \,, \\ 0 & \text{für} & |x| > a \,. \end{array} \right.$$

- a) Aus welchem physikalischen Grund muss die Wellenfunktion normiert sein, $||\Psi||=1$? (4 Punkte)
- b) Wie groß ist die Wahrscheinlichkeit W_1 , das Teilchen im Intervall $\left[0,\frac{1}{2}a\right]$ anzutreffen? (6 Punkte
- c) Berechnen Sie die Unschärfen Δp des Impulses und Δx des Ortes in diesem Zustand, und überprüfen Sie die Heisenberg'sche Unschärferelation. (8 Punkte)
- d) Der Grundzustand des Teilchens wird bekanntlich durch die normierte Wellenfunktion

$$\phi(x) = \frac{1}{\sqrt{a}} \cos \frac{\pi x}{2a}$$

mit der Energie

$$E_1 = \frac{\hbar^2 \pi^2}{8ma^2}$$

beschrieben. Wie groß ist die Wahrscheinlichkeit W_2 , den Energiewert E_1 am Zustand $\Psi(x)$ zu messen?

Hinweis: Es gilt
$$\int_{-1}^{1} (1 - u^2) \cos \frac{\pi u}{2} du = \frac{32}{\pi^3}.$$
 (7 Punkte)