Characters of the conformal algebra in higher-spin holography

Xavier BEKAERT

Institut Denis Poisson (Tours, France)

1 August 2018 @ Wuerzburg

From joint works with Thomas Basile & Euihun Joung

- JHEP 1807 (2018) 009 [arxiv:1802.03232 [hep-th]]
- To appear soon arXiv:1808.xxxxx [hep-th]

1 Higher-spin holography and representation theory

- Introduction
- Outline & Summary

2 Characters of conformal higher-spin gravity

- Conformal higher-spin gravity
- Classification of irreducible representations
- Computation of characters
- Regularization & Cancellation

Onclusion and perspectives

- Main results
- General conclusion
- Perspectives

Introduction Outline & Summary

Higher-spin holography and Representation theory

Introduction Outline & Summary

Higher-spin holography

Basic idea behind the conjectured duality:

[Konstein-Vasiliev-Zaikin, Sezgin-Sundell, Sundborg, Witten, Mikhailov]

Free (or integrable) CFTs have an infinite number of higher-order conformal symmetries.

Introduction Outline & Summary

Higher-spin holography

Basic idea behind the conjectured duality:

[Konstein-Vasiliev-Zaikin, Sezgin-Sundell, Sundborg, Witten, Mikhailov]

Free (or integrable) CFTs have an infinite number of higher-order conformal symmetries.

Noether theorem

Their spectrum contains an infinite tower of traceless conserved currents with unbounded spin (including spin two).

Introduction Outline & Summary

Higher-spin holography

Basic idea behind the conjectured duality:

[Konstein-Vasiliev-Zaikin, Sezgin-Sundell, Sundborg, Witten, Mikhailov]

Free (or integrable) CFTs have an infinite number of higher-order conformal symmetries.

Noether theorem

Their spectrum contains an infinite tower of traceless conserved currents with unbounded spin (including spin two).

AdS/CFT dictionary

Free (or integrable) CFTs should be dual to "higher-spin gravity" theories whose spectrum contains an infinite tower of gauge fields with unbounded spin (including spin two).

Introduction Outline & Summary

Higher-spin holography

Remarks:

- Although the boundary dual is free, the *n*-point correlators are non-vanishing
 - \Rightarrow The *n*-point interaction vertices in the bulk are non-vanishing

Higher-spin holography

Remarks:

- Although the boundary dual is free, the *n*-point correlators are non-vanishing
 - \Rightarrow The n-point interaction vertices in the bulk are non-vanishing
- Provides the simplest examples of AdS/CFT correspondence
 ⇒ These holographic dualities
 - might be explicitly provable (even with mathematical level of rigor)
 - are Gaussian starting points for describing gravity duals to interacting CFTs with softly broken higher-spin symmetries

Higher-spin holography

Remarks:

- Although the boundary dual is free, the *n*-point correlators are non-vanishing
 - \Rightarrow The n-point interaction vertices in the bulk are non-vanishing
- Provides the simplest examples of AdS/CFT correspondence
 ⇒ These holographic dualities
 - might be explicitly provable (even with mathematical level of rigor)
 - are Gaussian starting points for describing gravity duals to interacting CFTs with softly broken higher-spin symmetries

$\bullet~{\rm Free}~{\rm CFTs}$ have no $1/N~{\rm corrections}$

 \Rightarrow Bulk higher-spin theories should be quantum gravity theories which are UV-finite in the strongest possible form: without quantum correction

Introduction Outline & Summary

Higher-spin holography

Simplest examples: Free vector models

[Klebanov-Polyakov, Sezgin-Sundell, ...]

Boundary CFT_d :

Composite operators in the singlet sector, made of free fields in the vector representation of some internal compact symmetry group.

Introduction Outline & Summary

Higher-spin holography

Simplest examples: Free vector models

[Klebanov-Polyakov, Sezgin-Sundell, ...]

Boundary CFT_d :

Composite operators in the singlet sector, made of free fields in the vector representation of some internal compact symmetry group.

Vector models

 \Rightarrow all singlet primary operators are bilinear in the fundamental fields, among which an infinite tower of conserved currents.

 \Rightarrow The spectrum is relatively simple.

Introduction Outline & Summary

Higher-spin holography

Simplest examples: Free vector models

[Klebanov-Polyakov, Sezgin-Sundell, ...]

Boundary CFT_d :

Composite operators in the singlet sector, made of free fields in the vector representation of some internal compact symmetry group.

Vector models

 \Rightarrow all singlet primary operators are bilinear in the fundamental fields, among which an infinite tower of conserved currents.

 \Rightarrow The spectrum is relatively simple.

Bulk higher-spin theory around AdS_{d+1} :

Spectrum contains an infinite tower of massless higher-spin fields.

Higher-spin holography

Higher-spin symmetry is so huge that the dynamics is essentially fixed by the symmetries.

 \Rightarrow The representation theory of the conformal algebra already knows a lot about higher-spin gravity (linearized spectrum, symmetry algebra, vacuum one-loop quantities, etc)

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Representation theory of algebra $\mathfrak{so}(d, 2)$:

- CFT_d elementary fields
 - Singleton = ultrashort irrep [Dirac (1963)]
 - *Higher-spin algebra* = enveloping algebra of singleton symmetries [Eastwood (2002) Vasiliev (2003)]

Introduction Outline & Summary

Outline & Summary

O Main characters in higher-spin holographic duality

Representation theory of algebra $\mathfrak{so}(d, 2)$:

- CFT_d elementary fields
 - Singleton = ultrashort irrep [Dirac (1963)]
 - *Higher-spin algebra* = enveloping algebra of singleton symmetries [Eastwood (2002) Vasiliev (2003)]
- AdS_{d+1} massless fields
 - with *Dirichlet* boundary condition, dual to *Conserved currents* (unitary, short irreps)
 - with Neumann boundary condition, dual to Shadow fields (non-unitary irreps)

Introduction Outline & Summary

Outline & Summary

O Main characters in higher-spin holographic duality

Representation theory of algebra $\mathfrak{so}(d, 2)$:

- CFT_d elementary fields
 - Singleton = ultrashort irrep [Dirac (1963)]
 - *Higher-spin algebra* = enveloping algebra of singleton symmetries [Eastwood (2002) Vasiliev (2003)]
- AdS_{d+1} massless fields
 - with *Dirichlet* boundary condition, dual to *Conserved currents* (unitary, short irreps)
 - with Neumann boundary condition, dual to Shadow fields (non-unitary irreps)

Representation theory of higher-spin algebra:

- Fundamental = Singleton (Free CFT)
- Adjoint = Higher-spin algebra (Symmetries)
- Twisted adjoint (Spectrum)
 - = Singleton \otimes Singleton (Boundary, Bilinears)
 - = ⊕ Massless fields with Dirichlet bdy cond (Bulk) [Flato, Fronsdal (1978)]

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

O Conformal characters & Partition functions

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]
- Canonical partition function on S¹ × S^{d-1} as an so(d, 2)-character [Gibbons, Perry, Pope, 2006]

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]
- Canonical partition function on $S^1 \times S^{d-1}$ as an $\mathfrak{so}(d,2)$ -character [Gibbons, Perry, Pope, 2006]
- \implies Characters & partition functions of spin-s \mathbf{CFT}_d fields:
 - Current (irreducible module)
 - Shadow (ir/reducible for odd/even d)
 - Fradkin-Tseytlin (irreducible but only defined for even d)

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]
- Canonical partition function on $S^1 \times S^{d-1}$ as an $\mathfrak{so}(d, 2)$ -character [Gibbons, Perry, Pope, 2006]
- \implies Characters & partition functions of spin-s CFT_d fields:
 - Current (irreducible module)
 - Shadow (ir/reducible for odd/even d)
 - Fradkin-Tseytlin (irreducible but only defined for even d)

Fradkin-Tseytlin = Shadow / Current

classical (tree) relation [XB, Grigoriev, 2012]

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]
- Canonical partition function on thermal AdS_{d+1} as an so(d, 2)-character [Gibbons, Perry, Pope, 2006]

 \implies Characters & partition functions of spin-s CFT_d fields dual to AdS_{d+1} massless fields:

- Current dual to Dirichlet behavior (unitary)
- Shadow dual to Neumann behavior (non-unitary)

Fradkin-Tseytlin = Shadow / Current = Neumann / Dirichlet

classical (tree) relation [XB, Grigoriev, 2012]

Introduction Outline & Summary

Outline & Summary

Main characters in higher-spin holographic duality

Conformal characters & Partition functions Representation theory of algebra so(d, 2):

- Classification of irreducible (generalized) Verma so(d, 2)-modules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]
- Character formulae of Verma $\mathfrak{so}(d,2)$ -modules [F. Dolan, 2005]
- Canonical partition function on thermal AdS_{d+1} as an so(d, 2)-character [Gibbons, Perry, Pope, 2006]

 \implies Characters & partition functions of spin-s CFT_d fields dual to AdS_{d+1} massless fields:

- Current dual to Dirichlet behavior (unitary)
- Shadow dual to Neumann behavior (non-unitary)

Fradkin-Tseytlin = Neumann / Dirichlet

1-loop relation [Giombi, Klebanov, Pufu, Safdi, Tarnopolsky, 2013]

Introduction Outline & Summary

- Main characters in higher-spin holographic duality
- **O Conformal characters & Partition functions**
- **O** Conformal higher-spin gravity

Introduction Outline & Summary

- Main characters in higher-spin holographic duality
- **O Conformal characters & Partition functions**
- Onformal higher-spin gravity
 - Free theory [Fradkin, Tseytlin, 1985]
 - Higher-spin (s>2) generalization of (d = 4) Maxwell photon (s=1) and Weyl graviton (s=2)
 - Kinetic operator with 2s + d 4 derivatives (local for even d)
 - Non-unitary irreducible representation of conformal algebra (for s>1 or d>4)

Introduction Outline & Summary

- Main characters in higher-spin holographic duality
- **O Conformal characters & Partition functions**
- **O** Conformal higher-spin gravity
 - Free theory [Fradkin, Tseytlin, 1985]
 - Higher-spin (s>2) generalization of (d = 4) Maxwell photon (s=1) and Weyl graviton (s=2)
 - Kinetic operator with 2s + d 4 derivatives (local for even d)
 - Non-unitary irreducible representation of conformal algebra (for s>1 or d>4)
 - Interacting theory [Tseytlin, 2002; Segal, 2003; XB, Joung, Mourad, 2011; Giombi, Klebanov, Pufu, Safdi, Tarnopolsky, 2013]
 - *classical theory* as induced gravity: logarithmically divergent piece of the 1-loop effective action of a conformal scalar field minimally coupled to a background of higher-spin shadow fields
 - *quantum theory*: vanishing Weyl anomaly? (and higher-spin versions?)
 - holographic duality: logarithmically divergent piece of the on-shell action of the bulk higher-spin gravity

Introduction Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- **O** Regularizations & Cancellations

Introduction Outline & Summary

Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

• Regularization à la Zeta [Giombi, Klebanov, Safdi, 2014]

Introduction Outline & Summary

Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- **O** Regularizations & Cancellations

Sum over the infinite tower of all integer spins

- Regularization à la Zeta [Giombi, Klebanov, Safdi, 2014]
- Cancellations for unbroken higher-spin gravity (Dirichlet boundary condition) at 1-loop of
 - Vacuum bubble diagrams (for boundary S^d) [Giombi, Klebanov, 2013; Giombi, Klebanov, Safdi, 2014; ...]
 - Casimir energy (for boundary $\mathbb{R} \times S^{d-1}$) [Giombi, Klebanov, Tseytlin, 2014; ...]

are checks (at 1-loop) that unbroken higher-spin gravity might be quantum exact.

Introduction Outline & Summary

Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

- Regularization à la Zeta [Giombi, Klebanov, Safdi, 2014]
- Cancellations for conformal higher-spin gravity at 1-loop of
 - type-A Weyl anomaly (Euler density *a*-coefficient) [Giombi, Klebanov, Pufu, Safdi, Tarnopolsky, 2013; Tseytlin, 2013]
 - Casimir energy [Beccaria, XB, Tseytlin, 2014; ...]

suggest that (bosonic) conformal higher-spin gravity might remain consistent at quantum level (like $\mathcal{N}=4$ conformal supergravity).

Introduction Outline & Summary

Outline & Summary

- **O** Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

- Regularization à la Zeta [Giombi, Klebanov, Safdi, 2014]
- Cancellations for conformal higher-spin gravity at 1-loop of
 - type-A Weyl anomaly (Euler density *a*-coefficient) [Giombi, Klebanov, Pufu, Safdi, Tarnopolsky, 2013; Tseytlin, 2013]
 - Casimir energy [Beccaria, XB, Tseytlin, 2014; ...]

suggest that (bosonic) conformal higher-spin gravity might remain consistent at quantum level (like $\mathcal{N}=4$ conformal supergravity).

Caveat: The type-B Weyl anomaly (Weyl-squared *c*-coefficient) does not seem to share this remarkable cancellation property but some assumptions in the computation remain questionable [Tseytlin, 2013] e.g. the factorization of the kinetic operator in any Einstein background [Metsaev, 2014; Nutma, Taronna, 2014]

Introduction Outline & Summary

Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

• Regularization of higher-spin algebra character [Basile, XB, Joung, 2018]

 ${\sf Adjoint} ~~ \sim ~ {\sf Singleton} \otimes {\sf Singleton}^*$

requires symmetrization over all Cartan generators.

Introduction Outline & Summary

Outline & Summary

- Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

 Regularization of higher-spin algebra character [Basile, XB, Joung, 2018]

 ${\sf Adjoint} ~~ \sim ~~ {\sf Singleton} \otimes {\sf Singleton}^*$

requires symmetrization over all Cartan generators.

• Cancellations for conformal higher-spin gravity [Basile, XB, Joung, 2018]

Linearized spectrum = Symmetry algebra

suggests that the theory might be somewhat "topological" (asymptotic charges as only dynamical degrees of freedom).

Introduction Outline & Summary

Outline & Summary

- O Main characters in higher-spin holographic duality
- **O Characters & Partition functions**
- Regularizations & Cancellations

Sum over the infinite tower of all integer spins

• Regularization of higher-spin algebra character [Basile, XB, Joung, 2018]

 ${\sf Adjoint} ~~ \sim ~~ {\sf Singleton} \otimes {\sf Singleton}^*$

requires symmetrization over all Cartan generators.

• Cancellations for conformal higher-spin gravity [Basile, XB, Joung, 2018]

Linearized spectrum = Symmetry algebra

suggests that the theory might be somewhat "topological" (asymptotic charges as only dynamical degrees of freedom).

Caveat: relies on some regularization prescription (consistent with vanishing of type-A Weyl anomaly and Casimir energy)

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Conformal higher-spin gravity

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Free theory: off-shell

The free conformal spin-s gauge theory is described off-shell by the

• Shadow field, i.e. conformal primary field h_s that is a symmetric tensor field of scale dimension $\Delta(h_s) = 2 - s$ and rank s, quotiented by the gauge transformation:

$$\delta h_{\mu_1\mu_2\dots\mu_s} = \partial_{(\mu_1}\varepsilon_{\mu_2\dots\mu_s)} - \eta_{(\mu_1\mu_2}\alpha_{\mu_3\dots\mu_s)}$$

• Higher-spin Weyl tensor, i.e. conformal primary field C_s that is the gauge-invariant irreducible tensor field of scale dimension $\Delta(C_s) = 2$ labelled by a rectangular Young diagram with rows of length s and built out of s derivatives of the shadow field:

$$C_{\mu_1\dots\mu_s\,,\,\nu_1\dots\nu_s}\,=\,\partial_{\nu_1}\cdots\partial_{\nu_s}h_{\mu_1\dots\mu_s}\,+\,\cdots$$

 Fradkin-Tseytlin-Segal action [d = 4: Fradkin & Tseytlin, 1985; d > 4: Segal, 2002]

$$S[h_s] = \int h_s \,\Box^{\frac{2s+d-4}{2}} h_s + \dots = (-1)^s \int C_s \,\Box^{\frac{d-4}{2}} C_s + \dots$$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Free theory: on-shell

The free conformal spin-s gauge theory is described *on-shell* by the

• Higher-spin Bach tensor, i.e. conformal primary field B_s that is the gauge-invariant symmetric tensor field of scale dimension $\Delta(B_s) = s + d - 2$ built out of s + d - 4 derivatives of the Weyl-like tensor:

$$B_{\mu_1\dots\mu_s} = \partial^{\nu_1}\cdots\partial^{\nu_s} \Box^{\frac{d-4}{2}} C_{\mu_1\dots\mu_s\,,\,\nu_1\dots\nu_s} + \cdots$$

• Fradkin-Tseytlin field, i.e. shadow field subject to the higher-spin Bach equation $B_s = 0$.

Interacting theory

Conformal higher-spin gravity as induced higher-spin gravity

[Tseytlin, 2002; Segal, 2003; XB, Joung, Mourad, 2011; Giombi, Klebanov, Pufu, Safdi, Tarnopolsky, 2013]

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Interacting theory

The interacting conformal higher-spin theory is described off-shell by the

• Free scalar singleton, i.e. free conformal scalar field φ of scale dimension $\Delta(\varphi) = d/2 - 1$ minimally coupled via

$$S_M[arphi;h] = \int d^d x \left(-rac{1}{2} (\partial arphi)^2 + \sum_s h_s j_s
ight) = rac{1}{2} \int d^d x \, arphi \Big(\partial^2 + \hat{h} \Big) arphi$$

to a background of higher-spin shadow fields through the

• **Conformal currents**, i.e. conformal primary field j_s that is a traceless conserved symmetric current of scale dimension $\Delta(j_s) = s + d - 2$ and rank s, bilinear in the conformal scalar field

$$j_{\mu_1\dots\mu_s} = \varphi \,\partial_{\mu_1}\cdots\partial_{\mu_s}\varphi + \cdots$$

• **Induced action:** logarithmically divergent piece of the effective action (in even *d*)

$$W_\Lambda[h]=-rac{1}{2}\,{\sf Tr}_\Lambda\log(\partial^2+\hat{h})=\log(\Lambda/m^2)\,S_W[h]+{\sf Laurent}$$
 series in Λ

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Classification of irreducible representations

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Classification

- Primary field on ℝ × S^{d-1} with all its descendants corresponds to a (generalized) Verma so(d, 2)-module V(Δ, s) labelled by the scaling dimension Δ and the so(d)-spin s.
- Exhaustive classification of (ir)reducible Verma so(d, 2)-modules and submodules [Gavrilik, Klimyk, 1975; Shaynkman, Tipunin, Vasiliev, 2004]

 \implies Recursive computation of all relevant $\mathfrak{so}(d,2)$ -modules

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Odd dimension d

d = 3 realizations of irreducible $\mathfrak{so}(3,2)$ -modules

CFT	Irreducible module	Verma module description
Conservation law	$\mathcal{D}(s+2,s-1)$	$\mathcal{V}(s+2,s-1)$
Conformal current	$\mathcal{D}(s+1,s)$	$\mathcal{V}(s+1,s)/\mathcal{D}(s+2,s-1)$

Conservation law $\equiv \partial_{\mu_1} j^{\mu_1 \mu_2 \dots \mu_s} = 0$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Odd dimension d

d = 3 realizations of irreducible $\mathfrak{so}(3,2)$ -modules

CFT	Irreducible module	Verma module description
Conservation law	$\mathcal{D}(s+2,s-1)$	$\mathcal{V}(s+2,s-1)$
Conformal current	$\mathcal{D}(s+1,s)$	$\mathcal{V}(s+1,s)/\mathcal{D}(s+2,s-1)$
Pure gauge shadow	$\mathcal{D}(2-s,s)$	$\mathcal{V}(2-s,s)/\mathcal{D}(s+1,s)$

Higher-spin Cotton tensor $\partial^{2s-1}h_s = 0 \Leftrightarrow h_s = \partial \varepsilon_{s-1} + \eta_2 \alpha_{s-2}$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Odd dimension d

d = 3 realizations of irreducible $\mathfrak{so}(3,2)$ -modules

CFT	Irreducible module	Verma module description
Conservation law	$\mathcal{D}(s+2,s-1)$	$\mathcal{V}(s+2,s-1)$
Conformal current	$\mathcal{D}(s+1,s)$	$\mathcal{V}(s+1,s)/\mathcal{D}(s+2,s-1)$
Pure gauge shadow	$\mathcal{D}(2-s,s)$	$\mathcal{V}(2-s,s)/\mathcal{D}(s+1,s)$
Conformal Killing	$\mathcal{D}(1-s,s-1)$	$\mathcal{V}(1-s,s-1)/\mathcal{D}(2-s,s)$

Conformal Killing tensor $\equiv \partial_{(\mu_1} \varepsilon_{\mu_2 \dots \mu_s)} = \eta_{(\mu_1 \mu_2} \alpha_{\mu_3 \dots \mu_s)}$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Odd dimension d

d = 3 realizations of irreducible $\mathfrak{so}(3,2)$ -modules

CFT	Irreducible module	Verma module description
Conservation law	$\mathcal{D}(s+2,s-1)$	$\mathcal{V}(s+2,s-1)$
Conformal current	$\mathcal{D}(s+1,s)$	$\mathcal{V}(s+1,s)/\mathcal{D}(s+2,s-1)$
Pure gauge shadow	$\mathcal{D}(2-s,s)$	$\mathcal{V}(2-s,s)/\mathcal{D}(s+1,s)$
Conformal Killing	$\mathcal{D}(1-s,s-1)$	$\mathcal{V}(1-s,s-1)/\mathcal{D}(2-s,s)$
CFT	Reducible module	Contragredient module
Shadow field	$\mathcal{S}(2-s,s)$	$\sim \mathcal{V}(2-s,s)/\mathcal{D}(2-s,s)$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Even dimension d

d = 4 realizations of irreducible $\mathfrak{so}(4, 2)$ -modules

CFT	Irreducible module	Verma module description
Conservation law	$\mathcal{D}(s+3,s-1)$	$\mathcal{V}(s+3,s-1)$
Conformal current	$\mathcal{D}(s+2,s)$	$\mathcal{V}(s+2,s)/\mathcal{D}(s+3,s-1)$
Chiral FT field	$\mathcal{D}(2;s,\pm s)$	$\mathcal{V}(2;s,\pm s)/\mathcal{D}(s+2,s)$
FT field	$\mathcal{D}(2,s,s)$	$\mathcal{U}(2,s,s)/\mathcal{V}^*(s+2,s)$
	$\oplus \mathcal{D}(2,s,-s)$	
Pure gauge fixed	$\mathcal{D}(2-s,s)$	$\mathcal{V}(2-s,s)/\mathcal{U}(2,s,s)\cong$
shadow		$\mathcal{U}(2-s,s)/\mathcal{V}^*(s+3,s-1)$
Conformal Killing	$\mathcal{D}(1-s,s-1)$	$\mathcal{V}(1-s,s-1)/\mathcal{U}(2-s,s)$
CFT	Reducible module	Contragredient module
Shadow field	$\mathcal{S}(2-s,s)$	$\sim \mathcal{V}(2-s,s)/\mathcal{U}(2-s,s)$

Computation of partition function

Classification of irreducible representations Computation of characters Regularization & Cancellation

Partition function

Canonical partition function

Generating function

$$\mathcal{Z}(q) \equiv \sum_{n} d_{n} q^{\Delta + n} = Tr\big(\exp(-\beta \hat{H})\big)$$

of the auxilliary variable $q = \exp(-\beta)$ defined in terms of the inverse temperature β , i.e. the inverse of the perimeter of the circle S^1 in radial quantization. It encodes the number d_n of descendants of level n associated with a primary field of scale dimension Δ . • Character of $\mathfrak{so}(d,2)$

$$\chi(q, x_1, \cdots, x_r) = Tr\Big(\exp\left(-\beta(\hat{H} - \sum_{i=1}^r \Omega_i \hat{J}_i)\right)\Big), \quad r = \operatorname{rank} \mathfrak{so}(d),$$

with $x_i = \exp(\beta \Omega_i)$ as canonical partition function on thermal $\operatorname{\mathsf{AdS}}_{d+1}/S^1 imes S^{d-1}$ where we turn on the chemical potentials Ω_i corresponding to the angular momenta in the Cartan subalgebra of $\mathfrak{so}(d)$. Therefore, $\mathcal{Z}(q) = \chi(q, 1, \cdots, 1)$.

Partition function

Characters of lowest-weight Verma modules

• Explicit formulae [F. Dolan, 2005]

$$\chi^{\mathfrak{so}(d,2)}_{\mathcal{V}(\Delta,\vec{s})}(q,\vec{x}) = \frac{1}{(1-q)^{d-2r}} \prod_{i=1}^{r} \frac{1}{(1-q\,x_i)(1-q\,x_i^{-1})} \, q^{\Delta} \, \chi^{\mathfrak{so}(d)}_{\vec{s}}(\vec{x})$$

• Useful property (lowest versus highest weight)

$$\chi^{\mathfrak{so}(d,2)}_{\mathcal{V}(\Delta,\vec{s})}(q^{-1},\vec{x}) = (-)^d \chi^{\mathfrak{so}(d,2)}_{\mathcal{V}(d-\Delta,\vec{s})}(q,\vec{x})$$

Partition function

Character of free conformal spin-*s* **gauge field** [Beccaria, XB, Tseytlin, 2014]

• Off-shell (any d)

$$\chi_{\mathcal{S}(2-s,s)}(q,\vec{x}) = \chi_{\mathcal{D}(1-s,s-1)}(q,\vec{x}) + (-)^d \chi_{\mathcal{D}(s+d-2,s)}(q^{-1},\vec{x})$$

• On-shell (even d)

$$\chi_{\mathcal{D}(2;s,s)}(q,\vec{x}) = \chi_{\mathcal{D}(1-s,s-1)}(q,\vec{x}) + \chi_{\mathcal{D}(s+d-2,s)}(q^{-1},\vec{x}) - \chi_{\mathcal{D}(s+d-2,s)}(q,\vec{x})$$

Partition function

Remark: The formulae also applies in the degenerate case s = 0 in the sense that

Off-shell

$$\chi_{\mathcal{V}(2,0)}(q,\vec{x}) = (-)^d \chi_{\mathcal{D}(d-2,0)}(q^{-1},\vec{x})$$

On-shell

$$\chi_{\mathcal{D}(2,0)}(q,\vec{x}) = (-)^d \chi_{\mathcal{D}(d-2,0)}(q^{-1},\vec{x}) - \chi_{\mathcal{D}(d-2,0)}(q,\vec{x})$$

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Regularization & Cancellation

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Sum over all integer spins

Sum of partition functions over the infinite tower of Conformal currents ⇔ Massless fields (Dirichlet)

- = Partition function of free higher-spin gravity
- is finite in agreement with the Flato-Fronsdal theorem

$$\sum_{s=0}^{\infty} \chi_{\mathcal{D}(s+d-2,s)}(q, \vec{x}) = \left(\chi_{\mathcal{D}(\frac{d-2}{2}, 0)}(q, \vec{x})\right)^2$$

where $\mathcal{D}(\frac{d-2}{2},0)$ is the scalar singleton.

Conformal higher-spin gravity Classification of irreducible representations Computation of characters Regularization & Cancellation

Sum over all integer spins

Sum of partition functions over the infinite tower of **Fradkin-Tseytlin fields**

- = Partition function of free conformal higher-spin gravity
- is infinite and must be regularized.
- Regularization via characters [Basile, XB, Joung, 2018]
 - Onsider that the second term

$$\sum_{s=0}^{\infty} \chi_{\mathcal{D}(s+d-2,s)}(q^{-1},\vec{x}) = \left(\chi_{\mathcal{D}(\frac{d-2}{2},0)}(q^{-1},\vec{x})\right)^2$$

is finite as well, then the second and third terms cancel.

O This cancellation reduces the regularization of the partition function of free conformal higher-spin gravity to the one of the higher-spin algebra.

$$\sum_{s=0}^{\infty} \chi_{\mathcal{D}(2;s,s)}(q, \vec{x}) = \sum_{s=1}^{\infty} \chi_{\mathcal{D}(1-s,s-1)}(q, \vec{x})$$

Sum over all integer spins

Conclusion: At the level of characters of conformal higher-spin gravity,

Linearized spectrum = Symmetry algebra

Byproducts:

- **Regularizations consistent with higher-spin symmetries** by construction.
- Vanishing of type-A Weyl anomaly and Casimir energy ensured by parity property $Z(-\beta) = Z(\beta)$ valid for right-hand-side.

Conclusion and perspectives

Main results

Some suitable regularization of the divergent sum of characters over all spins suggest that the following modules might be isomorphic:

- the linearized spectrum of conformal higher-spin gravity theories (sum of all Fradkin-Tseytlin fields),
- the corresponding higher-spin algebra (sum of all conformal Killing tensors).

General conclusion

Confirmation of previous indications about conformal higher-spin gravity that, after regularization of the infinite tower of fields,

- no scale is generated at 1-loop (vanishing type-A Weyl anomaly, Casimir energy).
- the theory appears "topological" (trivial scattering, asymptotic charges as only dynamical degrees of freedom).

Perspectives

In order to confirm the relevance of our regularization prescription via characters:

- Obtain a field-theoretical version of our result about free conformal higher-spin gravity (linearized spectrum = symmetry algebra).
- Investigate its nonlinear analogue (if it survives interactions) in order to understand its deeper origin.