Introduction to Gauge/Gravity Duality

Examples I

To hand in Tuesday 9th May

I. Gauge Theory

Consider a SU(N) gauge theory in 3+1 dimensions. The theory is assumed to contain a real scalar field $\Phi(x)$ which transforms in the adjoint representation of the gauge group, i.e.

$$\Phi \to e^{-i\Lambda} \Phi e^{i\Lambda}, \quad \Phi = \Phi^a T^a.$$

a) Show that the operator $\mathcal{O} \equiv \text{Tr}(\Phi^2)$ is gauge invariant.	(1 point)
b) Write down the classical action for this theory.	(1 point)
c) Show that this action is gauge invariant.	(1 point)
d) Calculate the free-field propagator of the field Φ as the Green's	function of its
equation of motion to linear order in the fields. For this purpose, write	out the indices
of the matrices T^a , i.e. $\Phi^i{}_j = \Phi^a(T^a)^i{}_j$, and calculate $\langle \Phi^i{}_j(x)\Phi^k{}_l(0)\rangle$.	(2 points)

II. Coordinates of AdS_{d+1}

Lorentzian AdS_{d+1} can be defined by the locus

$$-L^{2} = \eta_{ab} X^{a} X^{b} = -\left(X^{d+1}\right)^{2} - \left(X^{0}\right)^{2} + \sum_{i=1}^{d} \left(X^{i}\right)^{2},$$

where $X \in \mathbb{R}^{2,d}$ and $ds^2 = \eta_{ab} X^a X^b$ with $\eta = \text{diag}(-1, 1, 1, \dots, 1, -1)$. In the following we parametrize the locus (2) in different ways.

- a) Draw a picture of AdS_2 embedded in $\mathbb{R}^{2,1}$. (2 points)
- b) The global coordinates (ρ, τ, Ω_i) are defined by

$$\begin{aligned} X^{d+1} &= L \cosh \rho \sin \tau \,, \\ X^0 &= L \cosh \rho \cos \tau \,, \\ X^i &= L \sinh \rho \,\Omega_i \,, \end{aligned}$$

with i = 1, ..., d and $\sum_{i=1}^{d} \Omega_i^2 = 1$. Using this parametrization calculate the induced metric $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ (where $x^{\mu} \in \{\rho, \tau, \Omega_i\}$) for AdS_{d+1} in global coordinates. (3 points)

c) Replace ρ by $r \equiv L \sinh \rho$ and show that the metric can be written in the form

$$ds^{2} = -H(r)dt^{2} + H(r)^{-1}dr^{2} + r^{2}d\Omega_{d-1}^{2},$$

where $d\Omega_{d-1}^2 = \sum_{i=1}^d d\Omega_i d\Omega_i$ is the metric of the unit (d-1)-sphere, S^{d-1} . (2 points)

d) The Poincaré patch coordinates (x^i, u) with i = 1, ..., d are defined by

$$\begin{array}{rcl} X^{d+1} + X^{d} &=& u\,,\\ -X^{d+1} + X^{d} &=& v\,,\\ X^{i} &=& \frac{u}{L}x^{i} \end{array}$$

Use the defining equation (2) to eliminate v in terms of u and x^i and show that the induced metric for (u, x^i) with i = 1, ..., d takes the form

$$ds^{2} = L^{2} \frac{du^{2}}{u^{2}} + \frac{u^{2}}{L^{2}} dx^{i} dx_{i} \,.$$

Finally introduce $z = \frac{L^2}{u}$ and show that the metric is given by

$$ds^2 = \frac{L^2}{z^2} \left(dz^2 + dx^i dx_i \right)$$

Which part of the AdS spacetime is not covered by these coordinates (Hint: z takes only positive values (Why?)). (3 points)

III. Curvature of AdS and Cosmological constant

Let us consider AdS_{d+1} in the *Poincaré patch* given by the coordinates (z, t, \vec{x}) and the metric

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{L^{2}}{z^{2}}\left(dz^{2} - dt^{2} + d\vec{x}^{2}\right) ,$$

where \vec{x} are the d-1 spatial dimensions.

a) Calculate the metric $g^{\mu\nu}$, the Christoffel symbol $\Gamma^{\mu}_{\nu\rho}$, the Riemann tensor $R^{\mu}_{\nu\rho\sigma}$ as well as the Ricci tensor $R_{\mu\nu}$ and the Ricci scalar R.

(3 points)

b) Show that AdS_{d+1} solves the vacuum Einstein field equations $G_{\mu\nu} + \Lambda g_{\mu\nu} = 0$, where Λ is the cosmological constant and $G_{\mu\nu} = R_{\mu\nu} - \frac{R}{2}g_{\mu\nu}$ is the Einstein tensor. Determine the value of the cosmological constant Λ !

(2 points)