



UNIVERSITÄT WÜRZBURG

# From Q-lattices to Bad Metals

with A. Amoretti, B. Goutéroux and D. Musso [see also 1711.06610 and 1712.07994]

Daniel Areán. Würzburg 2018

# > (translations) with pseudo-spontaneous Q-lattices



# > Bad metals are challenging

[see cond-mat/0404263]



- Resistivity linear in T w/out long-lived quasiparticles (MIR bound)
- Far IR peak in  $\sigma_{\text{AC}}$  moving off-axis as T is increased.

# > Bad metals and quantum criticality



- 〈Spatial Ordering〉 ≠ 0 in Pseudo-Gap phase (PDW) Residual resistivity upturn below T<sub>order</sub> [PRL 88 (03 2002) 147003]
- Off-axis peaks in  $\sigma_{AC}$  as Quantum Critical CDW [1612.04381, 1702.05104]

# > (translations) with spontaneous Q-lattices

[1311.3292, 1401.5077]



# CALCULABLE (toy-) Model of (translations)

[see Andrea's talk for more details; 1711.06610 and 1712.07994]

> (translations) with 'pseudo-Spontaneous Q-lattices'

$$S = \int d^{d+2}x \sqrt{-g} \left[ R - \frac{1}{2} \partial \phi^2 - \frac{1}{4} Z(\phi) F^2 - V(\phi) - \frac{1}{2} Y(\phi) \sum_{i=1}^d \partial \psi_i^2 \right].$$
[1311.3292, 1401.5077]

#### > ANSATZ

~AdS charged black hole  $ds^2 = -D(r)dt^2 + B(r)dr^2 + C(r)d\vec{x}^2$ 



$$A = A(r) dt \longrightarrow A \sim \mu$$
 Chemical potential

$$\begin{aligned} \phi &= \phi(r) \\ \psi_i &= k x^i \end{aligned} \longrightarrow \Phi_i = \phi \, e^{ikx^i} \qquad \text{Q-lattice(s)} \end{aligned}$$

$$S = \int d^{d+2}x \sqrt{-g} \left[ R - \frac{1}{2} \partial \phi^2 - \frac{1}{4} Z(\phi) F^2 - V(\phi) - \frac{1}{2} Y(\phi) \sum_{i=1}^d \partial \psi_i^2 \right].$$

#### > 'pseudo-Spontaneous Q-lattices'



$$\begin{aligned} \phi &= \phi(r) \\ \psi_i &= kx^i \end{aligned} \longrightarrow \Phi_i = \phi \, e^{ikx^i} \end{aligned}$$

Assymptotically  $O_{\phi} \sim \phi e^{ikx}$  with source << ver

## > 'pseudo-Spontaneous Q-lattices'

$$S = \int d^{d+2}x \sqrt{-g} \left[ R - \frac{1}{2} \partial \phi^2 - \frac{1}{4} Z(\phi) F^2 - V(\phi) - \frac{1}{2} Y(\phi) \sum_{i=1}^d \partial \psi_i^2 \right]$$

$$\phi = \phi(r) \\ \psi_i = kx^i$$
  $\longrightarrow \Phi_i = \phi e^{ikx^i} \text{ with source << vev}$ 

•

# > UU ASYMPTOTICS (~AdS)

$$\begin{split} V_{UV} &= -d(d+1) + \frac{1}{2}m^2\phi^2 + \dots, \quad Z_{UV} = 1 + Z_1\phi + \dots, \quad Y_{UV} = Y_2\phi^2 + \dots \\ \phi(r \to 0) &= \phi_{(0)}r^{d+1-\Delta} + \phi_{(1)}r^{\Delta} + \dots, \qquad m^2 = \Delta(\Delta - d - 1) \,. \\ &> \text{with} \quad \phi_{(0)} \ll \phi_{(1)} \end{split}$$

#### >Quantum Critical 'Q-lattices'

Hyper-scaling IR solutions found & classified in 1401.5436

### Numerically solve ODEs and find BH geometries:

AdS (UN) -> Scaling (IR):

$$ds^{2} = r^{\theta} \left[ -f(r)\frac{dt^{2}}{r^{2z}} + \frac{L^{2}dr^{2}}{r^{2}f(r)} + \frac{d\vec{x}^{2}}{r^{2}} \right]$$
$$t \to \lambda^{z} t , \ \vec{x} \to \lambda \vec{x} \qquad s \sim T^{\frac{2-\theta}{z}}$$

We're interested in the case:



#### > Quantum Critical 'Q-lattices'

#### Hyper-scaling IR solutions found & classified in 1401.5436

> Scaling (IR) - Model

$$S = \int d^{d+2}x \sqrt{-g} \left[ R - \frac{1}{2} \partial \phi^2 - \frac{1}{4} Z(\phi) F^2 - V(\phi) - \frac{1}{2} Y(\phi) \sum_{i=1}^d \partial \psi_i^2 \right].$$
$$V(\phi) = -6 \cosh\left(\frac{\phi}{\sqrt{3}}\right), \quad Z(\phi) = \exp\left(-\sqrt{3}\phi\right), \quad Y(\phi) = (1 - \exp\phi)^2,$$

We've constructed numerical (pseudo-)spontaneous solutions







# > AC conductivity

$$\sigma(\omega) = \frac{i}{\omega} G^R_{JJ}(\omega, q = 0)$$

In the spontaneous case (see Andrea's talk) 
$$\sigma \sim \sigma_{\rm inc} + \frac{\imath}{\omega}$$
 with  $\sigma_{\rm inc} \sim T$ 

In the 'pseudo' case the Goldstone is gapped. Expect no  $\omega=0$  pole, and  $\sigma_{DC} \sim \sigma_{inc} \sim T$  (see hydro model 1702.05104)

Let's compute  $\sigma_{AC}$  (numerics needed) and see if it agrees with the hydro model of a pinned-CDW



# >AC conductivity



1) Breaking is pseudo-spontaneous: source ~  $10^{-5}$  << vev ~ 0.1 2) Resistivity linear in T up to  $T/\mu ~ 0.005$ 

3) obc finite and Drude peak moves off-axis as T is increased!

[See also 1708.07837, 1708.08306 for holo-pinning]

#### >Bad metals from pseudo-spontaneous 'Q-lattices'?



$$\sigma(\omega) = \sigma_{inc} + \frac{\rho^2}{\chi_{PP}} \frac{\Omega - i\omega}{(\Omega - i\omega)(\Gamma - i\omega) + \omega_0^2}$$

Let's compute the QNMs, determine  $\Omega$ ,  $\Gamma$ ,  $\omega_0$ and see how it goes...

#### > Bad metals from pseudo-spontaneous 'Q-lattices'?

>QNM spectrum  $(\delta A_x, \, \delta g_{tx}, \, \delta \psi_x) \sim e^{-i\omega t}$ 



#### > Bad metals from pseudo-spontaneous 'Q-lattices'?

>QNM spectrum  $(\delta A_x, \, \delta g_{tx}, \, \delta \psi_x) \sim e^{-i\omega t}$ 



### > Bad metals from pseudo-spontaneous 'Q-lattices'?





Our holographic setup is an effective model of a metallic pinned-CDW !  $\sigma(\omega) = \sigma_{inc} + \frac{\rho^2}{\chi_{PP}} \frac{\Omega - i\omega}{(\Omega - i\omega)(\Gamma - i\omega) + \omega_0^2} .$ 

$$\Gamma: momentum relaxation rate. \sim (k/\mu)^2, \sim (\lambda/\mu)$$

$$\text{ Lat high and low $T$ agrees $w$ / memory-matrix $\Gamma \sim k^2 \lim_{\omega \to 0} \operatorname{Im} \frac{G_{\psi\psi}^R}{\omega} ]$$

$$\omega_{0}$$
: mass of the phonon. ~  $\sqrt{(\lambda/\mu)} [GMOR], ~ (k/\mu)$ 

 $\Omega: \iff k=0$  dissipative pole. ~  $(k/\mu)^{0}$ , ~  $(\lambda/\mu)$ , ~ 1/T(at low T)

More on  $\Omega$ : it doesn't vanish as k - 70, where  $\psi$  fluctuations decouple... Let's study  $\delta \psi \sim e^{-i\omega + qx}$  at k=0



Remember! D~1/T

### At finite k, the 'Q-mode' collides w/ 'Drude' as T 1







the low T collision barely affected by k (breaking translations)



### > Outlook

We've constructed a holo model breaking translations  $k/\mu = 0.1, \lambda/\mu = -1 \times 10^{-5}$ pseudo-spontaneously

4000 Effective theory of pinned-CDW( $\Omega$ ): metallic, Drude->off-axis 3000 2000 Understand better  $\Omega\left(\frac{1}{2}-\frac{1}{2}\right)$ 1000  $T/\mu = 0.0025$   $T/\mu = 0.0025$   $T/\mu = 0.0025$  $T/\mu = 0.0025$ 

Play w/ parameters to get a larger T-linear region 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Go for inhomogeneous, more realistic, models?