Introduction to Gauge/Gravity Duality

Examples II

To hand in Tuesday 24th April in the examples class

I. Gauge Theory

Consider a SU(N) gauge theory in 3+1 dimensions. The theory is assumed to contain a real scalar field $\Phi(x)$ which transforms in the adjoint representation of the gauge group, i.e.

$$\Phi \to e^{-i\Lambda} \Phi e^{i\Lambda}, \quad \Phi = \Phi^a T^a, \quad \Lambda = \Lambda^a T^a.$$

a) Show that the operator $\mathcal{O} \equiv \text{Tr}(\Phi^2)$ is gauge invariant. (1 point) b) Write down the classical action for the theory involving $\Phi(x)$. (1 point) c) Show that this action is gauge invariant. (1 point) d) Calculate the free-field propagator of the field Φ as the Green's function of its equation of motion to linear order in the fields. For this purpose, write out the indices of the matrices T^a , i.e. $\Phi^i_{\ j} = \Phi^a(T^a)^i_{\ j}$, and calculate $\langle \Phi^i_{\ j}(x)\Phi^k_{\ l}(0)\rangle$. (2 points)

II. Retarded Green's function

In the lecture we considered Δ_F , the Feynman propagator for a scalar field,

$$\Delta_F(x-y) = \int \frac{d^d k}{(2\pi)^d} \frac{e^{ik(x-y)}}{k^2 + m^2 - i\epsilon} \,. \tag{1}$$

A further important two-point function is the retarded Green's function G_R given by

$$G_R(x-y) = \int \frac{d^d k}{(2\pi)^d} \frac{e^{ik(x-y)}}{-(k^0 + i\epsilon)^2 + \vec{k}^2 + m^2} \,. \tag{2}$$

Compare the pole structure of (2) and of (1) in the complex k^0 plane. Show that $G_R(x-y)$ satisfies $(-\Box + m^2)G_R(x-y) = \delta^d(x-y)$ and that $G_R(x-y)$ vanishes for $x^0 < y^0$. Moreover, check explicitly by using the mode expansion of the free scalar field that $G_R(x-y)$ may be written as

$$G_R(x-y) = -i \Theta(x^0 - y^0) \langle 0 | [\hat{\phi}(x), \hat{\phi}(y)] | 0 \rangle, \qquad (3)$$

where Θ is the step function.

(5 points).