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There	are	a	wide	range	of	BSM	models	that	assume	strong	
coupling…

both	across	a	wide	range	of	scales… and	including	strongly	coupled	
broken	gauge	interactions…

Eg Technicolour,	including	walking	and	ideal	
Extended	Technicolour
Top	condensation
Composite	higgs models
Tumbling
Dark	Matter	sectors
Inflatons….

Many	of	these	ideas	are	beyond	the	lattice	since	they	are	spread	
over	many	decades	of	RG	scale	or	involve	chiral	fermions… a	role	
for	holography?

Motivated	by	a	distrust	of	
fundamental	scalars… but	
an	array	of	interesting	
gauge	theories	have	been	
proposed	independent	of	
that…



Holography	for	Generic	Symmetry	
Breaking	Gauge	Theories

Start	top	down	at	large	Nc

Move	to	bottom	up



QCD – the symmetry breaking arch-type
One	of	the	most	remarkable	aspects	of	the	Standard	Model	is	that	the	ground	state	
symmetries	are	less	than	those	of	the	bare	Lagrangian…

• Higgs	potential	is	adhoc and	not	yet	understood

• QCD	provides	a	DYNAMICAL	symmetry	breaking	mechanism

Evidence:	lack	of	parity	doubling,	proton	mass,	Goldstone	pions



The	simplest	holographic	model	
of	quarks	is	D3/	probe	D7

Adds	quarks	with	conformal	
N=4	gauge	interactions

These	do	not	trigger	chiral	
symmetry	breaking	on	their	
own

Quark	mass		=			T	L(r)	
Mateos,	Myers,	Kruczenski...	 hep-
th/0304032

Holographic Quarks

Johnson,	Filev...	 hep-th/0701001



D3/ Probe D7 Model
l

Alvares, NE, Kim, 
1204.2474 

This is the action of a scalar in AdS with a mass squared of -3 
+ r dependent correction from the gradient of l



LESSONS
We model the  qq condensate by a scalar in “AdS”…

The background gauge dynamics enters through a running 
mass/anomalous dimension

Note that the background could include running due to glue, Nf quark 
effects on top of which we add this probe, bulk stringy corrections(?)…

Symmetry breaking occurs when the Breitenlohmer-Freedman Bound is 
violated . (Matti Jarvinen, Elias Kiritsis 1112.1261)
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QCD/TC Dynamics

The	gauge	coupling	runs

m has	dimension	1	+	g condensate	dimension	3	- g

The	RG	scale	where	g =	1	is	special	and	gap	equations	suggest	the	point	of	
condensation…

In	technicolour	one	repeats	this	at	f p =	246	GeV…	the	breaking	to	the	vector	symmetry	
breaks	SU(2)L…	 the	pions are	eaten	by	the	W	and	Z…	the	remaining	hadronic	spectrum	is	
there	to	find	above	1	TeV…



Top-down probe-brane models of QCD are just AdS/QCD with the 
background providing a running g…

The	Original	Back-reacted	Hardwall

Dilaton Flow Geometry: Constable, Myers... D7s: Babington, EEGK

is a well defined gravity description of a non-supersymmetric gauge configuration. We can just

ask about the behaviour of quarks in that background.

The geometry in Einstein frame is given by
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and with the dilaton and four-form given by
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, C(4) = −1
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The parameter b corresponds to the vev of the dimension 4 operator. The parameters ∆ and δ

are constrained by

∆2 + δ2 = 10. (28)

Asymptotically the AdS curvature is given by L4 = 2δb4, so it makes sense to set (with L = 1)

δ =
1

2b4
. (29)

b is the only free parameter in the geometry and its value sets the scale of the conformal

symmetry and supersymmetry breaking. We will again numerically set it equal to 1 below.

To embed a D7 brane in this background it will again be convenient to recast the metric in

a form containing an explicit flat 6-plane. To this end, we change variables from r to w, such

that

dw

w
≡ r2d(r2)

2(r4 + b4)
, (30)

which is solved by

ln(w/w0)
4 = ln(r4 + b4) (31)

or

(w/w0)
4 = r4 + b4. (32)
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|X|	=	L			is	now	the		dynamical	field	whose	solution	will	determine	the	
condensate	as	a	function	of	m		- the	phase	is	the	pion.

We	use	the	top-down	IR	boundary	condition	on	mass-shell:						X’(r=X)	=	0

X	enters	into	the	AdS metric to	cut	off	the	radial	scale	at	the	value	of	m	or	the	
condensate	– no	hard	wall

The	gauge	DYNAMICS	is	input	through	a	guess	for	Dm

The	only	free	parameters		are	Nc,	Nf,	m,	L

Dynamic	AdS/QCD Timo Alho, NE, KimmoTuominen    
1307.4896



Formation of the Chiral Condensate

We solve for the vacuum 
configuration of L

L

r

Shoot out 
with

L’(r=L) = 0

Read off m 
and  qq in 
the UV…

Nc=3, Nf=9



Meson Fluctuations

The	normalizable solutions	pick	out	
particular	mass	states…	the	s and	its	
radial	excited	states…

The	gauge	fields	let	us	also	study		the	operators	and	states	



SU(Nc)	gauge	+	3	quarks			
NE,	Erdmenger &	Mark	Scott
arXiv:1412.3165	[hep-ph]	

M_rho = 1 
defines L

Real QCD 
lies here

There is very little Nc dependence – basically quenched…
Hence comparison to quenched lattice data (Bali et al… arXiv1304.4437)
All of these models lie within 15% on any point....

3

FIG. 2: Plots of the potential against the UV quark mass: the

lower curve is that of the underlying gauge theory without an

NJL term and is unbounded. Moving up we have added the

term ⇤
2m2/g2 with g = 2.5, 2.3, 1 from bottom to top. The

addition of an NJL term generates a minimum of the potential

that tracks to m = 0 at g = 0. All dimensionful objects are

expressed in terms of ⇤BF .

correlators in the UV of the theory. This full procedure
is described in detail in [19].

With Nc and Nf fixed the free parameters in the theory
are the overall scale ⇤BF , the UV quark mass and the
5d coupling . For example one can fix ⇤BF by scaling
to give the correct m⇢; the remaining parameters can
then be fitted to the data. We choose to minimize the
maximum deviation |�O|/O in any observable and find a
good fit at mUV = 0.05⇤BF at a UV scale of 5⇤BF and
 = 76:

Model QCD

m⇢ 775 MeV 775 MeV

ma1 1467 MeV 1230 MeV

m� 981 MeV 500 MeV & 980 MeV

F⇢ 311 MeV 345 MeV

Fa1 390 MeV 433 MeV

f⇡ 77 MeV 92 MeV

All the mesonic variables lie within 20% of the experi-
mental centrepoints shown except for the � meson mass
that lies very close to the first excited f0(980) state. The
lighter f0(500) is thought to potentially be a mesonic
molecule [23] which might explain the discrepancy. In
anycase our model provides a su�ciently close spectrum
match to begin an analysis of NJL dynamics in the model.

II. NJL INTERACTIONS

Consider a free fermion with a four fermion interaction
g
2
/⇤2

q̄LqRq̄RqL. In the standard NJL approximation
there are two contributions to the e↵ective potential [24].
First there is the one loop Coleman Weinberg potential
[25] for the free quarks

Ve↵ = �
Z ⇤

0

d
4
k

(2⇡)4
Tr log(k2 +m

2) (10)

This falls with growing m and is unbounded, although
normally one treats m as a fixed parameter so one would
not seek to minimize this potential. When we add the
four fermion term we allow m to become dynamically
determined but there is the extra term from the four
fermion interaction evaluated on m = (g2/⇤2)hq̄qi

�Ve↵ =
⇤2

m
2

g2
(11)

This makes the e↵ective potential bounded and ensures
a minimum. For small g the extra term is large and
the minimum is at m = 0. When g rises above 2⇡ the
minimum lies away from m = 0. The phase transition is
second order.

In Witten’s prescription for “multi-trace” operators [21]
we add the equivalent of the extra potential term (11) as
a boundary term at the UV cut o↵ ⇤. For large ⇤ where
L ' m the term we add is

�SUV =
L
2⇤2

g2
. (12)

The e↵ective potential from the background model is
computed by evaluating minus the action (4) evaluated
on the vacuum solution as a function of the UV mass
term. We extract the values of m and c in the UV by fit-
ting to the form (9) near the cut o↵. In Fig 2 we plot the
e↵ective potential in the holographic description of the
Nc = 3 and Nf = 2 gauge theory showing that like (10)
it is unbounded withm. When we add the potential term
in (12) a minimum at non-zero m is found. The mini-
mum tracks to m = 0 at g = 0 indicating the crossover
nature of the transition.

We can also understand Witten’s prescription in terms of
a change to the UV boundary condition on the solution
of the embedding equation. Varying the action gives
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(13)
Normally in the UV one would require the mass to be
fixed and �L = 0 to satisfy the boundary condition but
now we allow L to change and instead impose

0 =
@L

@L0 +
2L⇤2

UV

g2
, (14)

where we have included the variation of the surface term.
For our action @L

@L0 = ⇢
3
@⇢L. Assuming (9) we find that

we need

m ' g
2

⇤2
c (15)

This condition is simpler to apply to the solutions of the
Euler Lagrange equation than constructing and minimiz-
ing the e↵ective potential but equivalent.

Nf=2	k =	8.5
Clemens	1702.08693



Excited	States…
There	is	the	usual	hard	wall	- soft	wall	problem

a	soft	wall	here	looks	like	(1508.06540)…

And	the	quarks	are	sensitive	to	physics	
below	their	mass	scale….

I	think	these	states	should	be	strings… we	can	get	away	with	supergravity	for	the	n=0	but	
softwalls are	not	the	answer…

6

@z(e
�z2

@zV ) +
⇢6ez

2

L4
V = 0 (30)

Thus if we pick

⇢6ez
2

L4
= e�z2

, ie L2 = z⇢ (31)

in the IR, we achieve the softwall model of (8) at s = 1.
Note up to a log factor we indeed sit on the p = 1/2
boundary.

As an example complete model of this type we can choose

L =
z1/2⇢1/2p
1 + z⇢5

(32)

This falls o↵ asymptotically as ⇢2 but matches the IR
behaviour needed.

We display the Schroedinger well and Regge trajectories
in Fig. 3. The potential has a harmonic oscillator form
at large z which leads to the linear Regge behaviour in
n. Is this a success? First let’s plot the function L(⇢) -
see Fig. 4.
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ρ

0.5

1.0

1.5

L

Figure 4: The function L(⇢) which reproduces the
softwall behaviour of [13] with a constant dilaton. Also
shown are examples of the profiles for the N = 2 theory
(L =constant) and for the dynamically generated mass
example (L = 1/(1+ ⇢2)). The line L = ⇢ is also plotted
to show where the on-mass shell condition is satisfied.

Physically L(⇢) in the top down models is a plot of the
quark mass against RG scale. Here this function is very
peculiar, at least in the context of top down models. The
quark mass grows until the on-mass shell scale but then
below that scale falls to zero in the deep IR. In par-
ticular in this construct the ⇢ meson physics is deter-
mined by radial distances (RG scales) all the way down
to zero. This is in sharp contrast to top down mod-
els where the ⇢ physics is immune to scales below the
IR quark mass. The construct of a soft wall needs non-
decoupling of quarks in the IR of a strongly coupled gauge
theory. Of course this generic point is true in any softwall

model. Many people have expressed the view that soft-
walls are not the way to produce linear Regge behaviour
(one should use true stringy behaviour) and the interpre-
tation in Dynamical AdS/QCD probably supports this
view.

Functionally there is a second problem with this model.
By manipulating L we have e↵ectively realized linear tra-
jectories in an equivalent way to the use of “eA” in [13].
As there, the trajectories for higher s states do not have
the same slope as s = 1. In the next example we will
provide a model that mixes a dilaton flow and L profile
that achieves the best case of [13].
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Figure 5: The Schroedinger wells for the softwall model
with L given by (33) for s = 1, 2, 3, 4 and a plot of the
Mass trajectories vs spin, s, for the excitation numbers

n = 1, 2, 3, 4, 5.

4. Engineered Dilaton and L

As we have seen in our second example we can’t use a
bulk dilaton to engineer an IR softwall model with any
finite value for L(0) because the quark physics will not
see the deep IR behaviour of that dilaton. An example
solution to this problem is to take L ⇠ ⇢ in the IR so
that the induced metric on the embedding is just AdS
and take a dilaton � = z2. We set as an example

L =
⇢

1 + ⇢3
, � = z2 (33)
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No AF

CFT/CW

c SB

Nf=11/2 Nc

Nf = 4 Nc

OTHER	RUNNINGS
SU(Nc)	gauge	theory	with	Nf fundamental	quarks

If	critical	g =	1….		Nf/Nc ~	4
Yamawaki,Appelquist,	Terning,	Sannino,…

l

µ

Nf/Nc = 3.. 4.5



The	Phase	Transition	is	BKT
At	some	point	varying	Nf (which	is	continuous	at	large	Nc)	means	the	IR	fixed	point	value	of	
Dm	is	-1	exactly….	Such	transitions	are	BKT	in	nature	(Son,	Kaplan... arXiv:0905.4752 )	
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fermion interaction evaluated on m = (g2/⇤2)hq̄qi

�Ve↵ =
⇤2m2

g2
(15)

This makes the e↵ective potential bounded and ensures
a minimum. For small g the extra term is large and
the minimum is at m = 0. When g rises above 2⇡ the
minimum lies away from m = 0. The phase transition is
second order.

In Witten’s prescription for “multi-trace” operators [13]
we add the equivalent of the extra potential term (15) as
a boundary term at the UV cut o↵ ⇤. For large ⇤ where
L ' m the term we add is

�SUV =
L2⇤2

g2
. (16)

The e↵ective potential from the background model is
computed by evaluating minus the action (2) evaluated
on the vacuum solution as a function of the UV mass
term. We extract the values of m and c in the UV by
fitting to the form (10) near the cut o↵.

We can also understand Witten’s prescription in terms of
a change to the UV boundary condition on the solution
of the embedding equation. Varying the action gives

�S = 0 = �
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d⇢
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�L+
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(17)
Normally in the UV one would require the mass to be
fixed and �L = 0 to satisfy the boundary condition but
now we allow L to change and instead impose

0 =
@L

@L0 +
2L⇤2

UV

g2
, (18)

where we have included the variation of the surface term.
For our action @L

@L0 = ⇢3@⇢L. Assuming (10) we find that
we need

m ' g2

⇤2
c (19)

This condition is simpler to apply to the solutions of the
Euler Lagrange equation than constructing and minimiz-
ing the e↵ective potential but equivalent. We caveat this
by noting that in the presence of a repulsive NJL interac-
tion, which places a minus sign in the potential term in
(16), the condition finds a local maximum of the e↵ective
potential - we discuss this below in more detail.
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mIR=0.5
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FIG. 2: The functions L(⇢) with m = 0 in the far UV for

Nf = 9. In the IR we cut o↵ scales below where the quarks

become on mass shell when L(⇢ = mIR) = mIR. Here the

BF bound is violated at r = 11.

III. CHIRALLY BROKEN PHASE:
2.6Nc < Nf < 4Nc

In this range of Nf the IR fixed point value of � is greater
than one and the gauge theory generates chiral symmetry
breaking on its own. To study this we seek solutions of
(9) with the IR boundary conditions described. All the
dynamical scales are set in terms of the scale at which
� = 1 (which here we set to be at r=11)) and the UV
value of L which is the quark mass. From the UV form
of the solution (10) we extract mUV and cUV . In Figure
2 we plot the solutions for Nf = 9 with mUV = 0 in the
UV.

Note there are an infinite set of such solutions - as the IR
boundary value of L shrinks solutions with more oscilla-
tions can be found. The solutions with more oscillations
are excited states of the vacuum - these are states where
radially excited states of the � meson are condensed,
which since they are all described by a single holographic
field are mixed together. In Figure 3 we plot the position
of the solutions in the mUV �cUV plane for two represen-
tative values of Nf - to compare theories we have chosen
to fix the UV scale in both where � = 0.3. As can be seen
at Nf = 9 (the top plot) there is a spiral structure. The
spiral makes an infinite number of loops before ending at
the origin. This structure has been previously observed
in the D3/probe-D7 model with a magnetic field [9], the
alternative dual of the conformal window of [11, 18], in
the condensed matter models of [19] and more recently
in holographic superconductors [20] so it appears very
generic to holographic symmetry breaking descriptions.

The solutions of the Euler Lagrange equation represent
turning points of the action and hence the e↵ective po-
tential (Veff = �S evaluated on the vacuum solutions).
It is a simple matter to evaluate the vacuum energy on
the solutions and show that they monotonically increase
in energy with the number of axis crossings. The flat em-
bedding L = 0 has the highest energy. This means these
turning points must be points of inflection of the e↵ec-
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FIG. 3: The regular embeddings L(⇢) plotted in the mUV �
cUV plane for (from top to bottom) Nf = 9, 11 showing the

spiral structure and how the scale of chiral symmetry breaking

shrinks as one approaches the BKT transition at Nf ' 12.

Here both theories have � = 0.3 at the same UV scale.

tive potential since there are no interchanging maxima
and minima. The interpretation is that the chirally sym-
metric phase L = 0 is unstable to condensation of the �
excitation but also all its radially excited states �⇤,�⇤⇤...
We envisage a four dimensional low energy potential for
these states of the form

Veff = �m2
1|�|2 �m2

2|�⇤|2 + �(|�|2 + |�⇤|2)2 + ... (20)
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single true minima on the � axis. Below - the �’s mass against

the UV quark mass as we move along the spiral of Figure 3

with Nf = 9 showing the instability of the excited states at

mUV = 0.
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There	are	Efimov states…
(Matti Jarvinen,	Elias	Kiritsis 1112.1261)



Anyway	we	don’t	quite	believe	the	details	
of	these	runnings…

So	lets	cook	a	working	model	of	technicolour...

The	S	problem...

The	mh problem...



QCD/TC Dynamics

The	gauge	coupling	runs

m has	dimension	1	+	g condensate	dimension	3	- g

The	RG	scale	where	g =	1	is	special	and	gap	equations	suggest	the	point	of	
condensation…

In	technicolour	one	repeats	this	at	f p =	246	GeV…	the	breaking	to	the	vector	symmetry	
breaks	SU(2)L…	 the	pions are	eaten	by	the	W	and	Z…	the	remaining	hadronic	spectrum	is	
there	to	find	above	1	TeV…



Technicolour	Exclusions
S								broken		gauge	theories	have	non-decoupling	effects.	(Peskin,	Takeuchi	90)

W3

Y

Counts	the	number	of	
electroweak	doublets

S	<	0.3

Low	energy	
computation: SQCD	=	0.3

It	has	been	suggested	that	as	one	approaches	the	critical	Nf at	the	edge	of	the	
conformal	window		V-A		symmetry	is	restored	and	S->	0

V-A	symmetry	is	restored	holographically by	k ->	0													(no	Nf prediction)



Technicolour	Exclusions
Higgs We’ve	found	mh =	125	GeV

Our	holographic	model	does	precisely	this

4

An example running is shown in Figure 1.

We will identify the RG scale µ with the AdS radial pa-
rameter r in our model. Working perturbatively from the
AdS result m2 = �(�� 4) [1] we have

�m2 = �2� = �3(N2
c � 1)

2Nc⇡
↵ . (8)

The BF bound is violated when Nf ' 4Nc and theories
at lower Nf break chiral symmetry. The Conformal Win-
dow is the region between this transition and the loss of
asymptotic freedom where the IR is an interacting fixed
point.

The vacuum structure of the theory is found by setting
all fields except |X| = L to zero. The Euler-Lagrange
equation for the determination of L, in the case of a con-
stant �m2, is

@⇢[⇢
3@⇢L]� ⇢�m2L = 0 . (9)

We can now ansatz the r dependent �m2 above to de-
scribe the running of the dimension of q̄q (we do this at
the level of the equation of motion). To find numerical so-
lutions, we need an IR boundary condition. In top down
models L0(0) = 0 is the condition for a regular solution.
Since we do not wish to describe IR physics below the
quark mass (where the quark contribution to the running
coupling will decouple) we use a very similar on-shell con-
dition - we shoot from points L(⇢ = mIR) = mIR with
L0(mIR) = 0. In the UV the solution (neglecting �m2

which falls close to zero) takes the form

L = mUV +
cUV

⇢2
(10)

where mUV in interpreted as the UV quark mass and
cUV as the quark condensate. Formally to find the ex-
pectation value of the condensate one must substitute
the solutions back into the action and di↵erentiate with
respect to mUV [7]. There is a divergent piece but cUV

controls the dynamically determined condensate. Note
away from the very far UV locally the solution takes the
form L = m/⇢�(⇢) + c/⇢2��(⇢).

The spectrum of the theory is found by looking at lin-
earized fluctuations of the fields about the vacuum where
fields generically take the form f(⇢)eip.x, p2 = �M2. A
Sturm-Louville equation results for f(⇢) leading to a dis-
crete spectrum. By substituting the wave functions back
into the action and integrating over ⇢ the decay constants
can also be determined. The normalizations of the fluc-
tuations are determined by matching to the gauge theory
expectations for the VV, AA and SS correlators in the
UV of the theory. This full procedure is described in

detail in [5]. In particular the scalar mode obeys

@⇢(⇢
3S

0
)��m2⇢S � ⇢L0S

@�m2

@L
+M2 ⇢3

(L2
0 + ⇢2)2

S = 0

(11)
with S the scalar field, L0 the base background solution
and M the mass of the scalar mode. We now look for
solutions with the boundary conditions S(⇤UV ) = 1/⇢2

and S
0
(mIR) = 0. We find that these solutions only exist

for a discrete set of values for M , corresponding to the
spectrum of scalar mesons - the �,�⇤,�⇤⇤...

The vector mass is calculated in a very similar way using
the equation of motion

@⇢(⇢
3V

0
) +M2 ⇢3

(L2
0 + ⇢2)2

V = 0 (12)

with M the vector mass now and V the vector field. The
mass is then obtained by looking for solutions with the
same boundary conditions as the scalar.

The pion decay constant f⇡ that we will use to normalise
our results is given by the formula

f2
⇡ =

1

2

Z
d@⇢

⇥
⇢3@⇢KA(q

2 = 0)
⇤
KA(q

2 = 0) (13)

whereKA(q2 = 0) is an externally sourced, massless axial
field on the branes.

With Nc and Nf fixed the free parameters in the theory
are the overall scale ⇤1, the UV quark mass and the 5d
coupling . For example, if one wishes to fit to Nc =
3, Nf = 2 QCD one can fix ⇤1 by scaling to give the
correct m⇢; the remaining parameter  can then be fitted
to the data. In [4] we found a best fit to QCD data with
 = 8.7 but it would be expected to vary with Nf . Here
we will work with  = 1 as a reference value - f⇡ grows as
 grows but the phenomena we report on are qualitatively
the same.

II. NJL INTERACTIONS

Consider a free fermion with a four fermion interaction
g2/⇤2q̄LqRq̄RqL. In the standard NJL approximation
there are two contributions to the e↵ective potential [3].
First there is the one loop Coleman Weinberg potential
[25] for the free quarks

Ve↵ = �
Z ⇤

0

d4k

(2⇡)4
Tr log(k2 +m2) (14)

This falls with growing m and is unbounded, although
normally one treats m as a fixed parameter so one would
not seek to minimize this potential. When we add the
four fermion term we allow m to become dynamically
determined but there is the second term from the four

What	is	the	QCD-like	bound	state?

F0	at	550	MeV	is	probably	a	molecule.		F0	980	MeV	is	higgs like?

That	would	be	mh >	2	TeV

It	has	been	suggested	that	as	one	approaches	the	critical	Nf at	the	edge	of	the	
conformal	window		the	conformal	symmetry	tends	to	flatten	the	effective	sigma	
potential	and	make	mh light	…..
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are the overall scale ⇤1, the UV quark mass and the 5d
coupling . For example, if one wishes to fit to Nc =
3, Nf = 2 QCD one can fix ⇤1 by scaling to give the
correct m⇢; the remaining parameter  can then be fitted
to the data. In [4] we found a best fit to QCD data with
 = 8.7 but it would be expected to vary with Nf . Here
we will work with  = 1 as a reference value - f⇡ grows as
 grows but the phenomena we report on are qualitatively
the same.

II. NJL INTERACTIONS

Consider a free fermion with a four fermion interaction
g2/⇤2q̄LqRq̄RqL. In the standard NJL approximation
there are two contributions to the e↵ective potential [3].
First there is the one loop Coleman Weinberg potential
[25] for the free quarks
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four fermion term we allow m to become dynamically
determined but there is the second term from the four
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Giving	TC	a	last	chance…
Most	likely	there	is	no	choice	of	Nc Nf that	will	realize	the	physical	S	(the	best	hope	is	to	
have	Nf=2	as	EW	doublet	and	the	rest	as	singlets)	and	mh…

But	let’s	imagine	we	get	lucky…	because	we	don’t	know	the	IR	running	of	the	gauge	
coupling	we	don’t	know	which	Nc Nf combination	to	pick…

So	lets	holographically describe	all	Nc Nf pairs:	

tune	k to	give	S=0.1…	

Change	the	IR	running	(NfIR)
to	give	mh =	fp/2		

Most	likely	the	spectrum	is	in	every	case	wrong!	BUT	if	there	is	one	theory	that	
works	we	hope	to	have	captured	it…	can	we	rule	it	out?
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The	same	parameter	
space	as	Belyaev et	al	’s	
pheno model!
arXiv:1805.10867

For	each	Nc,	Nf we	fix	the	scale	and	NfIR with		

QCD	scale	up



The	same	parameter	
space	as	Belyaev’s
pheno model!
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Walking
Traditionally	walking	was	used	to	enhance	the	condensate	at	UV	scales						Holdom ‘81
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L = m+
c

⇢2
, m ⇠ mIR, c ⇠ m3

IR (21)

where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.

Now imagine moving mIR into the IR regime below ⇤1.
Here the solution looks like

LIR =
m̂

⇢�
+

ĉ

⇢2��
, m̂ ⇠ m1+�

IR , ĉ ⇠ m3��
IR (22)

with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have

LUV = mUV +
cUV

⇢2
, mUV ⇠ m1+�

IR

⇤�
1

, cUV ⇠ m3��
IR ⇤�

1

(23)
IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then

FIG. 8: Plot of Log mUV /mIR against Log mIR/�UV for

Nf = 13, �(⇤UV ) = 0.05

FIG. 9: The Nf = 13 theory with mIR lying in the fixed

point regime. The �’s mass is plotted against Log ⇤/mIR for

di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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ĉ

⇢2��
, m̂ ⇠ m1+�
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level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then

FIG. 8: Plot of Log mUV /mIR against Log mIR/�UV for

Nf = 13, �(⇤UV ) = 0.05

FIG. 9: The Nf = 13 theory with mIR lying in the fixed

point regime. The �’s mass is plotted against Log ⇤/mIR for

di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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, m ⇠ mIR, c ⇠ m3

IR (21)

where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.

Now imagine moving mIR into the IR regime below ⇤1.
Here the solution looks like
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with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have

LUV = mUV +
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, cUV ⇠ m3��
IR ⇤�

1

(23)
IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then
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di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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�m2 = �(� � 2)

m2 = �3 ! m2 < �4

� = 0 ! � > 1

hq̄qi ⇠ e�1/(Nf�Nc
f )

M2
n ⇠ n, n2

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •
D5 - - - • - - - • • •

L = mq + �n(⇢)e
�imnt

r =
p
⇢2 + L2





Nambu Jona-Lasinio Model
The	toy	model	that	encapsulates	Nambu’s Nobel	concepts	(before	quarks).	

NB	L	&	R	symmetries	respected

Calculate	effective	potential



Witten’s Multi-Trace Operator Prescription
hep-th/0112258

so	add

On	variation…

Now	we	let	the	mass	vary	in	the	UV	and	need…		

The	Euler	Lagrange	equation	solutions	are	left	unchanged	but	we	pick	those	that	
satisfy	the	UV	and	IR	boundary	conditions..	

See		NE,	Kim	for	explict discussion	of	holographic	NJL	model				 arXiv:1601.02824



The Holographic Gauged NJL Model
Will Clemens, NE, arXiv:1702.08693 [hep-th]

Quarks	with	asymptotically	free	non-abelian	gauge	interactions	and	
Four	fermion	NJL	operator….

Underlies		many	BSM	models								eg extended	technicolour

We	model	by	Dynamic	AdS/QCD	+	Witten’s	NJL	prescription



QCD	+	NJL	term

The	gauge	theory	breaks	chiral	symmetry	on	its	own	and	the	NJL	
term	just	enhances	the	condensation…



One Doublet TC + ETC for the top mass
Will Clemens, NE, Marc Scott, arXiv:1703.08330 [hep-ph]

SU(3)	QCD		+		6	flavours SU(3)	TC		+		(2	+	Nf)	flavours

ETC	NJL	terms	representing	broken	generators	from	SU(6)	unification

9

FIG. 4: One doublet model (NTC = 3, Nf = 2) with
⇤ = 5TeV . We use an embedding for the top quark with
LIR

t = 175 GeV. We vary ↵TC(e
2 TeV) and then determine

LD(⇢) that vanishes at the cut o↵, and the value of LIR
U that

ensures the correct EW f⇡. We then plot the value of g from
each of (37) and (38). The crossing points mark a self con-
sistent solution and determines g. The left point is an NJL
dominated solution the right hand one TC dominated.

FIG. 5: Plots of g vs mphys
t for consistent solutions in the one

doublet model with Nc = 3 and Nf = 2 at ⇤ =5 TeV showing
both TC and NJL dominated branches.

allow LIR
U to vary to match f⇡.

The job now is to find the choice of ↵TC(e2TeV ) and
mU at the UV scale that is consistent with the desired
top mass given the ETC interactions we have chosen.
Holographically the multi-trace prescription for our NJL
operators are

mU =
g2

12⇤2
cU +

g2

2⇤2
ct (37)

and

mt =
g2

12⇤2
ct +

g2

2⇤2
cU (38)

Thus at each choice of ⇤ we must plot the value of
g extracted from each of these equations as we vary
the LIR

U /↵TC(e2TeV ) pair, each time getting di↵erent

(mU , cU ) pairs. We seek the point where both equa-
tions return the same value of g and are self consis-
tent. An example of this fit is shown in Fig 4. Note
that generically there are two solutions. The left hand
cross point at higher g is an “NJL dominated” model
of electroweak symmetry breaking - the technicolour in-
teraction is rather weak and the technidown quark plays
almost no role in generating the electroweak f⇡. The top
and techni-up quark are both heavy and contribute dom-
inantly to the electroweak scale. These solutions, whilst
interesting, are at odds with experiment. They have very
large isospin breaking between the U and D techniquarks
which is certainly ruled out experimentally. The right
hand solution at lower ETC coupling is a more techni-
colour dominated model. The techniquarks provide most
of the electroweak scale and are, at least somewhat, de-
generate. We will concentrate on these latter solutions
below. Note that as the cut o↵ is increased or the desired
top mass raised the two curves in Fig 4 pass through each
other - the two solutions move together and will eventu-
ally coalesce into a single solution before at higher mt

or ⇤ there is no physical solution. The critical solution
is where both strong ETC and TC are working together
hardest to generate the largest possible top mass whilst
still maintaining the physical weak scale.

In Fig 5 we show an example of the evolution of the two
solutions with varyingmphys

t . Here the model has NTC =
3 andNsing

f = 0 (thus a totalNf = 2 model) and we solve
for g to generate di↵erent values of the top mass with an
ETC scale of 5 TeV. We see that at generic mphys

t there
are two branches - the lower weakly coupled ETC branch
merges to g = 0 at mphys

t = 0 and that is the standard
weakly coupled ETC behaviour. For higher mphys

t there
are two solutions with one having a larger ETC coupling
- these solutions are where the D’s contribution to f⇡ is
much smaller than the U’s. At mphys

t ' 500 GeV the two
branches merge and this is the maximum achievable top
mass in the model with these parameters (higher mphys

t
could be achieved if f⇡ was raised above the physical
value). Henceforth we will neglect the upper branch since
it is phenomenologically unacceptable due to the huge
isospin breaking in the techniquark sector. Note here the
experimental top mass is achievable.

We are now ready to explore how g must be chosen to
generate the observed top mass for any given choice of
⇤ETC and N sing

f . Two mechanisms have been proposed
for how to obtain the 175 GeV physical top mass with
an ETC scale of a few TeV or above in this system. The
first is to allow the ETC interactions to become strong.
The second is to enhance the techniquark condensate by
walking dynamics. We can see both mechanisms at work
here.

Let’s again consider the model with NTC = 3 and
N sing

f = 0 which has a very running gauge coupling and
so we expect to need to depend on strong ETC to gener-

mD=0,				cD.		controlled	by	LTC		

Search	3	parameter	space	for	
match	to	v,	mt. and	g
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One Doublet TC + ETC for the top mass
Will Clemens, NE, Marc Scott, arXiv:1703.08330 [hep-ph]

SU(3)	QCD		+		6	flavours SU(3)	TC		+		(2	+	Nf)	flavours

ETC	NJL	terms	representing	broken	generators	from	SU(6)	unification

Remarkably	shows	the	
effects	of	walking	and	
strong	ETC….	





Ideal	Walking	(Sannino)
Now	we	live	in	the	conformal	window	and	trigger	mIR with	an	NJL	term	only	at	
LUV...
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L = m+
c

⇢2
, m ⇠ mIR, c ⇠ m3

IR (21)

where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.

Now imagine moving mIR into the IR regime below ⇤1.
Here the solution looks like

LIR =
m̂

⇢�
+

ĉ

⇢2��
, m̂ ⇠ m1+�

IR , ĉ ⇠ m3��
IR (22)

with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have

LUV = mUV +
cUV

⇢2
, mUV ⇠ m1+�

IR

⇤�
1

, cUV ⇠ m3��
IR ⇤�

1

(23)
IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then

FIG. 8: Plot of Log mUV /mIR against Log mIR/�UV for

Nf = 13, �(⇤UV ) = 0.05

FIG. 9: The Nf = 13 theory with mIR lying in the fixed

point regime. The �’s mass is plotted against Log ⇤/mIR for

di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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c

⇢2
, m ⇠ mIR, c ⇠ m3

IR (21)

where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.

Now imagine moving mIR into the IR regime below ⇤1.
Here the solution looks like

LIR =
m̂
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+

ĉ
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, m̂ ⇠ m1+�
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IR (22)

with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have

LUV = mUV +
cUV
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IR
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1

, cUV ⇠ m3��
IR ⇤�

1

(23)
IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then
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FIG. 9: The Nf = 13 theory with mIR lying in the fixed

point regime. The �’s mass is plotted against Log ⇤/mIR for

di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.

Now imagine moving mIR into the IR regime below ⇤1.
Here the solution looks like
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+
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with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have

LUV = mUV +
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(23)
IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then
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choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.
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where m, c are just fixed by dimensional grounds in terms
of the only scale mIR - this a normal “natural”’ theory.
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with dimensional analysis again being used to fix the pa-
rameters. Now one should evolve this solution to ⇤1 and
match to the UV form of the solutions. In the UV we
will have
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IR quantities such as f⇡ will be determined simply by
dimensional analysis in terms of the IR scale mIR and
the UV condensate is relatively enhanced by the presence
of ⇤1 (whilst the UV mass is suppressed).

This is the origin of the e↵ect in the full model we will
discuss. A more complete setting is needed to set the
UV and IR boundary conditions on the solution and en-
sure the e↵ective potential from the bulk flows allows
the NJL mechanism to operate. However, if one naively
computes the NJL coupling in this approximation one
finds g2/⇤2

UV = mUV /cUV = m�2
IR(mIR/⇤)2� which is

a constant at � = 1 and then for fixed mIR rises as �
falls. This gives some support to the form of the phase
diagram in Fig 7.

B. Two Loop Runnings

We can now numerically study the more complete theory
with the two loop runnings for the 4Nc < Nf < 11Nc/2
theories. For Nc = 3 the conformal window lives in the
range 12  Nf  15.5 which corresponds to the fixed
point value of �⇤ changing from 1 to 0 as one increases
Nf . In a previous paper some of the authors [7] studied
the hyper-scaling relations in the holographic model in
the absence of NJL terms. Essentially that paper con-
firmed that the form of the solutions and naive dimen-
sional analysis used in the previous section apply at the
level of a percent or better along the flows (because the
flows are rather slow and locally taking � to be a constant
is a good approximation).

Here we provide a further piece of evidence of the scaling
behaviour we expect. Consider the Nf = 13 theory for
which the running of � is plotted in Figure 1. We fix a
UV cut o↵ at the scale where �(⇤UV ) = 0.05 and then

FIG. 8: Plot of Log mUV /mIR against Log mIR/�UV for

Nf = 13, �(⇤UV ) = 0.05

FIG. 9: The Nf = 13 theory with mIR lying in the fixed

point regime. The �’s mass is plotted against Log ⇤/mIR for

di↵erent separations between the IR and UV cut o↵s.

choose a variety of IR initial condition values of L = mIR.
Solving for L(⇢) we can then extract mUV at the cut o↵
scale from the value of L(⇤UV ). In Figure 8 we plot
Log( mUV /mIR) against Log L0/⇤UV . If the scaling
were the canonical UV scaling then mUV ' mIR and
the line would be flat at zero. However, we see that as
mIR is reduced mUV decreases relative to the canonical
scaling expectation and eventually after moving through
the running regime of Fig 1 enters a regime where mUV is
decreasing with a fixed power as the naive analysis above
predicts.

In principle one could perform the same analysis for the
condensate but since it is the sub-leading term in the be-
haviour of L it quite hard to precisely numerically follow
it over decades of evolution so we have not produced such
clean figures. The naive analysis of the previous section
though is clearly appropriate, confirmed for m, and the
expected growth in the condensate is certainly described
in the model.

mIR
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FIG. 10: This is a plot in the Nf = 12 theory where the IR

fixed point is �IR = 0.48. Here we have a separation of 7.5

between the mIR and ⇤. We vary mIR to scales with di↵erent

values of �IR and compute the � mass in units of f⇡.

C. A Light �

The Ideal Walking systems become an interesting pos-
sibility for replacements for a normal technicolour de-
scription of electroweak symmetry breaking since they
enhance the UV condensate which would help to push
flavour physics to high scales. A key question though is
whether they can describe a light higgs like state (one
would need m� ' f⇡/2).

Here again we can provide an analytic answer before we
proceed to numerics. The � meson spectrum is found by
solving (11) although we must be careful with boundary
conditions in the prescence of an NJL term. When we
find the vacuum form of L(⇢) we interpret the UV bound-
ary constants of the solution as mUV /cUV = g2/⇤2.
When we vary by the field S about that background we
must maintain the same value of g2/⇤2 rather than the
usual S ! 0 UV boundary behaviour of the NJL free
theory. Numerically this is straightforward.

Now consider (11) in the near conformal limit where�m2

varies only very slowly - we may neglect the third term
in the equation. Now is there an M2 = 0 solution? We
set the final term to zero also. (11) is now precisely (9)
which we solved for the background L0. We already know
a solution, the background L0 itself, that satisfies the
relevant NJL boundary condition. So such a massless
state is present. This argument shows that if we place
the IR mass scale and the UV cut o↵, separated, but both
deep in the IR fixed point regime of the gauge theory we
would expect to get an arbitrarily small � mass.

The set up with both the dynamical scale and the cut o↵
in the deep IR regime generates too small a � mass for an
electroweak theory higgs and would also not generate an
enhanced condensate because the running does not see
a transition in �. In fact the runnings in the conformal

window are rather slow generically, as can be seen in
Figure 1 so�m2 is generically quite flat and the challenge
is to make the � as heavy as f⇡/2.

We show some numerical results with the two loop run-
nings in Figures 9 and 10. In Figure 9 for Nf = 13 we
have fixed the IR mass scale (mIR) at a scale in the IR
fixed point regime and then varied ⇤ to compute the �
mass. The result is small because the coupling is running
so slowly.

In Figure 10 we show an example of a theory that achieves
a large enough m� for an electroweak model. Here Nf =
12 where the IR fixed point is �IR = 0.48. We have a
separation of 7.5 between the scales mIR and ⇤. We vary
mIR to scales with di↵erent values of �IR and compute
the � mass in units of f⇡. To achieve a larger m� one
needs to sandwich the strongest running between the IR
and UV scales.

We conclude that Ideal Walking could, dependent on the
precise running at intermediate strength couplings be-
yond perturbation theory, generate a light � as well as
playing the role of enhancing the quark condensate. In
this sense it looks an attractive set up although it relies
on NJL terms whose origin is unspecified.

VI. SUMMARY

We have used a holographic model to study the gauged
NJL model with di↵erent runnings for the gauge theory
in or near the conformal window. We have used the two
loop computations of the running of the gauge coupling
at Nc = 3 and varying Nf to represent these runnings
from asymptotic freedom to di↵erent IR fixed points.

For theories in which Nf lies below 4Nc the runnings
for the anomalous dimension of the quark bilinear pass
through � = 1 and chiral symmetry is triggered when the
NJL coupling g2 is zero. Adding an attractive NJL inter-
action reinforces condensation leading to a bigger mass
gap. The basic gauge theories display a spiral pattern in
the mass vs condensate plane - at zero quark mass there
are vacuum states in which the �,�⇤.. etc condense al-
though we show only the one with the � alone condensed
is stable. This structure is now clearly a prediction of
holographic models with symmetry breaking because it
has been seen in many models [9, 11, 18–20]. Here this
structure in the mass-condensate plane impacts when a
repulsive NJL term is added, with the surprising result
that condensation is only switched o↵ by an infinite NJL
coupling.

For 4Nc < Nf < 11Nc/2 the pure gauge theory lies in
an IR conformal regime with non-zero �. An additional
attractive NJL term generates chiral symmetry breaking
above a critical NJl coupling value - we have displayed



Conclusions

Holography	has	taught	us	how	to	compute	the	meson	spectrum	of	theories	
with	different	running	g. In	some	cases	these	models	are	as	good	a	
technique	as	we	have...

Witten’s	NJL	prescription	can	include	strong	four	fermion	operators

We	have	the	tools	to	study...

Eg Technicolour,	including	walking	and	ideal	
Extended	Technicolour
Top	condensation
Composite	higgs models
Tumbling
Dark	Matter	sectors
Inflatons….


