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One-point functions --- Motivation

Possibly the simplest observables beyond the spectrum

Strong signs of integrability, closed determinant formulas
(Similarities with three-point functions)

Lead to a positive test of AdS/CFT in a situation where
conformal symmetry is partially broken and susy symmetry
is partially or fully broken.

Provide input for the boundary conformal bootstrap program
1+2=3

Reveal interesting connections to statistical physics
(Quenched action approach to non-equilibrium stat. phys.)



Plan of the talk
l.  The AdS/dCFT set-up and its extra parameter(s)

Il. Gauge theory results on one-point functions,
featuring integrability.

Ill. String theory predictions for one-point functions,
involving double scaling limit.

V. Confirming predictions (conf. symmetry is partially broken
and susy partially or completely broken.)

V. Integrability at finite g ?

VI. Summary/Open problems



Part I.

The AdS/dCFT set-up and its parameters



One-point functions in AdS/CFT

A defect CFT ---- with string theory dual
X0 Freedman &

N =4 SYM with a co-dimension one defect Ooguri '01,

S = SN:4 + SD:37 Certain b.c. on bulk fields
N——

v X3
bulk defect
X1,2
Novel features
Cardy "84

1. One-point functions

(08" (@) =

McAvity & Osborn '95

. bulk bulk 5AA/
lim (O™ (y + 2)Ox (2 + 7)) = — z|2A

r3—> 00 |y

Normalization given by:
2. Two-point functions between op’s with different conf. dims.

3. Mixed correlators involving bulk and defect fields



AdS/dCFT (D3-D5 or D3-D7 case)

String theory:

0 1 2 3 1 5 6 7 8 9

r’ - xt x ot oz xx° x' x°
N D3 x X X X
Probe D5 x x X X X X

or Probe D7 X X X X X X X X

Brane GEOmEtry: Karch & Randall ’01,

Geometry of D5 brane: AdS, x S? (1/2 susy)

Geometry of D7 brane: AdS, x S? x S? or AdS, x S* (Nosusy)

Precise embedding of D-brane determined by S = Spp; + Swz

Parameters: \, N




Issues

One-point functions at leading order in QFT involve a high number
of loops (both 3D and 4D).

The D3-D7 probe brane set-up is unstable to fluctuations

AdS/dCFT a strong-weak coupling duality (eternal problem)

Resolution

Consider a non-trivial vacuum --- non-trivial fluxes on the
of the gauge theory string theory side.



Non-trivial vacua of the gauge theory
oM x) = ¢ (z3), i=1,...,6, < =0, AZI = 0,

d2 cl
T = o5 (05 o]

D3-D5 brane solution:

For x5 > 0 For z3 < 0
qsgl:i ((ti)kxk O)’ = 1.2.3 o' =0 € su(N — k)
xg O O

o' =0, i=4,5,6
where ¢; constitute a k-dimensional
irreducible representation of SU(2),

in particular [t;,t;] = €;;xtk, SU(N — k) (broken) SU(N)

T3

r12

Constable, Myers
& Tafjord 99

k is an additional tunable parameter (a flux)



Two D3-D7 brane solutions
SO(3) x SO(3) symmetric solution

For 3 > 0 For x3 < 0

oS = 1 <(ti)k:1><k:1 ® Lz xks O) L i=1,2,3 o' =0 € su(N — kiks), i=1,...
I3 0 0

A (1"“”1 @ o 0), i =4,5,6
I3 0 0

Broken SU(N) invariance SU(N — kiko) invariance

SO(5) symmetric solution
For z3 > 0 For z3 < 0

0 0

o = 1 ((Gi)dgxda O) L i=1,2.3.4,5 qﬁfl =0€su(N —dg), i=1,...

V83
gl =0,
where G;; = |G;, G| generate a dg-dimensional
irreducible representation of SO(5)

Broken SU(NN) invariance SU(N — dg) invariance

OBS: AdS/CFT with additional parameters --- The dimension of the repr. (or fluxes), i.e.

k or (ki,ks) or dg



Part Il.

One-point functions in gauge theory



One-point functions in gauge theory
Scalar operators can have non-zero 1-pt fcts already at tree-level

Wish: A Systematic approach to the computation of 1-pt functions
of conformal scalar operators using the tools of integrability

Consider operators built from
X =01 +igs, W =0¢a+ 105, Y = p3+i¢e
Y:¢1—i¢4, W:¢2_i¢57 ?:¢3_Z¢6

Conformal scalar operators=Eigenstates of integrable SO(6) spin chain

Eigenstates of length L: |u;, v}, v, )1
characterized by three sets of rapidities {ui}i;, {’U+}z b {v hn

Corresponding operator: L — M = #X —#X,
M— Ny =# W+ #X + #Y,
N, — N_ = #Y — #Y,
= # barred fields



One-point functions in gauge theory

C({u;, v, v
(Oa(x)) = (Tr(pi, .- Pin) +...) |¢ia_>¢§; _ ({ xé })

Matrix Product State associated with the defect: deleeuw, C.K.
& Zarembo ‘15,

(D3-D5 case for simplicity)

‘MPSk Ztr T; v - zL ¢zl---¢iL>7

Object to calculate:

MPS Ui,v+7v_
Ck <{“z’7v;7?}l—}) = < Al J }>L

({wir v o p{wi, v o))

N[~

NB: Parameters:
L=A,
M, Ny, N_ (number of Bethe roots/fields of various types),

k (representation label)



Solution D3-D5 case

Selection rules: de Leeuw, C.K &
Linardopoulos, 18.

e Momentum of Bethe state equal to zero

e M and L + N, + N_ even
e The rapidities come in pairs, i.e. {u;}, {v;.L}, {v; } ={—ui}, {—v;r}, {—v; }
Follows from the fact that Q2,11|MPSg) = 0 for all n € Ny

Result for Ck:

e Exact formula valid for any, L, M, NT, N~ and k

e Expressed in terms of objects well known from integrability

— Baxter polynomials Q(u) = Hf\il(u —ui), Q1 (v), Q_(v)
— Determinant of Gaudin matrix, G
<{ui,v;-L,vl_}\{ui,v;r,vl_}> = det G = det G4 det G

— Transfer matrix in higher reps (or some projection thereof).



Solution D3-D5 case

de Leeuw, C.K &
Result for Cj: Linardopoulos, 18.

e Exact formula valid for any, L, M, N*, N~ and k
5000 :\/Q(O)Q(Q‘)Q(Q)Q(Q)‘ o oy, detGy
k 300, (2 0e_ 3 " daa-

__n
a=—7

Buhl-Mortensen,

e Can be proved analytically for the SU(2) subsector (N = N_ =0). |/ -5 ">
Here T,, is the transfer matrix in the n 4+ 1 dimensional rep. Zarembo, 15.

e Has been checked numerically up to L = 16,k = 6 for SU(3) (N_ =0). de Leeuw, CK
(Involves summing 102 terms.) & Mori, 16.

e Has been checked numerically up to L = 8,k = 6 for SO(6)



SO(5) symmetric the D3-D7 brane set-up

Selection rules: de Leeuw, C.K &
Linardopoulos, 17.

e Momentum of Bethe state equal to zero
o (LLM,N,,N_)=(L,M,M/2, M/2)

e The rapidities come in pairs, i.e. {u;}, {v;-r}, {v; } ={—ui}, {—vj}, {—v, }
Follows from the fact that Q2,11|MPS,,) =0 for all p € Ny

Result for C,,:
e Trivialises for SU(2) sub-sector, N. =N, =0. ( = M =0)
e Trivialises for SU(3) sub-sector, N =0. ( = N, =M =0)

e No closed expression found for the full SO(6) sector (yet)

Should we expect a closed expression?



Integrability of Matrix Product States

In statistical physics: (MPS |{u;, v} v, }) ~ (Initial |n) = (¥g|n)

Time evolution of local observable after a quantum quench:
(Ot)) = (Wo|eHtOe= )
— Z<\Ifo|n> (m|Wo) <n|@|m>e—z’(Em_En)t

n,m

~ Piroli, Pozsgay
Proposed criterion for integrability of MPS: Q2,,,+1|MPS) =0, m>1 Vernier ‘17

NB: Imply pairing of roots for Bethe states in order to have non-vanishing overlap with MPS

e D3-D5 MPS fulfills integrability criterion
 D3-D7 SO(5) symmetric MPS fulfills integrability criterion
 D3-D7 S0O(3) x SO(3) symmetric MPS does not fulfils integrability criterion

Puzzle: No closed form for 1-pt functions for the SO(5) symmetric D3-D7 case (yet)

Possible key to progress: A scattering picture with a reflection matrix



Part Ill.

One-point functions in string theory



The double scaling limit

Nagasaki &

D3-D5 probe brane system suggests a new double scaling limit " i,

AdS, D5-brane

Tk

cota = —

VA

AdSs-boundary

A
A—)oo,k—>oo,?ﬁnite (N — o0)

One can compare perturbative gauge theory to semi-classical string theory ( or sugra).

/T2 | 1.2
For D3-D7 with SO(3) x SO(3) symmetry: cota = TV kT C.K., Semenoff &
\/X Young ‘12,

NB: D3-D5 Both susy and conformal symmetry are partially broken
D3-D7 Susy completely broken



One-point functions of chiral primaries --- GKPW method

Only one chiral primary with the appropriate symmetry for each (even)
conf.dim. A

Find the variation 6Sg = §(Sppr + Swz)

Expand fluctuations in terms of spherical harmonics on S°

5Sk(X,Q) ZZSM ) Yar()

Pick YA7(€2) the wanted unique chiral primary

Replace saj(X) with a bulk-to-boundary propagator reaching from a point
z on the brane to x3 at the boundary. Integrate over z.

To be integrated over
Nagasaki &

i ‘12
AdSs-boundary Yamaguchi )

r3 Fixed



Results in d.s.l. for chiral primary of length L

Nagasaki & C.K., Semenoff,

Match at leading order in d.s.l. both for D3-D5 and D3-D7 Yamaguchi ‘12, Young ‘12,

Next to leading order predictions

D3-D5 set-up:

2 Nagasaki &
M — 1+ A L(L + 1) + @, A Yamaguchi ‘12,
(Y (0)) sugra Am2k? A(L — 1) 42 k2

Grau, C.K, Volk &

D3-D7 set-up with SO(3) x SO(3) symmetry Wilhelm, to appear
(YL(A)) . A 1 [
(Y2(0)) | sugra Am2 (k7 + k3) (k2 + k2] (L — 1) sin(L + 2)6

+ 4Lk1ks [(k1)* + (k2)* + (k1k2)*(L + 1)] cos Lo
+ [(k2)? — (k1)?] [4(k1k2)?(L? + L — 1) + ((k1)* 4 (k2)*)(L* + 3L — 2)] sin L¢}

A g k
+ O ((47r2(k% +k%)) ) 3 ¢ = arctan (k—;)




Part IV.

One-loop one-point functions in gauge theory
Matching gauge and string theory



One-loop one-point functions

Motivation:

|. Setting up the quantum computation is non-trivial

Il. Checking the one-loop predictions from string theory
Choose O = TrZ* € SU(2) sector
=Yy + ...

Ill. Integrability and finite g



The one-loop computation

Two types of corrections
1. New one-loop Feynman diagrams
2. Correction of the eigenstate (not for chiral primaries)

Scalars, gauge fields,
1. fermions, ghosts

Two planar diagrams

2. Can be found using © — morphism Gromov &
Vieira '13, ‘14



Field theory result, chiral primaries
D3-D5 dCFT (1/2 susy):

Buhl-Mortensen,

<trZL>one—loop - A L(L + 1) de-Leeuw, Ipsen,

(trZL) oo lovel 4m2k2 4(L — 1) C.K., Wilhelm, ‘16

Grau, C.K, Volk &

D3-D7 dCFT with SO(3) x SO(3) symmetry (no susy): Wilhelm, to appear

=1
(12" ) tree-level i A2 (ki + k3) [(k1)? + (k2)2]3 (L —1)sin(L + 2)¢

+ 4Lk ky [(k1)* 4 (k2)* + (k1k2)*(L 4 1)] cos Lo
+ [(k2>2 — (kl)ﬂ [4(k1k2)2(L2 -+ L — 1) -+ ((k1)4 —+ (k2)4)(L2 + 3L — 2)} sin qu}

k
¢ = arctan (k—;)

Complete match with string theory in both cases

<trZL>one loop A 1 [



Part V.

Integrability at finite g ?



One point functions at higher loop orders
Buhl-Mortensen,

. o de-Leeuw, Ipsen,
D3-D5 dCFT: Can we guess the result based on integrability ? C.K., Wilhelm ,17

For simplicity restrict to SU(2) sub-sector

ldea:
* Make the integrability characteristic replacements in the Bethe eqgns.
; 2
A

v v _ g 2
u:|:2 —>a:(u:|:2), u(x)_gj—kg, g :8?

(plus dressing phase plus wrapping corrections)

 Make the same replacement in the transfer matrix, i. e.

V|3

To(u) — To(u) = g" ) o(u+ia)"

——n
2

* Possible asymptotic (i.e. so far without wrapping) formula

oo
2 —




Outcome from the one-loop computation Buhl-Mortensen,

de-Leeuw, Ipsen,

g~ Q(£)Q(0) [det G4 C.K., Wilhelm ,17
Cp, = i*T},_1(0 27 T, (*
e )\/ @@ awg
OBS: Independent
Fr=1+g" {‘1’(%) + 5 — log Q]A(l) + O0(g) of rapidities

Checked for: L, M=2, any k (analytical derivation)
L=8, M=4, k=2,3,4,5,6 (numerically)

Exponentialization at higher loop orders ?
? AL
Fr = 252 exp [ (A = L)(U(42) + )|

Two loop computation might clarify this (NB Two loops in AdS)

(*) reproduces string theory result in d.s.l. up to wrapping order!



Summary of results

A closed expression for all tree-level scalar one-point functions in the D3-D5 case
for any representation label k.

Closed one-point function formula in SU(2) sub-sector at one-loop for
D3-D5 set-up. (Proposal for asymptotic formula.)

Match with string theory for D3-D5 to two leading orders in d.s.l.
for the one-pt function of a chiral primary (conf. & susy partially broken.)

Match with string theory for D3-D7 to two leading orders in double scaling
parameter for the one-pt function of a chiral primary (susy completely broken).

Ongoing investigations of the D3-D7 brane system. (Non-protected one-point
functions vanish in SU(2) and SU(3) sector in the SO(5) symmetric case, no
closed formula for SO(6) (yet) in either case)



Open questions:

Understanding the integrability of D3-D5 from scattering theory
Understanding if D3-D7 is integrable or not

Working out the precise action of the 3D defect field theory
(important for higher loop computations as well as the conf. bootstrap program)

More elaborate data-mining using one and two-point functions
by means of boundary conformal bootstrap eqgns.

More detailed comparisons with string theory for both one- and
two-point functions :

f.inst. involving spinning strings (i.e. non-protected operators)

Moving on to higher loop orders ( understand wrapping)



Thank you



