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What is a Black Hole? 

In General Relativity (and its cousins): 

•  Causality: Horizon & Singularity 
•  Thermodynamics:  Entropy 
•  Response: Quasi-normal modes 
•  Quantum Information: Excellent Scramblers 
 



Not every theory of gravity has a classical geometrical description. 



What is a Black Hole  
in Higher Spin Gravity? 

•  Causality: Horizon & Singularity 
•  Thermodynamics:  Entropy 
•  Response: Quasi-normal modes 
•  Quantum Information: Excellent Scramblers 
 

Which of these features implies the rest? 
Are they always interconnected? 



What is a Black Hole  
in Higher Spin Gravity? 

The goal is to give a definition that  
 
•  does not require a geometric 

description,  

•  and is fully compatible with the 
gauge symmetries of the theory.  



What is a Black Hole  
in Higher Spin Gravity? 

Along the way, we will 
 
•  challenge the holographic 

dictionary, 

•  and challenge the intuition we 
exploit from general relativity.  
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Chern-Simons formulation  

3d Higher Spin Gravity 



3d Gravity 

In  2+1 dimensions, we have the luxury of casting general relativity in terms of: 

Einstein-Hilbert: Metric, curvature 

Chern-Simons: Gauge connections  

[Acucharro & Townsend; Witten] 
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3d Gravity 

In  2+1 dimensions, we have the luxury of casting general relativity in terms of: 

Einstein-Hilbert: Metric, curvature 

Chern-Simons: Gauge connections  

[Acucharro & Townsend; Witten] 

Local variables. 
Spacetime is explicit. 

Gauge Theory. 
Topological nature is 
explicit.  

OR 

Inclusion of massless higher spin fields 
is straightforward! 
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 

1.  Gauge Group:  
Organization of the massless modes 
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 

1.  Gauge Group:  
Organization of the massless modes 

2. Boundary Conditions:  
Setup the AdS/CFT dictionary 
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Perturbative Aspects 

Asymptotic Symmetry Group and Ward Identities 
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With central charge: 



Strategy  

q Work with a Chern-Simons formulation of higher spin theories.   

q Emphasis on SL(N), and SUSY cousins, i.e. a finite number of higher 

spin fields. 

q Exploit holography: comparison with dual WN theories when 

possible. 

 

q  I’ll never ever involve a metric in the subsequent definitions. 



Thermal Properties 

Euclidean Black Holes 



Characterizing Solutions 
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SL(N)⇥ SL(N)

Th
eo

ry
 

So
lu

tio
ns

 

CFT 

AdS 
ρ 

z



a(z, z̄) = a�d�+ atEdtE

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

CFT 

AdS 
ρ 

z

Physical content in the connection:  

[Gutperle & Kraus; de Boer & Jottar; Bunster et al] 



a(z, z̄) = a�d�+ atEdtE

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

VEV conserved charges Sources  

CFT 

AdS 
ρ 

z

Physical content in the connection:  

[Gutperle & Kraus; de Boer & Jottar; Bunster et al] 



a(z, z̄) = a�d�+ atEdtE

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

Sources  

H = HCFT +

I
d�

X

s

µsJs +

I
d�

X

s

µ̄sJ̄s

From the perspective of CFT dual, 

CFT 

AdS 
ρ 

z

Physical content in the connection:  

[Gutperle & Kraus; de Boer & Jottar; Bunster et al] 

VEV conserved charges 



a(z, z̄) = a�d�+ atEdtE

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

a� =

0

@
0 1

2L �2W
1 0 1

2L
0 1 0

1

A Equations of motion 
+ 

Boundary conditions 

vev spin-3 current  

Consider N=3, the explicit form of the connection is  

L :

W :

vev spin-2 current (energy-momentum tensor)  
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source spin-3 current  

Consider N=3, the explicit form of the connection is  

source spin-2 current (temperature)  
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Consistency Check: Chern-Simons eoms map to Ward identities of the CFT 

a(z, z̄) = a�d�+ atEdtE



Smoothness Conditions 

z ' z + 2⇡ ' z + 2⇡⌧

tE

�

tE

⇢

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

Ā(⇢, z, z̄) = b(⇢)
⇣
ā(z, z̄) + d

⌘
b�1(⇢)

Connection should support the topology underneath!  

[Gutperle & Kraus] 

z = �+ itE



Smoothness Conditions 

[Gutperle & Kraus] 

HolCE (A) = “trivial”

CE



Smoothness Conditions 

[Gutperle & Kraus] 

HolCE (A) = “trivial”

P exp

✓I

CE

a

◆
= e2⇡(⌧az+⌧̄az̄)

= e2⇡iL0

Elegant condition that only uses natural variables of Chern-Simons theory. 

Eigen
�
⌧az + ⌧̄az̄

�
= Eigen

�
iL0

�
CE

Use A = b(a+ d)b�1

Diagonalize 



Thermodynamics 

[Gutperle & Kraus; de Boer & Jottar] 

Eigen
�
⌧az + ⌧̄az̄

�
= Eigen

�
iL0

�
Holonomy condition leads to thermodynamics! 

⌧(L, Js) & µs(L, Js)Solve 



Thermodynamics 

�S = ⌧�L� ⌧̄ �L̄+
NX

s=3

(µs�Js � µ̄s�J̄s)

S = 2⇡kTr
⇥
(�� � �̄�)L0

⇤

Eigen
�
⌧az + ⌧̄az̄

�
= Eigen

�
iL0

�
Holonomy condition leads to thermodynamics! 

⌧(L, Js) & µs(L, Js)

[Gutperle & Kraus; de Boer & Jottar] Eigen(a�) ⌘ �� & Eigen(ā�) ⌘ �̄�

Combined with the CS variational principle, one can show 

Solve 

Entropy of HSBH 



What is an Euclidean Black Hole  
in Higher Spin Gravity? 

•  Causality: Horizon & Singularity 
•  Thermodynamics:  Entropy 
•  Response: Quasi-normal modes 
•  Quantum Information: Excellent Scramblers 
 

Lesson: 
Euclidean regularity implies thermodynamic relations 



And their awkward SUSY features 

Extremal Black Holes 

Based on 1512.00073 with Bañados, Faraggi and Jottar  



What defines an extremal black hole? 

•  Confluence of horizons: inner = outer 
•  Zero Hawking temperature 
•  Enhancement of symmetries: e.g. AdS2 
•  Saturation of cosmic censorship: M≥J 
•  BPS conditions (SUSY) 
•  Reality observables: e.g. Im(S)=0 
 

From general relativity, we know 

Task for HS gravity: 
Extrapolate one of these conditions in a CS way. 
Explore how the rest is interconnected. 



a(z, z̄) = a�d�+ atEdtE

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

Charges Sources  

Physical content in the connection:  

Simplistic view: Thermodynamics is an eigenvalue problem 

S = 2⇡kTr
⇥
(�� � �̄�)L0

⇤

Eigen
�
⌧az + ⌧̄az̄

�
= Eigen

�
iL0

�

Implicit assumption that connections are diagonalizable, 
which is true of independent values of the charges. 

: Holonomy condition 

: Entropy of HSBH 



Extreme Limit: our proposal 

a(z, z̄) = a�d�+ atEdtE

Charges Sources  

Extremal = non-diagonalizable aφ 



Extreme Limit: our proposal 

a(z, z̄) = a�d�+ atEdtE

Charges Sources  

Extremal = non-diagonalizable aφ 

Via  

Extremal = zero temperature 

Eigen
�
⌧az + ⌧̄az̄

�
= Eigen

�
iL0

�
Confluence of eigenvalues 



What defines an extremal black hole? 

•  Confluence of horizons: inner = outer 
•  Zero Hawking temperature 
•  Enhancement of symmetries: e.g. AdS2 
•  Saturation of cosmic censorship: M≥J 
•  BPS conditions (SUSY) 
•  Reality observables: e.g. Im(S)=0 
 

From general relativity, we know 



What defines an extremal black hole? 

•  Confluence of eigenvalues 
•  Zero Hawking temperature 
•  Enhancement of symmetries: e.g. AdS2 
•  Saturation of cosmic censorship: M≥J 
•  BPS conditions (SUSY) 
•  Reality observables: e.g. Im(S)=0 
 

For higher spin gravity, we have 



What defines an extremal black hole? 

•  Confluence of eigenvalues 
•  Zero Hawking temperature 
•  Enhancement of symmetries: e.g. AdS2 
•  Saturation of cosmic censorship: M≥J 
•  BPS conditions (SUSY) 
•  Reality observables: e.g. Im(S)=0 
 

From higher spin gravity, we have 

[Gutperle & Kraus; Henneaux, Perez, Tempo & Troncoso] 



BPS Conditions 

Embedded in a supersymmetric version of CS, one can ask when   

a(z, z̄) = a�d�+ atEdtE

is compatible with SUSY and what are the appropriate BPS bounds (`M=Q’). 
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Embedded in a supersymmetric version of CS, one can ask when   

a(z, z̄) = a�d�+ atEdtE

is compatible with SUSY and what are the appropriate BPS bounds (`M=Q’). 

We derived the bounds on both CFT and Gravity.  
They match in the large c limit.  



BPS Conditions 

Embedded in a supersymmetric version of CS, one can ask when   

a(z, z̄) = a�d�+ atEdtE

is compatible with SUSY and what are the appropriate BPS bounds (`M=Q’). 

We derived the bounds on both CFT and Gravity.  
They match in the large c limit.  

We found that BPS bounds do not imply extremality. In particular, we can 
construct SUSY HSBH that are at finite temperature! 



Exploring bulk locality in HS gravity 

Eternal Black Holes 

Based on 1306.4338 with Ammon and Iqbal 
              1602.09057 with Iqbal and Llabres 
              1805.05398 with Iqbal and Llabres

     



Singularity 

How to capture casual properties in Higher Spin gravity?  
How to probe local bulk physics? 

Let’s quantify this diagram in the CFT language. 



Highly entropic state.  

Eternal HS Black Hole 

A possible definition: 

An eternal black  is a thermo-field double state in the CFT. 

Whereas an Euclidean black holes satisfies: 

HolCE (A) = “trivial”



An eternal black  is a thermo-field double state in the CFT. 

Singularity 

the thermofield state with chemical potential, which when defined carefully is actually

| i = 1p
Z

X

n

e�
�
2 (En+µQn)|UniL|niR (7)

The sum is over all energy eigenstates of the system, which each possess a conserved energy and U(1) charge.
Here U is the anti-unitary operator that implements CPT. If one constructs the thermofield state by cutting
open a path-integral (which is presumably what we are always doing in gravity) then this CPT operator must
be there. There is some flu↵y discussion of this in Dan Harlow’s lectures [2]. Recall that anti-unitary means
(e.g. see p51 in Weinberg Vol. 1)

U�1 = U † hU |U�i = h�| i (8) antiU

and the fact that it implements CPT means

U�1 (iH)U = �iH U�1OU ⌘ OCPT (9) CPTness

(it actually commutes with H, but anticommutes with i, and we denote the CPT conjugate of an operator
with a superscript). Now let us carefully compute

h |O1,L(tL)O2,R(tR)| i = 1

Z

X

m,n

hUn|eiHtLO1e
�iHtL |Umihn|eiHtRO2e

�iHtR |mie� �
2 (En+Em+µQn+µQm)

(10)
We now work on the first term:

hUn|eiHtLO1e
�iHtL |Umi = hUn|Ue�iHtLOCPT

1 eiHtLmi (11)

= he�iHtLOCPT
1 eiHtLm|ni (12)

= hm|e�iHtL(OCPT
1 )†eiHtL |ni (13)

The first equality uses (9) and the second uses (8). The last follows from the definition of the adjoint of a
normal linear operator. Thus we find

h |O1,L(tL)O2,R(tR)| i =
X

m,n

e�
�
2 (En+Em+µQm+µQn)+itL(En�Em)+itR(En�Em)hm| �OCPT

1

�† |nihn|O2|mi

(14)

=
X

m,n

hm|e� �
2 (H+µQ�iH(tL+tR))

�OCPT
1

�†
e�

�
2 (H+µQ+iH(tL+tR))|nihn|O2|mi (15)

= Tr

✓
e��(H+µQ)

✓
e+

�µQ
2 (OCPT

1 )†
✓
�tL � i�

2

◆
e�

�µQ
2

◆
O2(tR)

◆
(16) twosidedthermal

This is starting to look like a normal thermal correlator. Now for many operators (e.g. a charged scalar),
CPT simply acts as complex conjugation, so we have OCPT = O†. For vector operators we pick up extra
signs which presumably should be kept track of. In any case, for a charged scalar O1 with a definite charge
q1 we find the following relation:

h |O1,L(tL)O2,R(tR)| i = Tr

✓
e��H�µQO1

✓
�tL � i�

2

◆
O2(tR)

◆
e�

�µq1
2 (17) kmstwosided

This relation also explains what it means for “time to run backwards on the other side”. For operators
with more complicated CPT conjugations or that are not charge eigenstates we can work with the more
complicated (16).

Finally, we note that in the initial choice for time evolution we chose to evolve the system using only H, not
H +µQ; this is the ultimate origin for the extra factor of the scalar charge q1 appearing in (17). If we evolve
using H � µQ on the left and H + µQ on the right then we find the cleanest KMS condition, involving no
extra factors of the charge q1. This is likely what is happening in gravity, as mentioned above. As far as I
understand, when computing correlators of charge eigenstates these di↵erent choices only add extra phases
and likely only correspond to di↵erent bulk gauge choices.

2

1.  Signal of a bifurcation point. 
2.  Symmetric and periodic in Euclidean time.   
3.  Left-Right correlator should obey half-period relation. 



We want:  

Singularity 

Left Right 

Testing this proposal is difficult:  non-trivial to have test particle. Important 
prior work made use of Vasiliev scalar field.  

[Kraus & Perlmutter] 

h |OR(tf )OR(ti)| i = h |OR(tf )OR(ti � i�)| i
= h |OL(�tf )OL(�ti)| i
= h |OL(�tf � i�/2)OR(ti)| i
= h |OR(tf )OL(�ti � i�/2)| i



Singularity 

Left Right 

What replaces the notion of distance in HS gravity? 
How to probe a solution with local fields? 



Wilson loop encodes the dynamics of a massive particle .  
Natural replacement of local probes. 

[Ammon, AC, & Iqbal; de Boer & Jottar] 

Wilson lines in CS 

WR(xi, xf ) = hUf |P exp

✓
�
Z

�
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◆
P exp

✓
�
Z

�

¯

A

◆
|Uii

xi xf�



Highlights   

WR(xi, xf ) = hUf |P exp

✓
�
Z

�
A

◆
P exp

✓
�
Z

�

¯

A

◆
|Uii

q  The representation R will dictate the characteristic of the probe: mass and spin.  

q  Until now our observables do not connect A and Ā. Probing local physics requires 
BOTH connections.  

q  The states U are coherent states in R that combine A and Ā while preserving a 
diagonal subgroup of SL(N)xSL(N). 

 



1. The Wilson line reproduces boundary correlation functions.   

2. For HSBH, the Wilson loop gives thermal entropy.  

Closed spatial cycle  
(non-trivial) 

Connections to entanglement entropy and conformal blocks. 

WR(xi, xf ) =
⇢!1

h |O(zi)O(zf )| i

S = 2⇡kTr[(�� � ¯��)L0]

= � log(WR(C))

Features 



Singularity 

Left Right 

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

Ā(⇢, z, z̄) = b(⇢)
⇣
ā(z, z̄) + d

⌘
b�1(⇢)

And answers depend on the radial function!  

WR(xi, xf ) =
⇢!1

h |O(zi)O(zf )| i
We use  



1. Wormhole gauge 

No signal of a bifurcation point. No KMS relations. 
Right side is AAdS. 

2. Horizon gauge 

Radial function adjusted to give a horizon. KMS holds, not  AAdS. 

h |OR(tf )OR(ti)| i = h |OR(tf )OR(ti � i�)| i
= h |OL(�tf )OL(�ti)| i
= h |OL(�tf � i�/2)OR(ti)| i
= h |OR(tf )OL(�ti � i�/2)| i

3. Kruskal gauge 

KM
S 

co
nd

iti
on

s 
D

ifferent choices of radial function  

KMS holds and  AAdS. It works! 

[Ammon, Gutperle, Kraus, Perlmutter] 

Commonly used by 99.9% of users. 



Singularity 

Left Right 

A(⇢, z, z̄) = b�1(⇢)
⇣
a(z, z̄) + d

⌘
b(⇢)

Ā(⇢, z, z̄) = b(⇢)
⇣
ā(z, z̄) + d

⌘
b�1(⇢)

And answers depend on the radial function!  

WR(xi, xf ) =
⇢!1

h |O(zi)O(zf )| i

Lesson: 
HS Gravity provides a concrete setup where the bulk reconstruction 
and dual interpretation is not just dictated by obvious symmetries. 



There is more to explore… 

Outlook 



Results I didn’t discuss… but nevertheless important 

1. Phase diagram of higher spin black holes 

2. Partition functions in the CFT 

3. Four point correlation functions 

[Kraus & Perlmutter; Gaberdiel, Hartman & Jin ] 

[David, Ferlaino & Kumar; Chen, Long & Wang;  
Bañados, Düring, Faraggi & Reyes] 

[Perlmutter; de Boer, AC, Hijano, Jottar, Kraus] 



1. CFT counterpart 

2. Interplay of Euclidean vs Lorentzian 

3. Bulk Locality in Higher Spin Gravity 

WR(xi, xf ) = hUf |P exp

✓
�
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�
A

◆
P exp
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�
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�

¯

A

◆
|Uii

S = 2⇡kTr
⇥
(�� � �̄�)L0

⇤
A derivation of the universal entropy formula for WN theories.  

Inner horizons, singularities, wormholes,…. Unexplored! I IV 



THANK YOU! 


