Integrability, One-point Functions and Tests of AdS/dCFT

Charlotte Kristjansen Niels Bohr Institute

Based on:

- M. de Leeuw, C.K., G. Linardopoulos, ArXiv:1802.01258[hep-th],
 Phys.Lett. B781 (2018) 238
- I. Buhl Mortensen, M. de Leeuw, A. Ipsen, C.K., M. Wilhelm, ArXiv: 1704.07386 [hep-th], Phys.Rev.Lett. 119 (26) (2017) 261604
- Previous work involving the same authors plus G. Semenoff & K. Zarembo as well as ongoing work involving A.G. Grau & M.Volk

Gauge/Gravity Duality 2018
Universität Würzburg,
August 1st, 2018

One-point functions --- Motivation

Possibly the simplest observables beyond the spectrum

Strong signs of integrability, closed determinant formulas (Similarities with three-point functions)

Lead to a positive test of AdS/CFT in a situation where conformal symmetry is partially broken and susy symmetry is partially or fully broken.

Provide input for the boundary conformal bootstrap program 1+2=3

Reveal interesting connections to statistical physics (Quenched action approach to non-equilibrium stat. phys.)

Plan of the talk

- The AdS/dCFT set-up and its extra parameter(s)
- II. Gauge theory results on one-point functions, featuring integrability.
- III. String theory predictions for one-point functions, involving double scaling limit.
- IV. Confirming predictions (conf. symmetry is partially broken and susy partially or completely broken.)
- V. Integrability at finite g?
- VI. Summary/Open problems

Part I.

The AdS/dCFT set-up and its parameters

One-point functions in AdS/CFT

A defect CFT ---- with string theory dual

$$\mathcal{N}=4$$
 SYM with a co-dimension one defect

$$S = \underbrace{S_{\mathcal{N}=4}}_{\text{bulk}} + \underbrace{S_{D=3}}_{\text{defect}},$$

Certain b.c. on bulk fields

Novel features

1. One-point functions

$$\langle \mathcal{O}_{\Delta}^{\text{bulk}}(x) \rangle = \frac{C}{|x_3|^{\Delta}}$$

Cardy '84 McAvity & Osborn '95

Normalization given by:
$$\lim_{x_3 \to \infty} \langle \mathcal{O}_{\Delta}^{\text{bulk}}(y+x) \mathcal{O}_{\Delta'}^{\text{bulk}}(z+x) \rangle = \frac{\delta_{\Delta\Delta'}}{|y-z|^{2\Delta}}$$

- 2. Two-point functions between op's with different conf. dims.
- 3. Mixed correlators involving bulk and defect fields

AdS/dCFT (D3-D5 or D3-D7 case)

String theory:

Brane Geometry:

Karch & Randall '01,

Geometry of D5 brane: $AdS_4 \times S^2$ (1/2 susy)

Geometry of D7 brane: $AdS_4 \times S^2 \times S^2$ or $AdS_4 \times S^4$ (No susy)

Precise embedding of D-brane determined by $S = S_{DBI} + S_{WZ}$

Parameters: λ, N

Issues

One-point functions at leading order in QFT involve a high number of loops (both 3D and 4D).

The D3-D7 probe brane set-up is unstable to fluctuations

AdS/dCFT a strong-weak coupling duality (eternal problem)

Resolution

Consider a non-trivial vacuum --- non-trivial fluxes on the of the gauge theory string theory side.

Non-trivial vacua of the gauge theory

$$\phi_i^{\text{cl}}(x) = \phi_i^{\text{cl}}(x_3), \quad i = 1, \dots, 6, \qquad \psi_\alpha^{\text{cl}} = 0, \quad A_\mu^{\text{cl}} = 0,$$

$$\frac{d^2 \phi_i^{\text{cl}}}{dx_3^2} = [\phi_j^{\text{cl}}, [\phi_j^{\text{cl}}, \phi_i^{\text{cl}}]]$$

D3-D5 brane solution:

For
$$x_3 > 0$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} (t_i)_{k \times k} & 0 \\ 0 & 0 \end{pmatrix}, i = 1, 2, 3$$

$$\phi_i^{\text{cl}} = 0, \quad i = 4, 5, 6$$

where t_i constitute a k-dimensional

irreducible representation of SU(2),

in particular $[t_i, t_j] = \epsilon_{ijk} t_k$,

For $x_3 < 0$

$$\phi_i^{\rm cl} = 0 \in \mathfrak{su}(N-k)$$

k is an additional tunable parameter (a flux)

Two D3-D7 brane solutions

 $SO(3) \times SO(3)$ symmetric solution

For
$$x_3 > 0$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} (t_i)_{k_1 \times k_1} \otimes 1_{k_2 \times k_2} & 0 \\ 0 & 0 \end{pmatrix}, \ i = 1, 2, 3$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} 1_{k_1 \times k_1} \otimes (t_i)_{k_2 \times k_2} & 0 \\ 0 & 0 \end{pmatrix}, i = 4, 5, 6$$

Broken SU(N) invariance

$$SU(N-k_1k_2)$$
 invariance

SO(5) symmetric solution

For
$$x_3 > 0$$

$$\phi_i^{\text{cl}} = \frac{1}{\sqrt{8}x_3} \begin{pmatrix} (G_i)_{d_G \times d_G} & 0\\ 0 & 0 \end{pmatrix}, i = 1, 2, 3, 4, 5$$

$$\phi_6^{\rm cl} = 0,$$

where $G_{ij} = [G_i, G_j]$ generate a d_G -dimensional irreducible representation of SO(5)

Broken SU(N) invariance

For
$$x_3 < 0$$

For $x_3 < 0$

$$\phi_i^{\text{cl}} = 0 \in \mathfrak{su}(N - d_G), \ i = 1, \dots, 6$$

 $\phi_i^{\text{cl}} = 0 \in \mathfrak{su}(N - k_1 k_2), \ i = 1, \dots, 6$

 $SU(N-d_G)$ invariance

OBS: AdS/CFT with additional parameters --- The dimension of the repr. (or fluxes), i.e.

$$k \text{ or } (k_1, k_2) \text{ or } d_G$$

Part II.

One-point functions in gauge theory

One-point functions in gauge theory

Scalar operators can have non-zero 1-pt fcts already at tree-level

Wish: A Systematic approach to the computation of 1-pt functions of *conformal* scalar operators using the tools of integrability

Consider operators built from

$$X = \phi_1 + i\phi_4$$
, $W = \phi_2 + i\phi_5$, $Y = \phi_3 + i\phi_6$
 $\overline{X} = \phi_1 - i\phi_4$, $\overline{W} = \phi_2 - i\phi_5$, $\overline{Y} = \phi_3 - i\phi_6$

Conformal scalar operators=Eigenstates of integrable SO(6) spin chain

Eigenstates of length L: $|u_i, v_j^+, v_k^-\rangle_L$ characterized by three sets of rapidities $\{u_i\}_{i=1}^M, \{v_j^+\}_{i=1}^{N^+}, \{v_j^-\}_{i=1}^{N^-}$

Corresponding operator:
$$L - M = \#X - \#\overline{X}$$
, $M - N_+ = \#W + \#\overline{X} + \#\overline{Y}$, $N_+ - N_- = \#Y - \#\overline{Y}$, $N_- = \#$ barred fields

One-point functions in gauge theory

$$\langle \mathcal{O}_{\Delta}(x) \rangle = (\operatorname{Tr}(\phi_{i_1} \dots \phi_{i_{\Delta}}) + \dots) \mid_{\phi_{i_a} \to \phi_{i_a}^{\text{cl}}} \equiv \frac{C(\{u_i, v_j^+, v_l^-\})}{x_3^{\Delta}}$$

Matrix Product State associated with the defect:

(D3-D5 case for simplicity)

deLeeuw, C.K.

& Zarembo '15,

$$|\mathrm{MPS_k}\rangle = \sum_{\vec{i}} \mathrm{tr}[t_{i_i} \dots t_{i_L}] |\phi_{i_1} \dots \phi_{i_L}\rangle,$$

Object to calculate:

$$C_k(\{u_i, v_j^+, v_l^-\}) = \frac{\langle MPS_k | \{u_i, v_j^+, v_l^-\} \rangle_L}{\langle \{u_i, v_j^+, v_l^-\} | \{u_i, v_j^+, v_l^-\} \rangle^{\frac{1}{2}}}$$

NB: Parameters:

$$L = \Delta$$
,
 M, N_+, N_- (number of Bethe roots/fields of various types),
 k (representation label)

Solution D3-D5 case

Selection rules:

de Leeuw, C.K & Linardopoulos, 18.

- Momentum of Bethe state equal to zero
- M and $L + N_+ + N_-$ even
- The rapidities come in pairs, i.e. $\{u_i\}, \{v_j^+\}, \{v_l^-\} = \{-u_i\}, \{-v_j^+\}, \{-v_l^-\}$ Follows from the fact that $Q_{2n+1}|\text{MPS}_k\rangle = 0$ for all $n \in N_0$

Result for C_k :

- Exact formula valid for any, L, M, N^+, N^- and k
- Expressed in terms of objects well known from integrability
 - Baxter polynomials $Q(u) = \prod_{i=1}^{M} (u u_i), Q_+(v), Q_-(v)$
 - Determinant of Gaudin matrix, G $\langle \{u_i, v_j^+, v_l^-\} | \{u_i, v_j^+, v_l^-\} \rangle = \det G = \det G_+ \det G_-$
 - Transfer matrix in higher reps (or some projection thereof).

Solution D3-D5 case

Result for C_k :

de Leeuw, C.K & Linardopoulos, 18.

• Exact formula valid for any, L, M, N^+, N^- and k

$$C_k^{SO(6)} = \sqrt{\frac{Q(0)Q(\frac{i}{2})Q(\frac{ik}{2})Q(\frac{ik}{2})}{\bar{Q}_+(0)\bar{Q}_+(\frac{i}{2})\bar{Q}_-(0)\bar{Q}_-(\frac{i}{2})}} \cdot \mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{\det G_+}{\det G_-}}$$

$$\mathbb{T}_n(x) = \sum_{a=-\frac{n}{2}}^{\frac{n}{2}} (x+ia)^L \frac{Q_+(x+ia)Q_-(x+ia)}{Q(x+i(a+\frac{1}{2}))Q(x+i(a-\frac{1}{2}))}.$$

- Can be proved analytically for the SU(2) subsector $(N_+ = N_- = 0)$. Here \mathbb{T}_n is the transfer matrix in the n+1 dimensional rep.
- Buhl-Mortensen, de Leeuw, C.K & Zarembo, 15.
- Has been checked numerically up to L=16, k=6 for SU(3) $(N_-=0)$. de Leeuw, C.K (Involves summing 10^{12} terms.)
- Has been checked numerically up to L=8, k=6 for SO(6)

SO(5) symmetric the D3-D7 brane set-up

Selection rules:

de Leeuw, C.K & Linardopoulos, 17.

- Momentum of Bethe state equal to zero
- $(L, M, N_+, N_-) = (L, M, M/2, M/2)$
- The rapidities come in pairs, i.e. $\{u_i\}, \{v_j^+\}, \{v_l^-\} = \{-u_i\}, \{-v_j^+\}, \{-v_l^-\}$ Follows from the fact that $Q_{2p+1}|\text{MPS}_n\rangle = 0$ for all $p \in N_0$

Result for C_n :

- Trivialises for SU(2) sub-sector, $N_{-} = N_{+} = 0$. ($\Longrightarrow M = 0$)
- Trivialises for SU(3) sub-sector, $N_{-}=0$. ($\Longrightarrow N_{+}=M=0$)
- No closed expression found for the full SO(6) sector (yet)

Should we expect a closed expression?

Integrability of Matrix Product States

In statistical physics: $\langle \text{MPS} | \{u_i, v_j^+, v_l^-\} \rangle \sim \langle \text{Initial} | n \rangle \equiv \langle \Psi_0 | n \rangle$

Time evolution of local observable after a quantum quench:

$$\langle \mathcal{O}(t) \rangle = \langle \Psi_0 | e^{iHt} \mathcal{O} e^{-iHt} | \Psi_0 \rangle$$
$$= \sum_{n,m} \langle \Psi_0 | n \rangle \langle m | \Psi_0 \rangle \langle n | \mathcal{O} | m \rangle e^{-i(E_m - E_n)t}$$

Proposed criterion for integrability of MPS: $\hat{Q}_{2m+1}|{
m MPS}
angle=0, \qquad m\geq 1$ Piroli, Pozsgay Vernier '17

NB: Imply pairing of roots for Bethe states in order to have non-vanishing overlap with MPS

- D3-D5 MPS fulfills integrability criterion
- D3-D7 SO(5) symmetric MPS fulfills integrability criterion
- D3-D7 SO(3) x SO(3) symmetric MPS does not fulfils integrability criterion

Puzzle: No closed form for 1-pt functions for the SO(5) symmetric D3-D7 case (yet)

Possible key to progress: A scattering picture with a reflection matrix

Part III.

One-point functions in string theory

The double scaling limit

D3-D5 probe brane system suggests a new double scaling limit

Nagasaki & Yamaguchi '12,

$$\lambda \to \infty, \ k \to \infty, \ \frac{\lambda}{k^2} \text{ finite} \qquad (N \to \infty)$$

One can compare perturbative gauge theory to semi-classical string theory (or sugra).

For D3-D7 with SO(3) x SO(3) symmetry:
$$\cot \alpha = \frac{\pi \sqrt{k_1^2 + k_2^2}}{\sqrt{\lambda}}$$
 C.K., Semenoff & Young '12,

NB: D3-D5 Both susy and conformal symmetry are partially broken D3-D7 Susy completely broken

One-point functions of chiral primaries --- GKPW method

- Only one chiral primary with the appropriate symmetry for each (even) conf.dim. Δ
- Find the variation $\delta S_E = \delta(S_{DBI} + S_{WZ})$
- Expand fluctuations in terms of spherical harmonics on S^5

$$\delta S_E(X,\Omega) = \sum_{\Delta} \sum_{I} s_{\Delta I}(X) Y_{\Delta I}(\Omega)$$

- Pick $Y_{\Delta I}(\Omega)$ the wanted unique chiral primary
- Replace $s_{\Delta I}(X)$ with a bulk-to-boundary propagator reaching from a point z on the brane to x_3 at the boundary. Integrate over z.

Nagasaki & Yamaguchi '12,

Results in d.s.l. for chiral primary of length L

Match at leading order in d.s.l. both for D3-D5 and D3-D7

Nagasaki & C.K., Semenoff, Yamaguchi '12, Young '12,

Next to leading order predictions

D3-D5 set-up:

$$\frac{\langle Y_L(\lambda) \rangle}{\langle Y_L(0) \rangle} \bigg|_{sugra} = 1 + \frac{\lambda}{4\pi^2 k^2} \frac{L(L+1)}{4(L-1)} + \mathcal{O}\left(\left(\frac{\lambda}{4\pi^2 k^2}\right)^2\right)$$

Nagasaki & Yamaguchi '12,

D3-D7 set-up with SO(3) x SO(3) symmetry

Grau, C.K, Volk & Wilhelm, to appear

$$\begin{split} \frac{\langle Y_L(\lambda) \rangle}{\langle Y_L(0) \rangle} \bigg|_{sugra} &= 1 + \frac{\lambda}{4\pi^2 (k_1^2 + k_2^2)} \frac{1}{\left[k_1^2 + k_2^2\right]^3 (L - 1) \sin(L + 2) \phi} \Big[\\ &+ 4Lk_1k_2 \left[(k_1)^4 + (k_2)^4 + (k_1k_2)^2 (L + 1) \right] \cos L \phi \\ &+ \left[(k_2)^2 - (k_1)^2 \right] \left[4(k_1k_2)^2 (L^2 + L - 1) + ((k_1)^4 + (k_2)^4) (L^2 + 3L - 2) \right] \sin L \phi \Big] \\ &+ \mathcal{O}\left(\left(\frac{\lambda}{4\pi^2 (k_1^2 + k_2^2)} \right)^2 \right), \qquad \phi = \arctan\left(\frac{k_1}{k_2} \right) \end{split}$$

Part IV.

One-loop one-point functions in gauge theory Matching gauge and string theory

One-loop one-point functions

Motivation:

- I. Setting up the quantum computation is non-trivial
- II. Checking the one-loop predictions from string theory

Choose
$$\mathcal{O} = \operatorname{Tr} Z^L \in SU(2)$$
 sector $= c_1 Y_L + \dots$

$$\frac{\langle \operatorname{tr} Z^L(\lambda) \rangle}{\langle \operatorname{tr} Z^L(0) \rangle} = \frac{\langle Y_L(\lambda) \rangle}{\langle Y_L(0) \rangle}$$

III. Integrability and finite g

The one-loop computation

Two types of corrections

- 1. New one-loop Feynman diagrams
- 2. Correction of the eigenstate (not for chiral primaries)

1.

Scalars, gauge fields, fermions, ghosts

Two planar diagrams

2. Can be found using $\Theta - \operatorname{morphism}$ Gromov & Vieira ´13, '14

Field theory result, chiral primaries

D3-D5 dCFT (1/2 susy):

$$\frac{\langle \operatorname{tr} Z^L \rangle_{\text{one-loop}}}{\langle \operatorname{tr} Z^L \rangle_{\text{tree level}}} = 1 + \frac{\lambda}{4\pi^2 k^2} \frac{L(L+1)}{4(L-1)}$$

Buhl-Mortensen, de-Leeuw, Ipsen, C.K., Wilhelm, '16

D3-D7 dCFT with SO(3) x SO(3) symmetry (no susy):

Grau, C.K, Volk & Wilhelm, to appear

$$\frac{\langle \operatorname{tr} Z^{L} \rangle_{\text{one loop}}}{\langle \operatorname{tr} Z^{L} \rangle_{\text{tree-level}}} = 1 + \frac{\lambda}{4\pi^{2}(k_{1}^{2} + k_{2}^{2})} \frac{1}{\left[(k_{1})^{2} + (k_{2})^{2}\right]^{3} (L - 1) \sin(L + 2)\phi} \left[+ 4Lk_{1}k_{2} \left[(k_{1})^{4} + (k_{2})^{4} + (k_{1}k_{2})^{2} (L + 1)\right] \cos L\phi + \left[(k_{2})^{2} - (k_{1})^{2}\right] \left[4(k_{1}k_{2})^{2} (L^{2} + L - 1) + ((k_{1})^{4} + (k_{2})^{4})(L^{2} + 3L - 2)\right] \sin L\phi \right]$$

$$\phi = \arctan\left(\frac{k_{1}}{k_{2}}\right)$$

Complete match with string theory in both cases

Part V.

Integrability at finite g?

One point functions at higher loop orders

Buhl-Mortensen, de-Leeuw, Ipsen, C.K., Wilhelm ,17

D3-D5 dCFT: Can we guess the result based on integrability?

For simplicity restrict to SU(2) sub-sector

Idea:

• Make the integrability characteristic replacements in the Bethe eqns.

$$u \pm \frac{i}{2} \longrightarrow x(u \pm \frac{i}{2}), \quad u(x) = x + \frac{g^2}{x}, \quad g^2 = \frac{\lambda}{8\pi^2}$$

(plus dressing phase plus wrapping corrections)

• Make the same replacement in the transfer matrix, i. e.

$$T_n(u) \longrightarrow \tilde{T}_n(u) = g^L \sum_{a=-\frac{n}{2}}^{\frac{n}{2}} x(u+ia)^L \frac{Q(u+\frac{n+1}{2}i)Q(u-\frac{n+1}{2}i)}{Q(u+(a-\frac{1}{2})i)Q(u+(a+\frac{1}{2})i)}$$

Possible asymptotic (i.e. so far without wrapping) formula

$$C_k = i^L \tilde{T}_{k-1}(0) \sqrt{\frac{Q(\frac{i}{2})Q(0)}{Q^2(\frac{ik}{2})}} \sqrt{\frac{\det \tilde{G}_+}{\det \tilde{G}_-}}$$

Outcome from the one-loop computation

Buhl-Mortensen, de-Leeuw, Ipsen, C.K., Wilhelm,17

$$C_k = i^L \tilde{T}_{k-1}(0) \sqrt{\frac{Q(\frac{i}{2})Q(0)}{Q^2(\frac{ik}{2})}} \sqrt{\frac{\det \tilde{G}_+}{\det \tilde{G}_-}} \, \mathbb{F}_k \quad (*)$$

$$\mathbb{F}_k = 1 + g^2 \left[\Psi(\frac{k+1}{2}) + \gamma_E - \log 2 \right] \Delta^{(1)} + O(g^4),$$

OBS: Independent of rapidities

Checked for: L, M=2, any k (analytical derivation) L=8, M=4, k=2,3,4,5,6 (numerically)

Exponentialization at higher loop orders?

$$\mathbb{F}_k \stackrel{?}{=} 2^{L-\Delta} \exp\left[(\Delta - L)(\Psi(\frac{k+1}{2}) + \gamma_E) \right]$$

Two loop computation might clarify this (NB Two loops in AdS)

(*) reproduces string theory result in d.s.l. up to wrapping order!

Summary of results

- A closed expression for all tree-level scalar one-point functions in the D3-D5 case for any representation label k.
- Closed one-point function formula in SU(2) sub-sector at one-loop for D3-D5 set-up. (Proposal for asymptotic formula.)
- Match with string theory for D3-D5 to two leading orders in d.s.l.
 for the one-pt function of a chiral primary (conf. & susy partially broken.)
- Match with string theory for D3-D7 to two leading orders in double scaling parameter for the one-pt function of a chiral primary (susy completely broken).
- Ongoing investigations of the D3-D7 brane system. (Non-protected one-point functions vanish in SU(2) and SU(3) sector in the SO(5) symmetric case, no closed formula for SO(6) (yet) in either case)

Open questions:

- Understanding the integrability of D3-D5 from scattering theory
- Understanding if D3-D7 is integrable or not
- Working out the precise action of the 3D defect field theory
 (important for higher loop computations as well as the conf. bootstrap program)
- More elaborate data-mining using one and two-point functions by means of boundary conformal bootstrap eqns.
- More detailed comparisons with string theory for both one- and two-point functions:
 f.inst. involving spinning strings (i.e. non-protected operators)
- Moving on to higher loop orders (understand wrapping)

Thank you