Übungen zur theoretischen Mechanik

Übungsblatt II

Besprechung in den Übungen am 29. 10. und 31.10.

I. Scheinkräfte in rotierenden Bezugssystemen

Wir betrachten zwei Bezugssysteme S und S'. S ist ein Inertialsystem. S' rotiert bezüglich S mit der konstanten Winkelgeschwindigkeit $\vec{\omega}$. Jeder in S' konstanter Vektor $\vec{\ell}'$ ändert sich dann aus der Sicht von S gemäß

$$\frac{d\vec{\ell}'}{dt} = \vec{\omega} \times \vec{\ell}' \,. \tag{1}$$

Für die Zeitableitung des Ortsvektors gilt

$$\dot{\vec{r}} = \dot{\vec{r}}' + \sum_{i} r_i' \dot{\vec{e}_i}', \tag{2}$$

wobei die $\vec{e_i}'$ die Einheitsvektoren im gestrichenen System sind.

- a) Zeigen Sie, dass gilt: $\dot{\vec{r}} = \dot{\vec{r}}' + \vec{\omega} \times \vec{r}$.
- b) Berechnen Sie die Beschleunigung $\ddot{\vec{r}}$.
- c) Die Kraft \vec{F}' ist definiert durch $\vec{F}' = m\ddot{\vec{r}}'$. Berechnen Sie die Beziehung zwischen den Kräften \vec{F} und \vec{F}' , die in den beiden unterschiedlichen Bezugssystemen wirken.
- d) Identifizieren Sie in Ihrer Lösung die Zentrifugalkraft und die Corioliskraft.
- e) Ein kräftefreier Massenpunkt der Masse m ruhe bei \vec{r} im Inertialsystem S. Berechnen Sie die Scheinkraft im Bezugssystem S' unter Verwendung von Zylinderkoordinaten.

II. Konservative Kräfte

Gegeben seien zwei Vektorfelder $\vec{F}_1 = -2xy\vec{e}_x - x^2\vec{e}_y + 2z\vec{e}_z$ und $\vec{F}_2 = z\vec{e}_x - x\vec{e}_z$.

- a) Bestimmen Sie, ob diese Kräfte konservativ sind.
- b) Berechnen Sie das Potential zu den Kräften, die konservativ sind.

(bitte wenden)

- c) Berechnen Sie für beide Kraftfelder die Arbeit, die man verrichten muss, um einen Massenpunkt vom Punkt (-1,0,-1) zum Punkt (1,0,1) zu bewegen entlang der folgenden Pfade:
 - 1. Direkter Weg;
 - 2. Entlang der direkten Pfade von (-1,0,-1) zunächst nach (1,0,-1) und dann weiter nach (1,0,1);
 - 3. Entlang zweier Halbkreise in der (x, z)-Ebene wie in Abb. 1 gezeigt.

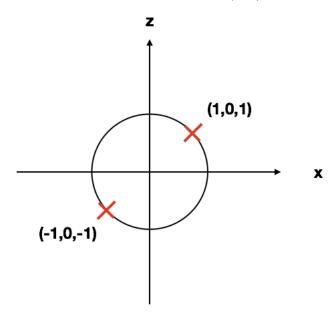


Abb. 1: Integrationsweg.