Introduction to Gauge/Gravity Duality

Examples V

To hand in Tuesday 4th July in the examples class

II. Near-Horizon limit of M2-branes

Let us consider the near horizon limit of M2–branes in 11-dimensional supergravity. The supergravity solution of M2–branes reads

$$ds^{2} = H(r)^{-2/3} \left(-dt^{2} + dx^{2} + dy^{2} \right) + H(r)^{1/3} \left(dr^{2} + r^{2} d\Omega_{7} \right) ,$$

$$F_{(4)} = dt \wedge dx \wedge dy \wedge dH^{-1} ,$$

where H(r) is given by

$$H(r) = 1 + \frac{L^6}{r^6}$$
, where $L^6 = 32\pi^2 N l_p^6$

and $F_{(4)}$ is a four-form.

a) Take the near-horizon limit $r \to 0$ and calculate the metric and the four-form $F_{(4)}$ in this limit. (6 points)

b) Use the coordinate transformation $z = \frac{L^3}{2r^2}$ and compute the metric as well as the four-form $F_{(4)}$ in the coordinates (z, t, x, y, Ω_7) . Which manifold is described by this metric?

(4 points)

II. Penrose-Brown-Henneaux Transformation

The AdS metric in Poincaré coordinates may be written as

$$ds^{2} = L^{2} \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} g_{\mu\nu} dx^{\mu} dx^{\nu} , \qquad (1)$$

where the x^{μ} , $\mu \in \{0, 1, 2, 3\}$, are the coordinates parallel to the boundary of AdS and ρ is the radial direction. We consider coordinate transformations of this metric under the *Penrose-Brown-Henneaux diffeomorphism*, which is given by

$$\rho = \rho'(1 - 2\sigma(x')) \qquad x^{\mu} = (x')^{\mu} + a^{\mu}(x', \rho'), \qquad (2)$$

demanding that

$$g'_{55} = g_{55}$$
 and $g'_{\mu 5} = g_{\mu 5}$. (3)

Note that the index 5 stands for the ρ direction. Show that the conditions (3) imply

$$\partial_5 a^\mu = \frac{L^2}{2} g^{\mu\nu} \partial_\nu \sigma \tag{4}$$

and

$$g_{\mu\nu} \to g_{\mu\nu} + 2\sigma \left(1 - \rho \frac{\partial}{\partial \rho}\right) g_{\mu\nu} + \nabla_{\mu} a_{\nu} + \nabla_{\mu} a_{\nu} \,. \tag{5}$$

(5 points)

Explain why this transformation induces a conformal transformation $g_{\mu\nu}(x) \to e^{2\sigma(x)}g_{\mu\nu}(x)$ at the boundary. (5 points)