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I. Introduction: Duality

Theory I
(Lagrangian, Hamiltonian)

Physical System

Theory II
L , H

duality between

Here we have:
Theory I: Gauge Theory Theory II
(special example for QFT) general relativity

without gravity with gravity

N = 4: SU(N) Super- . . . . . . . . . . .Yang-Mills theory which is a supersymmetric, . . . . . . . . . . . .non-abelian gauge
theory.
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II. Basics

1. Gauge Theories

This is an example of a field theory.

Reminder: Classical Mechanics

L = L(x, ẋ)

For this lecture energy is conserved (so L does not depend on the time t). Now
replace x, ẋ by a function of x: φ(x). This is of physical significance

L = L
(
φ(x), φ̇(x)

)
, x = (t, ~x)

Examples: ~E, ~B (electric and magnetic fields)
Scalar field: Higgs field

~B = rot ~A , ~E = − gradϕ− ∂ ~A

∂t

Aµ = (ϕ, ~A) is called the gauge potential.

Quantum Field Theory:
2nd quantization: Fouriermodes of fields satisfy non-trivial commutation relations:
the wave function of quantum mechanics is quantized

Fourier: φ(x) =
1

(2πd−1)

∫
dd−1k

2ωk

[
a(~k)e−ikx + a†(~k)eikx)

]
k0=ωk

(2.1)

where kx denotes the relativistic scalar product kµxµ. Here we have a QFT in
d dimensions (1 time dimension, d−1 space dimensions). The dependency of k0 = ωk
is derived from the energy equation:

E2 = ~p 2 −m2 ⇒ ωk =

√
~k2 +m2
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II. Basics

In equation (2.1) we have the non-trivial commutator[
a(~k) , a†(~k′)

]
= 2ωk(2π)d−1δ(d−1)(~k − ~k′)

We call a and a† creation and annihilation operators.

In electrodynamics we have the abelian1 gauge group U(1) (→ Aµ). Consider a
complex scalar field φ(x) transforming under a local U(1) transformation as

φ(x) → eiϑ(x)φ(x) , L (Aµ, φ, ∂µφ)

The derivative transforms as

∂µφ(x) → ∂µ

(
eiϑ(x)φ(x)

)
= eiϑ(x)

[
∂µφ(x) + i

(
∂µϑ(x)

)
φ(x)

]
so ∂µφ doesn’t transform as φ itself!
Way out: introduce a connection Aµ to define a covariant derivative

Dµφ(x) := (∂µ + iAµ)φ(x) with Aµ → Aµ − ∂µφ

which satisfies the transformation law Dµφ → eiϑ(x) Dµφ. The covariant derivative now
may be used to construct an invariant Lagrangian.
A further useful gauge invariant quantity is called the field strength tensor Fµν

Fµν := ∂µAν − ∂νAµ → Fµν + [∂µ , ∂ν ]︸ ︷︷ ︸
= 0

ϑ

⇒ L =
1

4g2
FµνFµν + Dµφ Dµφ

Now consider the non-abelian gauge group SU(N)

a) Fields transforming in the fundamental representation of the gauge group: elements
of aN -dimensional vectorspace, where (T a)i

j are the (N2−1) generators (hermitian
N ×N matrices; ⇒ eiϑaTa unitary) of SU(N)

qi(x) →
(
eiϑa(x)Ta

)
i

j
qj(x) , i, j = 1 . . . N

1Note that the Young-Mills-gauge group SU(N) is not abelian.
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II. Basics

b) Field transforming in the adjoint representation: elements of the (N2− 1)-dim
algebra su(N)

φi
j := φa(T a)i

j →
(
eiϑbT b

)
i

k
φk

l
(
e−iϑcT c

)
l

j

For obtaining the infinitesimal transformation, approximate the exponentials to the first
order.

Infinitesimally, conjugation by a group element eiϑaTa involves the commutator of the
SU(N)-generators [

T a , T b
]

= ifabc T c

so we obtain the transformation law

φaT a → φaT a + i
(
ϑbT b φaT a − φaT a ϑbT b

)
= φaT a − iφaϑb

[
T a , T b

]
= φaT a + fabcφa ϑbT c

Again we can define a covariant derivation using a non-abelian field strength Aµ = Aaµ T
a

(Dµ)i
j = δji ∂µ + igAaµ(T a)i

j ⇒ Fµν = − i

g
[Dµ ,Dν ]

where g is the coupling constant.
For a non-abelian gauge theory we have the action

S[A] =

∫
d3+1x Tr[FµνFµν ]

and by redefining A→ gA we get

=
1

g2

∫
d3+1x Tr[FµνFµν ]

In the most important QFT’s (such as U(1) and SU(N) gauge theories in 3+1 dimen-
sions) the quantization procedure (i. e. introducing commutation relations for the Fourier
modes) leads to infinities when calculating physical observables. The method of deal-
ing with these infinities is called renormalization. This procedure introduces an energy
scale µ at which physical observables are defined. Then the question arises: What hap-
pens if I change this scale? For example:
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II. Basics

QED: This theory becomes non-interacting when µ→ 0

QCD: (SU(3)-gauge theory) This theory becomes non-interacting when µ→∞
and strongly interacting2 when µ→ 0 !

Remember that if c = ~ = 1 the length scale l ∝ E−1 so the limes µ→ 0 is equivalent to
the limes l→∞. As you see, the first item is nothing new at all (in electrodynamics the
Coulomb-potential goes by 1

r ). But in QCD we have a force3 that increases its strength
the larger the distances become which is associated with confinement.4

Later we consider the case of a SU(N)-gauge theory in the limit N → ∞. As shown
by G. ’t Hooft in 1974, in this limit the quantized gauge theory simplifies significantly.

2. A very brief review of general relativity

Background:
AdS/CFT correspondence

Anti-de Sitter space
a gravity theory

conformal field theory5

SU(N)-gauge theory, N →∞

General Relativity is the gauge theory of coordinate transformations ⇔ physics does
not depend on the coordinate system chosen! Einstein set gravity equal to geometry6 as
a result of the spacetime being a differentiable manifoldM (with d dimensions).

At each point p ∈M we have a tangent space TpM spanned by the tangent vectors

∂µ :=
∂

∂xµ

Any vector V ∈ TpM may be written as

V = V µ ∂µ

2In this case we have g > 1 so the application of perturbation theory is not possible.
3Quantum Chromodynamics describe the strong interactions, the fundamental force between quarks
and gluons.

4The fact that color charged particles cannot be observed singularly.
5A conformal symmetry is a generalized scale symmetry, i. e. for any scale µ, LN=4 is invariant.
6Gravity is the curvature (resulting from matter) of the spacetime.
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II. Basics

We may also define the cotangent space T∗pM consisting all linear maps from TpM→ R.
∂µ induces a dual basis dxν of the cotangent space in the way the equation

dxν(∂µ) = δνµ ⇒ W ∈ T∗pM : W = Wν dxν

holds.

SU(N)-gauge theory general relativity

covariant derivative Dµ covariant derivative ∇µ
gauge field Aµ Christoffel symbol Γµνλ

field strength tensor Fµν Riemann curvature tensor Rµνρσ

Action S =
∫

d4xFµνFµν Einstein-Hilbert action S =
∫

d4x
√
−gR

(R denotes the Ricci tensor)

Equation of motion DµFµν = 0 Einstein equations

Table 2.1: Comparison of two gauge theories

We would like to formulate a gauge theory of coordinate transformations. The first
step is to define the coordinate transformation as

x→ x′ : ∂µ → ∂ ′µ =
∂

∂x′µ
=

∂xν

∂x′µ
∂ν , V = V µ ∂µ = V ′

µ
∂ ′µ ⇒ V ′

µ
= V ν ∂x

′µ

∂xν

For the cotangent space we can derive

dx′µ =
∂x′µ

∂xν
dxν , W = Wν dxν = W ′ν dx′ν ⇒ W ′µ = Wν

∂xν

∂x′µ

The next step is to define a tensor of rank (r, s):

T (r,s) : T∗pM⊗ · · · ⊗ T∗pM︸ ︷︷ ︸
r times

⊗TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸
s times

→ R

T (r,s) = Tµ1...µr
ν1...νs︸ ︷︷ ︸

functions of p∈M

∂µ1 ⊗ · · · ⊗ ∂µr ⊗ dxν1 ⊗ · · · ⊗ dxνs

A particularly important (0, 2)-tensor is the metric. At each p ∈ M this is a non-
degenerate symmetric bilinear form g, i. e.

g :

{
TpM⊗ TpM→ R

(u, v) 7→ g(u, v)

g(u, v) = g(v, u)
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II. Basics

so we can write the line element as

ds2 = gµν dxµ ⊗ dxν

To obtain the covariant derivative, we consider

∂′µW
′
ν =

∂xρ

∂x′µ
∂

∂xρ

(
∂xσ

∂x′ν
Wσ

)
=

∂xρ

∂x′µ
∂xσ

∂x′ν

(
∂

∂xρ
Wσ

)
︸ ︷︷ ︸

covariant term

+ Wσ
∂xρ

∂x′µ
∂2xσ

∂xρ ∂xν︸ ︷︷ ︸
needs to be cancelled

Now we replace ∂µ → ∇µ which should have the following properties:

• ∇µ maps (r, s)-tensors to (r, s+ 1)-tensors

• ∇µ is linear: ∇µ(S + T ) = ∇µS +∇µT
• ∇µ satisfies a Leibniz-rule: ∇µ(ST ) = (∇µS)T + S(∇µT )

This implies the form of the Levi-Civita connection, the Christoffel symbols Γ. We have

∇µV ν = ∂µV
ν + ΓνµλV

λ

∇µWν = ∂µWν − ΓλµνWλ

Γλµν =
1

2
gλρ (∂µgνρ + ∂νgρµ − ∂ρ gµν)

Curvature: The first step to talk about curvature is to think about parallel transport:
A parallel transport of a vector V along a path xµ(λ) (where λ is the affine parameter)
is defined by the vanishing covariant derivative

0 = ∇ρV µ ⇒ 0 =
dxρ

dλ
∇ρV µ =

dV

dλ
+Γµρσ

A geodesic is a curve xµ(λ) along which the tangend vector V µ = dxµ

dλ is parallel trans-
ported. This satisfies

d2xµ

dλ2
+Γµρσ

dxρ

dλ

dxσ

dλ
= 0

what we call the geodesic equation. In general, parallel transport of a vector along a
closed loop in a curved spacetime will lead to a different vector than before. Consider
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p

B

A

If we compare the parallel transport of a vector V first along A and then along B to
the same vector first parallel transported along B and then along A. The difference δV
between the two vectors is given by

δV ρ = RρµαβV
µAαBβ

where Rρµαβ denotes the Riemann curvature tensor. We also have

[∇α ,∇β] V ρ = ∂α(∇βV ρ) + Γραµ∇βV µ − Γσαβ∇σV µ − (β ↔ α)

=: RρµαβV
µ − (Γσαβ − Γσβα)︸ ︷︷ ︸
vanishes if Γλµν = Γλνµ

∇σV ρ

For a manifold with a metric gµν , we have Γλµν = Γλ(µν)
7 so the second therm vanishes.

In therms of the Christoffel symbols we have

Rρµαβ = ∂α Γρβµ − ∂β Γραµ + Γρασ Γσβµ − Γρβσ Γσαµ

which leads us to some index symmetries of Rµναβ = gµσ R
σ
ναβ

Rµναβ = −Rµνβα = −Rνµαβ = Rαβµν

7The brackets denote the total symmetrization of this indices:

Γλ(µν) =
1

2

(
Γλµν + Γλνµ

)

8



II. Basics

The Riemann tensor also satisfies the Bianchi identity

Rµναβ +Rµβνα +Rµαβν = 0

and

∇[λRµν]αβ = 0 (2.2)

Here [λµν] means total anti-symmetrization. Further we define the Ricci-tensor

Rµν := Rλµλν = Rνµ

and the Ricci-scalar

R := Rµµ = gµν Rµν

which can be connected with equation (2.2) via

∇µRµν =
1

2
∇νR

Next we look at the Einstein-field equations which relate gravity (curvature) and mat-
ter (curves the spacetime).

Parenthesis: Einstein equation
Einstein’s first idea was to set

Rµν = Tµν

(Tµν denotes the energy-momentum-tensor8), but since energy and momentum are
conserved quantities, we have

∇µTµν = 0

which implies
1

2
∇νR = ∇µRµν = ∇µTµν = 0

so a constantly curved spacetime would be the only possible solution! The “corrected”
equations are

Gµν = Tµν , Gµν := Rµν −
1

2
Rgµν (Einstein tensor)

9
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but—in addition to the Ricci-scalar—we also get another therm Λgµν where Λ is the
cosmological constant,9 so the full version of the Einstein equation reads

Rµν −
1

2
Rgµν︸ ︷︷ ︸

=Gµν

+ Λgµν = κ2 Tµν

with κ2 = 8πG (G denotes the Newton constant).

The Einstein-Hilbert-action, whose Euler-Lagrange equations lead us to the Einstein
equations, is given by

SEH =
1

2κ2

∫
ddx
√
−g (R− 2Λ)

Examples for solutions to the Einstein equations for Tµν = 0 (i. e. in the vacuum) are the
maximally symmetric spacetimes. These satisfy

Rµνσρ =
R

d(d− 1)
(gµσ gνρ − gνσ gµρ)

i. e. they meet a special condition to the curvature.
Let us first consider Riemannian manifolds. Then the maximally symmetric spacetimes

are

a) Euclidean flat space

b) spherical solutions

c) hyperbolic solutions

The line element of these spaces is given by

ds2 =
dχ

1− kχ2
+ χ2 dΩ2

d−1 , k ∈ {0,±1}

9Originally Einstein introduced this constant to allow static solutions for the equations since in his
times is was a commonly accepted “fact” that our universe is a static construct which always existed
and never expands or shrinks. Only a few years later the expansion of the universe was discovered
by E. Hubble, so Einstein—who could have predicted this dynamic years before—referred the intro-
duction of Λ as his “größte Eselei.” But nowadays we again consider a cosmological constant because
the expansion of our universe accelerates which contradicts our expectations—and leads us to the so
called dark energy that should be the reason for Λ > 0.
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where dΩd−1 denotes the line element of the unit sphere Sd−1 that can be constructed
via

dΩ1 = dθ1

dΩ2
j = dθ2

j − sin2 θj dΩ2
j−1 , θ1 ∈ [0, 2π), θj ∈ [0, π), j = 2 . . . d−1

Depending on k we get

k = 0: Euclidean space, χ is the radial coordinate. Example for d= 2:

⇒ χ = r, θ1 = φ, ds2 = dr2 + r2 dφ2

k = 1: Make a coordinate transformation χ = sinφ, φ ∈ [0, φ), then we have

ds2 = dφ2 + sin2 φ dΩ2
d−1

which is the metric of the unit sphere Sd−1 in d dimensions.

k = −1: χ = sinhψ, ψ ∈ [0,∞), so we get the line element of a hyperboloid

ds2 = dψ2 + sinh2 ψ dΩ2
d−1

(This case we call Euclidean Anti-de Sitter space.

In Lorentzian spacetime, we have the following solution of Einstein’s equations in the
vacuum for maximally symmetric spacetimes:

Λ = 0: Minkowski space

Λ > 0: de Sitter space

Λ < 0: Anti-de Sitter space

Let us consider the case of Anti-de Sitter space: AdSd+1 is embedded into (d+2)-
dimensional Minkowski space

−(X0)2 +
d∑
i=1

(Xi)2 − (Xd+1)2 = −L2

where L denotes the so called Anti-de Sitter radius. This space has a conformal boundary
at infinity.

11
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For the AdS-space there are two typical parametrizations:

Global AdS coordinates Local (Poincaré) coordinates

(cover entire AdS space) (cover only half of the space)

X0 = L cosh ρ cos τ X0 = L2

2r

(
1− r2

L4

(
~x2 − t2 + L2

))
Xd+1 = L cosh ρ sin τ Xi = r

Lx
i

Xi = L sinh ρ sin τ Ωi Xd = L2

2r

(
1 + r2

L2 (~x2 − t2 + L2)
)

Xd+1 = r
L t

⇒ ds2 = L2 (− cosh2 ρ dτ2 + dρ2 ⇒ ds2 = L2

r2 dr2 + r2

L2

(
−dt2 + d~x2

)
+ sinh2 ρ dΩ2

d−1

)
= L2

r2 dr2 + r2

L2

(
ηµν dxµ dxν︸ ︷︷ ︸

d-dim Minkowski metric

)

3. Classical scalar field theory

We consider a real scalar field ϕ(x) in flat d-dimensional Minkowski spacetime Rd−1,1

with d−1 spatial directions. The coordinates of Rd−1,1 are denoted by Xµ where µ takes
values from 0 to d−1. We set c = 1 so the metric of Minkowski-space becomes

ds2 = −
(
dX0

)2
+

d−1∑
i=1

(
dXi

)2
= ηµν dXµ dXν

The Symmetries of Minkowski-space are the Poincaré transformations

x→ x′ = Λx + a

x′
µ

= Λµν x
ν + aµ

where Λ is a Lorenz transformation and a is a translation.
A real scalar field is a map which origins a real number ϕ(x) to each spacetime point

x. If we transform x via

x → x′ = Λx

we obtain for our field

ϕ → φ′ = ϕ(Λ−1 x)

L(x, ẋ)︸ ︷︷ ︸
classical mechanics

→ L (ϕ, ∂µϕ)︸ ︷︷ ︸
field theory, infinite number of variables!
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The dynamics of the scalar field is specified by an action functional S[ϕ] which can be
written as an integral over the lagrangian density L (ϕ, ∂µϕ)

S[ϕ] =

∫
dt dd−1x L (ϕ, ∂µϕ) :=

∫
ddx L (ϕ, ∂µϕ)

For example, the action functional of a massive real scalar field with no interactions reads

S[ϕ] =

∫
ddx L0 = −1

2

∫
ddx

ηµν ∂µϕ ∂νϕ︸ ︷︷ ︸
kinetic term

+ m2 ϕ2︸ ︷︷ ︸
mass term

 (2.3)

= −1

2

∫
ddx

(
−
(
∂t ϕ(t, ~x)

)2
+
(
∇ϕ(t, ~x)

)2
+m2 ϕ(t, ~x)2

)
The principle of sationary action (Hamilton) gives the Lagragian equations of motion.

Functional derivative
δS[ϕ]

δϕ(x)

The functional derivative is defined by

δϕ(x)

δϕ(y)
= δ(d)(x− y) dirac delta distribution

⇒ δ

δϕ(x)

∫
ddy ϕ(y) =

∫
ddy

δϕ(y)

δϕ(x)
=

∫
ddy δ(d)(x− y) = 1

⇒ δS[ϕ]

δϕ(x)
=
∂L

∂ϕ
− ∂µ

(
∂L

∂ ∂µϕ

)
!

= 0 Lagrange equation

For our example (2.3) the Lagrange equations of motion become(
�−m2

)
ϕ(x) = 0 (2.4)

where � = ∂µ ∂µ = − ∂2
t + 4 is the d’Alembert operator. Equation (2.4) is called

the Klein-Gordon equation. So far, we considered a field in a potential V (ϕ) = 0,
but more interesting physics is obtained by considering interactions, i. e. V (ϕ) 6= 0.
Generally, V (ϕ) will be a polynomial V (ϕ) = ϕα, α > 2. Then we have L = L0 + Lint ,
Lint = −gn

n!ϕ(x)n. gn is the associated coupling constant which messures the strength of
the interaction.
In electrodynamics—as an example for a classical field theory—the fields read

Aµ = (φ, ~A)

13
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so we can derive the equations of motion from the action

S[Aµ] =

∫
d4x Fµν Fµν , Fµν = ∂µAν − ∂νAµ

⇒ 0 =
δS[A]

δAµ(x)
⇒ DµFµν
covariant derivative

= 0

To quantize the scalar field theory, we note that the Fourier decomposition of ϕ reads

ϕ(x) =
1

(2φ)d−1

∫
dd−1k

2ωk

[
a(~k) e−ikx + a∗(~k) eikx

]
k0=ωk

where ωk =
√
~k2 +m2 and kx = −k0x0 + ~k · ~x satisfies the Klein-Gordon equation.

The starting point for a general quantization of free fields, which satisfy (�−m2)ϕ = 0,
is to replace the Fourier modes with operators â(~k) and â†(~k). The field ϕ(x) then also
becomes an operator denoted by ϕ̂(x).

ϕ̂(x) =
1

(2π)d−1

∫
dd−1k

2ωk

[
â(~k) e−ikx + â†(~k) eikx

]
k0=ωk

The operators â(~k) and â†(~k) satisfy the commutation relations[
â(~k) , â†(~k′)

]
= 2ωk(2π)d−1 δ(d−1)(~k − ~k′)[

â(~k) , â(~k′)
]

= 0[
â†(~k) , â†(~k′)

]
= 0

These commutation relations coincide with those of a harmonic oscillator in quantum
mechanics at frequency ωk. Therefore we may interpret the â, â† as creation and anni-
hilation operators. The vacuum state |0〉 is annihilated by â for all ~k (â(~k) |0〉 = 0). We
choose 〈0|0〉 = 1. A single-particle state with momentum ~k, |~k〉, is created by acting on
the vacuum state with the creation operator â†(~k) (|~k〉 = â†(~k) |0〉).
A quantum field theory combines the ideas of classical field theory with the ideas of

quantum mechanics. In particular, the propagation of a mode |~k〉 width momentum ~k
in space may be related to the concepts of Huyghen’s principle and Green’s functions in
classical field theory.

ϕ(y) =

∫
ddx G(x, y)ϕ(x)

14
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For our example we have

(−� +m2)G(x, y) = δ(d)(x− y)

The goals we want to reach are

• Quantize interacting QFT’s

• Define generating functionals

→ Introduce path integral quantization of (free) fields

Within quantum mechanics, the path integral sums over all possible paths which start
at the position qi at time ti and end at qf at time tf .
In quantum field theory this translates into summing over all field configurations ϕ in

configuration space. The integration measure becomes

Dϕ = (factor)
∏

ti≤t≤tf

∏
~x∈Rd−1

dϕ(t, ~x)

We are able to use this to give a formula for the transition from an initial state |ϕi, ti〉
to a final state |ϕf , tf 〉, where

ϕ̂(t, ~x)︸ ︷︷ ︸
operator

|ϕi, ti〉 = ϕi(~x) |ϕi, ti〉

︷ ︸︸ ︷
ϕ̂(t, ~x) |ϕf , tf 〉 = ϕf (~x) |ϕf , tf 〉

so we obtain

〈ϕf , tf |ϕi, ti〉 = N

∫
Dϕ exp

i

tf∫
ti

dt

∫
~x∈Rd−1

dd−1x L0(ϕ, ∂µϕ)


where N is a normalization factor and L0 the free Lagrangian, i. e. without any inter-
actions (e. g. L0 = −1

2 ∂
µϕ∂µϕ − 1

2m
2ϕ2). The expression for 〈ϕf , tf |ϕi, ti〉 applies to

the case of a free field.
We integrate over all field configurations ϕ(t, ~x) satisfying the boundary conditions

ϕ(ti, ~x) = ϕi(~x) and ϕ(tf , ~x) = ϕf (~x). It is not clear if this integral exists in a mathemat-
ical sense! We may improve convergence by replacing m2 by m2 − iε and taking ε → 0
at the end of all calculations.
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From now on we restrict to vacuum-to-vacuum amplitudes width ti → −∞, tf → +∞
and consider ϕi(~x) = ϕf (~x) = 0. We write 〈0,+∞|0,−∞〉 =: 〈0|0〉, so we have the
condition

〈0|0〉 = N

∫
Dϕ exp

[
i

∫
ddx L0(ϕ, ∂µϕ)

]
!

= 1

which fixes our normalization constant N .
For describing physical processes we are interested in so called correlation functions of

the form

〈0| τϕ̂(x1)ϕ̂(x2) . . . ϕ̂(xn) |0〉 =: 〈ϕ(x1) . . . ϕ(xn)〉 =: G(n)(x1, . . . xn)

where τ denotes the time-sorted product. For two operators, τ becomes

τϕ̂(x)ϕ̂(y) = Θ(x0 − y0)ϕ̂(x)ϕ̂(y) + Θ(y0 − x0)ϕ̂(y)ϕ̂(x)

i. e. the operators are sorted the way the time of their arguments decreases from left to
right. Then we have

〈ϕ(x1) . . . ϕ(xn)〉 = N

∫
Dϕ ϕ̂(x1) . . . ϕ̂(xn) exp

[
i

∫
ddx L (ϕ, ∂µϕ)

]
In order to calculate the correlation functions, it is convenient to introduce the generation
functional

Z0[J ] := 〈exp

[
i

∫
ddx J(x)ϕ(x)

]
〉

(this may be compared to the partition function in statistical mechanics) where J(x) is
called a source dual to the field ϕ(x).
Z0[J ] is extremely useful! We may write

〈ϕ(x1) . . . ϕ(xn)〉 =
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

Written in full we have

Z0[J ] = N

∫
Dϕ exp

[
i

∫
ddx

[
L0(ϕ, ∂µϕ) + J(x)ϕ(x)

]]
Let us consider the example of the free massive scalar field,

Z0[J ] = N

∫
Dϕ exp

[
i

∫
ddx

[
−1

2
ϕ(−� +m2 − iε)ϕ+ Jϕ

]]

16
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Note that the integral over ϕ is almost quadratic in ϕ. This allows us to perform the
integration:

Z0[J ] = N exp

[
i

2

∫
ddx

∫
ddy J(x)∆F(x− y)J(y)

]
where ∆F is the Feynman-propagator for a scalar field

∆F(x− y) =

∫
ddk

(2π)d
eik(x−y)

k2 +m2 − iε

which satisfies (−� +m2)∆F(x− y) = δ(d)(x− y), so ∆F is the Green’s function of the
Klein-Gordon equation.

G(2)(x, y) = 〈ϕ(x1), ϕ(x2)〉 = −i∆F(x1 − x2)

In the massless case we have for d = 4

∆F(x− y) =
1

4π2

1

(x− y)2
, (x− y)2 = (xµ − yµ)(xµ − yµ)

To treat interacting fields we add some terms such as

Lint = −gn
n!
ϕn

to the Lagrangian, which leads us to

Z[J ] = N

∫
Dϕ exp

[
i

∫
ddx

(
L0 + Lint + Jϕ

)]
This is no longer Gaussian. However, if the coupling constants are small (g � 1), we
may use perturbation theory. The starting point is to write

Z[J ] = N exp

[
i

∫
ddx Lint

(
1

i

δ

δJ(x)

)]∫
Dϕ exp

[
i

∫
ddx (L0 + Jϕ)

]
= N exp

[
i

∫
ddx Lint

(
1

i

δ

δJ(x)

)]
Z0[J ]

The expansion in a power series may be visualized in a graphical way: the Feynman
diagrams.
For example let’s consider a ϕ4 theory in d = 4 dimensions.

L = L0 + Lint , L0 = −1

2
∂µϕ∂µϕ−

1

2
m2 ϕ2 , Lint = − g

4!
ϕ4

To draw a diagram, we have to follow the three Feynman rules, which are

17
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1) Propagator i∆F(x− y) →

2) Interaction vertices → g

3) An integration has to be performed on all vertices.

Possible Feynman diagrams for our example theory are:

x y O(1)

x
x1 x2 y O(g2)

∆F

∆F

∆F

Later we will look at examples for Feynman diagrams in a SU(N) theory.

Side remark: There are many interesting QFT’s in physics where g > 1, i. e. pertur-
bation theory is not applicable. These thermes are referred to as “strongly coupled.”
Generally, collective phenomena occur, i. e. it is hard to identify single-particle excita-
tions (instead one should look at collective excitations). In the AdS/CFT correspondence,
we are forced to consider a particular limit in which the CFT is indeed strongly coupled
which makes calculations in the CFT harder. However, we can use the dual classical
gravity theory (which is easy to solve since it is classical) to make non-trivial predictions
about strongly coupled CFT’s.

! In addition to its intrinsic interest of relating QFT and gravity, the AdS/CFT corre-
spondence provides a useful tool for making predictions about strongly coupled QFT’s!

Let’s go back to perturbation theory for now. Loosely speaking, every closed loop in
a Feynman diagram corresponds to an order of ~.

O(~0) O(~) O(~2)

18
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In a classical theory, there are only tree diagrams

Fore the AdS/CFT correspondence we are interested in perturbation theory for the
SU(N) non-abelian gauge theory

S = Tr

[
1

g2

∫
d4x FµνFµν

]
This is rather complicated, so let us begin with a simpler toy model with a scalar field φ
in the adjoint representation of the gauge group SU(N) (φ ij := φa(T a)ij).

L = −1

2
Tr (∂µφ∂

µϕ)︸ ︷︷ ︸
kinetic term

+ gTr
(
φ3
)

+ g2 Tr
(
φ4
)

︸ ︷︷ ︸
interactions

Note that the theory is massless (m = 0). It is convenient to rescale φ→ φ̃ = gφ, so our
Lagrangian becomes

L =
1

g2

(
−1

2
Tr (∂µφ∂

µϕ) + Tr
(
φ3
)

+ g2 Tr
(
φ4
)

+ Tr
(
φ4
))

An important result of G. ’t Hooft (1974) was that the perturbative expansion may be
organized in a topological fashion in the limit N → ∞. To have this limit well-defined,
we introduce the ’t Hooft coupling λ := g2N .

The propagator takes the form

〈φ̃ ij φ̃ kl〉 = δil δ
j
k

g2

4π2 (x− y)2
, (d = 4)

’t Hooft suggested a double-line notation for these propagators:
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i

j

l

k

→

→ planar diagrams
genus 0

→ non-planar diagrams
genus 1

’t Hooft found out that in the limit N →∞ only the genus 0, i. e. the planar diagrams,
survive!

4. Conformal Symmetry

In a CFT, the fields transform covariantly under conformal symmetry transformations.
Let us first look at such symmetry transformations: Consider a line element for a metric,
i. e.

ds2 = gµν(x) dxµ dxν

Conformal symmetry transformations are those which leave the metric invariant up to
an arbitrary positive spacetime-dependent factor10

x → x̃ = f(x) with

gµν(x) → Ω−2(x)︸ ︷︷ ︸
scalar function

gµν(x)

Note that this is not a Lorentz transformation since it doesn’t act on the indices of gµν .
Now we want to find infinitesimal transformations of xµ, so we write

ds′
2

= e2σ(x) ds2 , i. e. Ω(x) = e−σ(x)

Consider gµν = ηµν (Minkowsky spacetime). Then an infinitesimal transformation is
given by

xµ → x̃µ = xµ + εµ(x)

10An interpretation of conformal transformations is that they preserve angles locally.
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Under general coodinate transformations, we have ηµν → ηµν +∂µεν +∂νεµ; also we have
infinitesimally that Ω(x) = 1− σ(x). Therefore (for conformal transformations) we have

∂µεν + ∂νεµ = 2σ(x) ηµν

which is called the conformal Killing equation. The conformal coordinate transformations
are solutions to this equation.
Next step is to take the trace of the equation which leads us to

∂ · ε := ∂µε
µ = d σ(x)

where d denotes the number of dimensions. This implies

(ηµν − ∂ρ ∂ρ + (d− 2) ∂µ ∂ν) ∂ · ε = 0

The case d = 2 is special, so let’s first solve the equation for d > 2. The solutions are

εµ(x) = xµ︸︷︷︸
O(1)

+ ωµν x
ν + ξ xµ︸ ︷︷ ︸
O(x)

+
(
bµ x2 − 2(b · x)xµ

)︸ ︷︷ ︸
O(x2)

d = 4 ⇒ 4 + 6 + 1 + 4

so we have 15 free parameters (ω denotes an antisymmetric matrix and ξ a scalar).
Now let us look at a finite transformation. There are

scale transformations: xµ → λxµ

special conformal transformations: xµ → xµ + bµ x2

1 + 2(bx) + b2 x2

These transformations form a group, the conformal group:
{

Lorentzian: SO(d, 2)
Euclidean: SO(d+1, 1)

In addition, for a finite conformal transformation it is useful to introduce the inversion
which is a reflection at the unit circle

xµ → xµ

x2

This is not connected to the identity, so it is an element of O(d, 2) but not SO(d, 2) (for
Lorentzian signature). However, we may show that a special conformal transformation
may be written as an inversion, a translation and another inversion (i. e. with an even
number of inversions).
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What happens in d = 2 ? We take Euclidean signature and obtain

∂µεν + ∂νεµ = 2 σ(x)︸︷︷︸
= 1
d
∂·ε

ηµν , µ, ν ∈ {1, 2}

∂1ε2 + ∂2ε1 = 0
2 ∂1ε1 = ∂1ε1 + ∂2ε2 ⇒ ∂1ε1 = ∂2ε2

}
Cauchy-Riemann equations

⇒ Every holomorphic function is a solution to the equations

⇒ Conformal group is infinite dimensional

⇒ There is an infinite number of conserved quantities!

Also the conformal symmetry leads to an algebraic structure. Here we have

Generators: aµ → Pµ associated with momentum
ωµν → Jµν rotation or Lorentz-transformation

Generators of scale transformations: D

Special conformal transformation: Kµ

These generators form an algebra including the Poincaré-algebra which involves commu-
tators of Pµ and Jµν . The further commutators are

[Jµν , Kρ] = i(ηµρKν − ηνρKµ)

[D , Pµ] = iPµ

[D , Kµ] = −iKµ

[D , Jµν ] = 0

[Kµ , Kν ] = 0

[Kµ , Pν ] = 2i(ηµν D − Jµν)

These form the algebra so(d, 2) in d dimensions (d > 2). Now we consider how fields
(more specifically: a scalar field ϕ(x) ) transforms covariantly under these transforma-
tions. This yields a representation of the conformal algebra. To obtain this, we consider
the transformations at x = 0; applying the translation operator Pµ then gives the trans-
formation for general x. For the Lorentz-transformation we have

[Jµν , ϕ(0)] = Jµν ϕ(0)
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Jµν is a finite-dimensional representation of the Lorentz group reflecting the spin of ϕ (0
in this case).

[D , ϕ(0)] = −i∆ϕ(0)

where ∆ is the scale dimension of ϕ(0), i. e. under scale transformations apply

ϕ(x)→ ϕ′(x′) = λ−∆ϕ(x)

x→ x′ = λx

A ϕ(x) which has a fixed scaling dimension is an eigenstate of D: In a conformal algebra
it is sufficient to consider particular fields, the conformal primary fields which satisfy
[Kµ , ϕ(0)] = 0.
This defines an irreducible multiplet. All other fields in the same multiplet—the de-

scendants of ϕ—are obtained by acting with Pµ on the conformal primary fields. Pµ is
our ‘Ladder opperatur’—we will shortly encounter a similar structure for the supersym-
metry-algebra.
By applying translations we can deduce the transformation properties of ϕ(x) from

those of ϕ(0). We find

[Pµ , ϕ(x)] = i ∂µϕ(x)

[D , ϕ(x)] = −i∆ϕ(x) + xµ ∂µϕ(x) =: δϕ(x)

[Jµν , ϕ(x)] = Jµν ϕ(x)− i(xµ ∂ν − xν ∂µ)ϕ(x)

[Kµ , ϕ(x)] =
(

i(x2 ∂µ − 2xµx
ρ ∂ρ + 2xµ∆)− 2xνJµν

)
ϕ(x)

In a CFT, for the correlation functions of ϕ(x) we must have
n∑
i=1

〈ϕ1(x1) . . . δϕi(xi) . . . ϕn(xn)〉 = 0 (ward identity)

⇒
n∑
i=1

(
xµi

∂

∂xµi
−i∆

)
〈ϕ1(x1) . . . ϕn(xn)〉 = 0

For the two-point functions this implies

〈ϕ1(x1)ϕ2(x2)〉 = λ∆1+∆2 〈ϕ1(λx1)ϕ2(λx2)〉

which implies that

〈ϕ1(x1)ϕ2(x2)〉 =


C

(x1 − x2)2∆
∆1 = ∆2 = ∆

0 otherwise
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5. Fermions (in QFT)

5.1. Dirac fermions in classical field theory

A Dirac field Ψ(x) transforms under Lorentz-transformations x→ Λx as

Ψ(x) → Ψ(x′) = exp

(
1

8
ωµν [γµ , γν ]

)
Ψ(Λ−1x)

where ωµν denotes the antisymmetric parameter matrix belonging to Λ. The γµ are the
Dirac matrices satisfying the Clifford algebra

{γµ , γν} = −2ηµν 1 , {A , B} = AB +BA

Let us construct the Lagrangian for the fermionic fields Ψ(x). In the bosonic case the
Lagrangian reads

L (ϕ, ∂µϕ) = −1

2
∂µϕ∂µϕ−m2ϕ2 (free bosonic theory)

For a free fermionic theory we have

L = iΨ /∂Ψ−mΨΨ , where /∂ = γµ ∂µ , Ψ = Ψ†γ0

which results in the Euler-Lagrange equations

0
!

=
δS[Ψ,Ψ]

δΨ
= (−i /∂ +m)Ψ

and similarly for Ψ.
Some remarks about the γ-matrices in d = 4: A basis for these may be written in

terms of Pauli matrices. We denote σµ = (−1, ~σ) and σ̄µ = (−1,−~σ), ~σ = (σ1, σ2, σ3)
so we are able to write

γµ =

(
0 σµ

σ̄µ 0

)
γ0 is a Hermitian matrix while γ1, γ2 and γ3 are anti-Hermitian. Furthermore it is very
useful to define γ5

11 as

γ5 := i γ0γ1γ2γ3 =

(
−1 0
0 1

)
11That it is not actually denoted as γ4 is a result of different notations used in the past: Some physicists

numbered the γµ with µ ∈ {0, 1, 2, 3} but some others used µ ∈ {1, 2, 3, 4}. To not confuse some
people the matrix is denoted as γ5 since it’s an unique name independent of the used convention.
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5.2. Dirac fermions and Weyl fermions

Using γ5 we may introduce left- and right-handed Weyl-fermions. Therefore we will need
the projection operators

P =
1 + γ5

2
, P =

1− γ5

2
ΨL = PΨ , ΨR = PΨ

This decomposes into two-component spinors while Dirac spinors have four components:

ΨL =

(
ψ
0

)
, ΨR =

(
0
ψ

)
For ΨL the free Lagrangian is

L = −iψ† σ̄µ ∂µψ

The classical Dirac Lagrangian has a global U(1) symmetry corresponding to the trans-
formation

Ψ → eiα Ψ , Ψ → e−iα Ψ

This leaves the Dirac Lagrangian invariant so we may associate it with the conserved
current Jµ = Ψ γµ Ψ. For a massless theory there is an additional symmetry

Ψ → eiαγ5 Ψ , Ψ → Ψ e−iαγ5

with conserved current
Jµ5 = Ψ γµγ5 Ψ

which is called the axial current.

6. Supersymmetry

If we head back to our supersymmetry-algebra, we can rearrange the generators in the
following way

Jµν = . . . , µ, ν = 1 . . . d−1

Jd d+1 = −D

Jµd =
1

2
(Kµ − Pµ)

Jµd+1 =
1

2
(Kµ + Pµ)
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that we are able to see the structure of SO(d, 2).
At the moment, all the generators we have (J , P , K, D) are bosonic which means

they cannot change the symmetry (symmetric or antisymmetric) of the states they are
acting on. For the supersymmetry, we now may introduce some fermionic operators12

and a supercharge Q with

Λ = exp(iΣQ) , Q =

(
Qα

Q̄α̇

)
, α = 1, 2 , α̇ = 1̇, 2̇ , d = 4

where Σ is a fermionic generator. This restricted Lie-algebra fulfills a Jacobi-identity
and is graded so the Lie-brackets become

[A,B} =

{
{A , B} A and B fermionic
[A , B] else

with the (anti-)commutation relations{
Qα , Q̄α̇

}
= 2(σµ)αα̇ P̄µ

[Q , P ] =
[
Q̄ , P

]
= {Q , Q} =

{
Q̄ , Q̄

}
= 0

or, in general

[Qα , J
µν ] = (σµν)α

β Qβ[
Q̄α̇ , J

µν
]

= εα̇β̇ (σ̄µν)β̇ γ̇ Q̄
γ̇

Here the εα̇β̇ is used to raise/lower spinor-indices. Also we have the R-symmetry which
can be used to transform different supercharges into each other. In the chase of N = 1
the symmetry group is isomorphic to U(1):

Qα → eiω Qα

Q̄α̇ → e−iω Q̄α̇

12The idea behind this introduction the Coleman-Mandula theorem which stated that all additional
symmetries commute with the Poincaré-group. This means that it’s not possible to have a symmetry
mixing up spins and other internal symmetries. An answer to the Colman-Mandula theorem was given
by Haag, Łopuszański and Sohnius who showed that it’s indeed possible to find such symmetries but
they must be generated by fermionic charges—a loophole in the Coleman-Mandula theorem.
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6.1. Extended SUSY

As indicated above, it is possible to introduce multiple supercharges Qaα , a ∈ {1, . . . N}.
The algebraic relations between the different Qaα are{

Qaα , Q
b
β

}
= εαβ Z

ab{
Q̄a α̇ , Q̄b β̇

}
= εα̇β̇ Z̄ab

where Zab = −Zba is the central charge which commutes with all generators. In this
setting, the R-symmetry becomes

Qaα → RabQ
b
α → fundamental representation

Q̄a α̇ → Q̄b α̇ (R†)ba → anti-fundamental representation

6.2. Massless Representation

In the massless case, we represent our states through |pµ, λ〉 where the helicity λ is the
eigenvalue with respect to J12 ∝ J3 = Jz. Since the mass of the particles is zero, we are
not able to find a system in which pµ = (E, 0, 0, 0) but rather pµ = (E, 0, 0, E), so we
have {

Qaα , Q̄b β̇

}
= 2δab (σµ)αβ̇ Pµ︸ ︷︷ ︸

=(−σ0+σ3)E

= 4δab E

(
1 0
0 0

)

This leads us to

{
Qa2 , Q̄b2̇

}
= 0 ⇒ 〈pµ, λ|

a=b︷︸︸︷
{...} |pµ, λ〉 =

∥∥Qa2 |pµ, λ〉∥∥2
+
∥∥Q̄a2̇ |p

µ, λ〉
∥∥2

= 0

⇒ Q2
a = Q̄a2̇ = 0

as well as{
Qa1 , Q̄b1̇

}
= 4δab E ⇒ ab =

Qb1
2
√
E
, a†b =

Q̄b1̇
2
√
E
,
{
ab , a†c

}
= δbc

and[
Qa1 , J

12
]

= ( σ12︸︷︷︸
= 1

2
σ3

)α
β Qaβ =

1

2
Qa1

[
Q̄aα̇ , J

12
]

= −1

2
(σ3)β̇

1̇
Q̄a
β̇

=
1

2
Q̄a

1̇
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λ N = 1 N = 2 N = 4

1 a† |Ω〉 a† |Ω〉 a†1a
†
2 |Ω〉 a†1a

†
2a
†
3a
†
4 |Ω〉

1
2 |Ω〉 |Ω〉 a† |Ω′〉 a†1 |Ω〉 a†2 |Ω〉 a†b1a

†
b2
a†b3 |Ω〉 4 states

0 |Ω′〉 |Ω〉 a†1a
†
2 |Ω′〉 a†b1a

†
b2
|Ω〉 6 states

−1
2 a† |Ω′〉 a†1 |Ω′〉 a†2 |Ω′〉 a†b |Ω〉 4 states

−1 |Ω′〉 |Ω′〉 |Ω〉

Table 2.2: Some examples of applying N creation operators to generate a complete set of
supersymmetric states. For N = 1 there are 2 + 2 states resulting in a vector
multiplet (left-hand side) and a chiral multiplet (λ, φ1, φ2) (right-hand side). For
N = 2 we also obtain a vector multiplet Aµ and a chiral multiplet (λ1, λ2, φ1, φ2).
N = 4 is the maximally supersymmetric state with the multiplets Aµ (vector),
λaα (fermion) and φi (scalar).

⇒ Qb1 lowers λ by 1
2 ⇒ ab

⇒ Q̄1̇b raises λ by 1
2 ⇒ a†b

Next step is to construct the spectrum. Therefor we start with the vacuumstate |Ω〉
with minimal λ and subsequently raise λ by applying a†b which results in 2N different
states {λi}. To obtain CPT-invariance, we also have to add the states with {−λi}.

In table 2.2 there are some examples given how to construct the spectrum for N =
1, 2, 4. A closer look at the example N = 4 reveals

δφ = [φ , Q] ∝ λ
δλ ∝ F +Q2

δλ̄ ∝ Dµφ

δA ∝ λ̄
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The Lagrangian reads

L = Tr

[
1

4g2
YM

F 2 −Dµφ
i Dµφi − iλa σ̄µ Dµ λa

+
ϑ

16π2

1

2
εαβγδF

αβF γδ + gYM C
ab
i λa

[
φi , λb

]
+ gYM Ciab λ̄

a
[
φi , λ̄b

]
+
g2

YM

2

[
φi , φj

] [
φi , φj

]]
where Cab denote the Glebsch-Gordon coefficients—a generalization of (σµ)αβ̇—, gYM is
the Yang-Mills coupling and Aµ, λa and φ are taken from the adjoint representation. This
results in a well-defined (renormalizable) quantum field theory in d = 3+1 dimensions
which is a conformal field theory—even when quantized.
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Let us shortly recapitulate the Anti-de Sitter space. This hyperbolic space is a solution
to the Einstein-equations with a constant negative curvature and is determined by

−X2
0 +X2

1 + · · · X2
d −X2

d+1 = L
2

The symmetry of AdSd+1 has a d dimensional boundary which is a (conformal com-
pactification of) a d dimensional Minkowsky-space (1 time,d−1 space dimensions). It is
convenient to think of the conformal field theory in d dimensions to be defined on the
boundary of a d+ 1 dimensional Anti-de Sitter space.

The AdS/CFT correspondence1 makes a number of extremely non-trivial statements!
In particular, a quantum field theory in flat space is conjectured to be equivalent to
a gravity theory in one dimension higher (note that the symmetries and the number of
freedoms of both theories agree)—this is called the holomorphic principle. The conjecture
is motivated by the considerations of D-branes (D stands for Dirichlet) in string theory.
We aim at writing the action for D-branes. These are a generalization of the action for
a point particle (relativistically invariant).

Paticle: The action of a non-relativistic free particle reads

Snon-rel =

∫
m

2
ẋ2 dt , ẋ = v

Equation of motion: mẍ = 0 ⇒ ~v = constant

For a relativistic one we have

S = −mc
∫
P
ds = −mc2

∫ t2

t1

dt

√
1− v2

c2
−ds2 = −c2 dt2 +

(
dx1
)2

+ · · ·

dx = v dt

ds = c

√
1− v2

c2

1AdS/CFT correspondence was first conjectured in 1997 by J. Maldacena (The Large N Limit of
Superconformal field theories and supergravity).
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P

world line

x

y

Σ

world sheet

x

y

world volume

x

y

z

Figure 3.1: Illustration of the worldpath of a particle (upper left), a string (upper right)
and a membrane (bottom).

As parametrization we use the parameter τ

τ

τi

τf

xµ(τi)

xµ(τf )

x

y

so we have

xµ = xµ(τ) , ds2 = ηµν
dxµ

dτ

dxν

dτ
dτ2

⇒ S =

∫
dτ

√
ηµν

dxµ

dτ

dxν

dτ
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III. Elements of string theory

which results in the equation of motion

dpµ

dτ
= 0 , pµ = muµ

where

uµ = γ(c,~v) , γ =
1√

1− v2

c2

is the four-velocity. For a charged particle, we also have to add the action of the gauge
field:

S = −mc
∫
P
ds+

q

c

∫
P
Aµ(x) dxµ (Abelian symmetry)

Now we want to do the same for objects extended in space, e. g. strings as the simplest
example. The worldline of the relativistic particle becomes a worldsheet (area) as seen
in figure 3.1. To embed it into spacetime, we now need to parameters

xµ = xµ(τ, σ)

The action of the string then is the Nambu-Goto action:

SNG = − 1

2πα′

∫
Σ

dτ dσ
√
− det

(
∂αxµ ∂βxν gµν

)
1. Open and closed strings

There are two different kinds of strings: Open strings and closed ones . In the
low energy limit, the fundamental oscillation heavily depends on which type the string
actually is:

dipole moment pµ ↔ Aµ Qµν ↔ gµν metric

so the lowest energy mode of an open string can be approximated as a dipole whereas
the lowest energy mode of a closed string is a quadrupole in first order—which we will
later set in correspondence to the gauge field or the metric respectively.
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III. Elements of string theory

Next step is to look at the action of a membrane (p-brane) which is a charged object
in p space and one time direction. The parameters (τ, σ) become a p+1-dimensional
parameter vector ξi, so the action reads

SDBI = −
Tension of the brane︷︸︸︷

Tp

∫
dp+1ξ

√
−det

(
P [g] + 2πα′Fαβ

)
and is called the Dirac-Born-Infeld action, where

P [g]αβ =
∂xµ

∂ξα
∂xν

∂ξβ
gµν , α, β ∈ {0, . . . p}

is the pullback of the worldvolume metric to the brane. Now we consider a Dp-brane
and more specifically p = 3. ‘D’ stands for Dirichlet boundary conditions. Considering
D3-branes in the open and closed string pictures was used by Maldacena to motivated
the AdS/CFT conjecture.
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IV. AdS/CFT correspondence

As mentioned above, Maldacena motivated the AdS/CFT correspondence by describing
a system in an open or a closed string picture respectively. This resulted in the following
conjecture:
A N = 4 SU(N) Super-Yang-Mills theory in 3+1 dimensions with ’t Hooft coupling

λ = 2πg2
YMN large and fixed and N → ∞ is equivalent (dual) to 10 dimensional super-

gravity on the space AdS5 × S5. (Note: We have to consider 10 = 9+1 dimensions since
superstring theory is consistent only in this number of dimensions).

The DBI-action describes D-branes in the open string picture, i. e. we may consider
the following picture:

It turns out that in a low energy limit where only the lowest fluctuations (i. e. the mass-
less ones) contribute, a stack of N coincident D3-branes is described by the action of
N = 4 SU(N) Super-Yang-Mills theory: This may be seen by expanding the square
root in the DBI-action and keeping only the lowest order terms in α′ (essentially this
corresponds to taking the length of the strings to zero).
The first term in the expansion for the gauge fields gives −1

4

∫
d4x FµνF

µν . The pull-
back of the six perpendicular coordinates to the worldvolume of the D3-brane become
the six scalar fields of N = 4 SYM. The fermionic contribution to the DBI-action (not
shown) gives the action for the Weyl fermions of N = 4 SYM.

In the closed string picture, the D3-branes are heavy charged objects which curve
the space around them (solitonic solutions of supergravity). They are solutions to the
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IV. AdS/CFT correspondence

Einstein-equations in 9+1 dimensions. Our ansatz for a solution of 10 dimensional gravity
is

ds2 = H(r)−
1
2 ηµν dxµ dxν +H(r)

1
2 δij dyi dyj

where

r2 = y2
1 + y2

2 + · · · y2
6

gives the radial coordinate on the perpendicular 6 dimensional space, xi denote the
coordinates on the D3-brane in 3+1 dimensions and yi the coordinates perpendicular to
the D3-brane respectively. Insert this ansatz on the undetermined function H(r), namely
�H(r) = 0 for r 6= 0, so H(r) is a harmonic function,

H(r) = 1 +

(
L

r

)4

A stringtheory argument to be explained later gives

L
4

= 4π gS N
(
α′
)2 (prop. to ’t Hooft coupling λ)

gS = 2g2
YM

Two asymptotic regions are:

r � L: H(r)→ 1 which gives the flat-space limit

r � L: H(r)→
(
L
r

)4 which is called the near-horizon region (corresponds to the low-
energy limit)

Inserting H(r) =
(
L
r

)4 into the ansatz gives, introducing a new coordinate z = L2

r , the
metric becomes

ds2 =
r2

L2
ηµν dxµ dxν +

L2

r2
δij dyi dyj

=
L2

z1

(
ηµν dxµ dxν + dz2

)
︸ ︷︷ ︸

AdS5

+L
2

dΩ2
5

where the last term comes from the S5 space fulfilling a SO(6) symmetry, which is
isomorphic to SU(4)—the symmetry group of SUSY!
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IV. AdS/CFT correspondence

1. Field-operator map and AdS propagator

We would like to formulate the AdS/CFT correspondence for individual operators in
the conformal field theory and their dual supergravity fields. The operators in the con-
formal field theory are organized in representations of the global superconformal group
SO(4, 2) × SU(4). The corresponding representations of the supergravity fields are ob-
tained by expanding the fields of the 10 dimensional gravity theory in spherical harmonics
on S5

Φ(x, z,Ω5) =
∞∑
l=0

Φl Y l(Ω5)

where x denotes the boundary coordinates, z the radial AdS coordinate and Ω5 the
five angels on the S5—Y l are the spherical harmonics in S5 respectively which can be
calculated from generalized Legendre polynomials.
For the appropriate SUGRA (Supergravity) scalas obtained from the D3-branes we

have
�AdS ϕ

l(x, z) =
1

L2
l(l − 4)ϕl

The scalar gauge invariant operators in the conformal field theory are characterized by
a conformal dimension ∆, i. e.

〈O(x)O(y)〉 =
const

(x− y)2∆

The appropriate dual field of φl(x, z) is obtained by identifying ∆ = l, which ensures
that O is in the same representation of the global symmetry, such that

∫
d4x O(x)ϕ

(0)
(x)

is a singlet of the SU(4) symmetry—ϕ
(0)

here stands for the boundary value of ϕ. This
means that the dimension of the operator determines the mass of its dual SUGRA-field.
We aim at calculating the propagator of the gravity scalar field ϕ∆(x, z) in AdS5.

According to the standard procedure (Huygens principle as in classical electrodynamics),
this is obtained as the Green’s function of the equation of motion of ϕ∆(x, z). First
we need the action for ϕ∆. Consider a field ϕ(x, z) of dimension ∆ in d+1 dimensional
AdS space. The (free) action is

S = −C
2

∫
dz ddx

√
−g
(
gmn ∂mϕ∂nϕ+m2ϕ2

)
,

m2 =
1

L2
∆(∆− d)

ds2 =
L2

z2

(
dz2 + ηµν dxµ dxν

)
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IV. AdS/CFT correspondence

where the constant C is obtained from reduction of a well-defined 10 dimensional SUGRA the-
ory. The equation of motion then reads(

�g −m2
)
ϕ = 0

with
�g =

1

L2

(
z2 ∂2

z − (d− 1)z ∂z + z2ηµν ∂µ ∂ν
)

Here µ and ν are the indices of the boundary coordinates. It is convenient to perform a
Fourier-transformation in the boundary dimensions (xµ → pµ). Then we have

z2 ∂2
zϕp(z)− (d− 1)z ∂zϕp(z)− (m2L

2
+ p2z2)ϕp(z) = 0 , p2 = ηµνp

µ pν

We chose a phase wave ansatz ϕ(x, z) = eipµxµ ϕ(z) and solve the equation asymptotically
near the boundary of AdS. There are two independent solutions:

z → 0 : ϕp(z) ∝
{
z∆+ normalizable
z∆− non-normalizable ∆± =

d

2
±
√
d2

4
+m2L2

We have for z → 0 : ϕ(x, z) ∝ ϕ
(0)

(x)z∆− + ϕ(+)(x)z∆+ + · · ·
The non-normalizable fields define associated boundary fields through

ϕ
(0)

(x) = lim
z→0

ϕ(x, z) z−∆−

Note that solutions of the equation of motion near the boundary has ∆− = d − ∆+ .
ϕ

(0)
(x) plays a crucial role in the AdS/CFT correspondence! In fact, it corresponds to a

field-theoretic source for the boundary conformal field theory operator O∆(x)!

ZN=4 =

∫
Dϕ exp

[
−S +

∫
ddx ϕ

(0)
(x)O∆(x)

]
〈O∆(x)O∆(y)〉 =

δ2Z

δϕ
(0)

(x) δϕ
(0)

(y)

O∆ = Trϕ∆

This interpretation of ϕ
(0)

(x) allows us to write the AdS/CFT correspondence in an
equation!
At first we write the generating functional of the conformal field theory as

ZCFT[ϕ
(0)

] = e
−W [ϕ

(0)
]
=

〈
exp

[∫
ddx ϕ

(0)
(x)O(x)

]〉
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IV. AdS/CFT correspondence

Then, the AdS/CFT correspondence may be stated as

WCFT [ϕ
(0)

] = SSUGRA [ϕ]

∣∣∣∣
lim
z→0

ϕ(x,z) z−∆− = ϕ
(0)

(x)

(4.1)

This equation allows for tests of AdS/CFT correspondence by taking functional deriva-
tives on both sides. For the CFT-side we have

〈O1(x1)O2(x2) . . . On(xn)〉 =
δnW

δϕ1
(0)

(x1) δϕ2
(0)

(x2) . . . δϕn
(0)

(xn)

∣∣∣∣∣
ϕi

(0)
=0

The equation (4.1) tells us that these correlation function may be calculated from the
dual gravity action accordingly to the following rules:

– Determine the bulk field ϕ(z, x) dual to the operator O(x) of dimension ∆ and
compute SSUGRA by reducing 10 dimensional supergravity on the S5 (expand in
spherical harmonics).

– Solve the supergravity-equations of motion in AdS5 , subject to the boundary con-
dition ϕ ∝ zd−∆ ϕ

(0)
with ∆+ = ∆ and ∆− = d−∆

– Insert this solution back to the supergravity action

– Take functional derivatives with respect to the source ϕ
(0)

to obtain correlation
functions on the gravity side

This provides Feynman-rules for the gravity theory. Since the gravity theory is classical,
there are only tree diagrams, no loops:

+ +

++

∂AdS

AdS

The corresponding Feynman-rules are:

1) Source fore the dual operators are located at the boundary

2) Propagators depending from boundary parts are referred to as bulk-to-boundary
propagators
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IV. AdS/CFT correspondence

3) Interior propagators are called bulk-to-bulk propagators

4) All propagators are obtained as Green’s function of the equations of motion in AdS

5) Vertices are obtained from higher order terms in the expansion in spherical har-
monics on S5

6) Integrate over internal vertices

Let us calculate both kinds of propagators explicitly by obtaining the appropriate
Green’s function in the simplest case: a free massive scalar field in AdS space. We will
write the metric of AdSd+1 in Euclidean signature fore simplicity:

ds2 =
L2

z2

(
dz2 + δµν dxµ dxν

)
Recall that

m2 =
1

L2
∆(∆− d)

for a scalar field dual to a scalar CFT operator of dimension ∆ . As in classical electro-
dynamics, we use Huygen’s principle and write

ϕ
∆

(z, x) =

∫
∂AdS

ddy K∆(z, x, y)︸ ︷︷ ︸
bulk-to-boundary operator

ϕ
(0),∆

(y) , y ∈ Rd (boundary)

and

ϕ
∆

(z, x) =

∫
AdS

dw ddy
√
g

bulk-to-bulk operator︷ ︸︸ ︷
G∆(z, x, w, y) J(w, y)︸ ︷︷ ︸

source in the bulk

(4.2)

The equation of motion for the scalar field is(
�AdS −m2

)
ϕ(z, x) = 0 (4.3)

The equation for G∆ is obtained by inserting equation (4.2) in (4.3). The result is(
�AdS −m2

)
G∆(z, x, w, y) =

1
√
g
δ(z − w) δ(d)(x− y)
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IV. AdS/CFT correspondence

To compute G∆ it is convenient to introduce the chordal distance (the integral over the
geodesic length), given by

d(z, x, w, y) =

(w,y)∫
(z,x)

ds = ln

[
1 +

√
1− ξ2

ξ2

]

This gives

ξ =
2zw

z2 + w2 + (x− y)2

which is invariant under SO(d, 2) transformations. So we have

G∆(z, x, w, y) = G∆(ξ) =
C∆

2∆(2∆− d)
ξ∆ · 2F1

(
∆

2
,
∆ + 1

2
,∆−d

2
+ 1, ξ2

)
C∆ =

Γ(∆)

πd/2 Γ
(
∆− d

2

)
where 2F1 denotes a hypergeometric function—a power series in ξ2 with coefficients given
by the first three arguments.
In order to obtain the bulk-to-boundary propagator K∆(z, x, y) we use the explicit

expression for G∆ and take the limit w → 0 , i. e. the point (w, ~y) moves to the boundary

K∆(z, x, y) = lim
w→0

[
2∆− d
w∆

G∆(z, x, w, y)

]
This gives

K∆(z, x, y) = C∆

(
z

z2 + (x− y)2

)∆

︸ ︷︷ ︸
curvature of AdS

which satisfies

lim
z→0

[
zd−∆K∆(z, x, y)

]
= δ(d)(x− y)

We have

ϕ
∆

(z, x) =
Γ(∆)

πd/2 Γ
(
∆− d

2

) ∫
∂AdS

ddy

(
z

z2 + (x− y)2

)∆

ϕ
(0),∆

(y)
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IV. AdS/CFT correspondence

Using these explicit expressions for the propagators, we now are able to calculate corre-
lation functions, e. g. 〈O(x)O(y)〉.

•x • y•
(w, u)

K∆(w,x,u) K∆(w,u,y)

The integral to be performed for the two-point functions is divergend and requires
regularization. We introduce a cut-off at z = ε, perform the integration and then discuss
the limit ε→ 0 .
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