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1. Overview
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• p-adic AdS/CFT
[Gubser-Knaute-Parikh-Samberg-Witaszczyk ’16,
Heydeman-Marcolli-Saberia-Stoica ’16] relates field
theory dynamics over Qp to bulk dynamics on
a regular tree Tp.

• Tp =
p-adic conformal group
max compact subgroup

is naturally discrete. Easier starting point for
quantum gravity?

• Mostly today I will focus on field theory side.

• Long-range couplings among atoms in
an optical lattice can be individually
tuned.

• Depending on how we dial the
couplings, atoms can approximate a real
continuum or a p-adic continuum.

Discussions with G. Bentsen, and E. Davis
and M. Schleier-Smith, cf.
[Hung-Gonzalez-Tudela-Cirac-Kimble ’16].
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2. What are p-adic numbers?
Write h ∈ Z as

h = ±2v23v35v5 . . .

Then for any choice of prime p,

|h|p = p−vp .

| · |p is the p-adic norm.

For x = a/b ∈ Q, define

|x|p =
|a|p
|b|p

.

Also define |0|p = 0.

Example:
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The p-adic numbers Qp are the completion of Q wrt the norm | · |p.

The p-adic integers Zp are the unit ball in Qp, i.e. {x ∈ Qp : |x|p ≤ 1}.
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Any x ∈ Qp\{0} has a unique base p expansion:

x = . . . a3a2a1a0︸ ︷︷ ︸
this part is in Zp

. a−1a−2 . . . avp︸ ︷︷ ︸
fractional part {x}

≡
∞∑
n=vp

anp
n

where an ∈ {0, 1, 2, . . . , p− 1} and avp 6= 0.

R is called Archimedean because if |a| > |b| > 0, ∃n ∈ Z so that |nb| > |a|.
The Qp have instead the ultrametric property: |x + y|p ≤ max{|x|p, |y|p}.
R and the Qp are the only “good” completions of Q (Ostrowski’s theorem).
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Example for p = 2:

x = . . . 11111 =
∞∑
n=0

2n =
1

1− 2
=

1

−1
= −1 .

Arithmetic operations for the 2-adics works just like you expect in base 2:

Crucial: We carry to the left. So Q2 is not the same as just writing real numbers
backward in base 2.
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3. Hierarchical models
Consider the furthest neighbor 1-d Ising model, aka the Dyson hierarchical model:

H = −J∗
∑
m,n

σmσn
|m− n|s+1

2

where each σm = ±1.
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After using the digit-reversing Monna map, far apart spins are close and vice versa.

The 2-adic norm formalizes this alternative notion of closeness: |i− j|2 = 2−d(i,j)/2

where d(i, j) is distance on the tree.

The tree appears to badly break translation invariance, but this is an illusion: h →
h + 1 preserves the tree structure.
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Dyson ’69: Furthest neighbor Ising model has a finite temperature phase transition.

Missarov-Lerner ’89 (also Bleher-Sinai ’75 and others) showed that the critical the-
ory at the transition is characterized by φ4 theory over Q2:

S = −
∫
Q2×Q2

dx dy
1

2

φ(x)φ(y)

|x− y|s+1
2

+

∫
Q2

dx

[
r

2
φ2 +

λ

4!
φ4

]
where φ : Q2 → R

and s is a parameter.

Ordinary conformal invariance is not realized, but PGL(2,Q2) is.

• z → az+b
cz+d

with a, b, c, d, z ∈ Q2.

• These LFTs map spin clusters to spin clusters, but sometimes changing the size
of the clusters by a power of 2.

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

σn

n

• 〈O(z)O(0)〉 ∝ 1
|z|2∆

2
, similar to usual CFTs.
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4. Ingredients for field theory over Qp
• We have length but not direction: Qp isn’t naturally ordered.

• We have measure: Vol(pvZp) ≡ p−v, and Vol is invariant under translations.

• We have integration à la Lebesgue following from Vol.

• We have translation invariance and plane waves: χ(kx) = e2πi{kx}.

• We have Fourier transforms and a non-local version of derivatives:

φ(x) =

∫
Qp

dk χ(kx)φ̃(k) (Note φ : Qp → R)

Dsφ(x) =

∫
Qp

dk χ(kx)|k|sφ̃(k) =
1

Γp(−s)

∫
Qp

dy
φ(y)− φ(x)

|y − x|s+1
p

.

• The sum of any number of soft momenta is still soft: the “ultra-metric” property.

If all |ki|p ≤ Λ, then

∣∣∣∣∣∑
i

ki

∣∣∣∣∣
p

≤ Λ .

• We can have scale-invariance, but it’s discrete in steps of k → pk.
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5. Approximating p-adic interactions in a
physical system

Cold atom systems allow unprecedented control over the Hamiltonian. E.g. non-
local interactions for spin chains with spin 1/2 on each site:

Ĥ = −
∑
m,n

Jmn~σm · ~σn and variants, e.g. TIM and XY

Recent proposals, incl. [Hung et al 2016] and ongoing work in M. Schleier-Smith’s lab,
naturally allows for translationally invariant Jmn = Jm−n (up to endpoint effects).

Details of AMO at the level I can explain:

• Each site in a 1d optical lattice contains
(ideally) one atom.

• Two low-lying states (e.g. with hyperfine
splitting) provide single-atom
pseudo-spin Hilbert space.

|↓〉

|↑〉
∆E
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• |↓〉 ↔ |e〉 is coupled to photons we
pump into the cavity.

• |↑〉 ↔ |e〉 is coupled to cavity photons
that propagate across the whole sample.

|↓〉

|e〉

|↑〉

pu
m

pe
d

cavity

∆E

(not to
scale)

• Applied magnetic field shifts the hyperfine states unequally, so a linear gradi-
ent in B provides a site-dependent shift in energy, say in | ↓〉 but not | ↑〉.

|↓〉1

|↑〉1

|↓〉2

|↑〉2

|↓〉3

|↑〉3

|↓〉4

|↑〉4 |↓〉5

|↑〉5

|↓〉6

|↑〉6

|↓〉7

|↑〉7

|↓〉8

|↑〉8

|↓〉9

|↑〉9

Energy difference between low-lying states at site m is

(∆E)m ≡ (E↑)m − (E↓)m = (m−m0)ε with ε fixed.
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• σ+
mσ
−
n interaction mediates |↓↑〉mn → |↑↓〉mn and proceeds in four steps:

|↓〉m

|e〉m

|↑〉m

ωα

(∆E)m

δ
virtual

cavity photon
propagates

|↓〉n

|e〉n

|↑〉n

ωβ

(∆E)n

1© 2© 3© 4©

For |↓↑〉mn → |↑↓〉mn to proceed, we need on-resonance condition

(m− n)ε︸ ︷︷ ︸
translationally invariant

= (∆E)m − (∆E)n = ωβ − ωα︸ ︷︷ ︸
experimentally controlled

We must pump in both ωα photons and ωβ photons to get |↓↑〉mn ↔ |↑↓〉mn.

• Current prospect is to realize pure hopping Hamiltonian: σ+
mσ
−
n + σ−mσ

+
n .
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• Dissipative effects associated with each new pumped mode encourage selecting
frequencies parsimoniously.

Schleier-Smith’s sparse coupling proposal: Say Jh = 0 unless h = 2n

For example, with N = 2` spins,

J sparse
h ≡ J∗

`−1∑
n=0

2ns(δh−2n + δh+2n − 2δh) .

This is an approximation to

J2−adic
h ≡ J∗|h|−s−12 if h 6= 0.

At first blush these couplings do not seem very similar! A primary aim of the re-
mainder of the talk is to see that actually they are when s > 0.
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2-adic coupling

J sparse
h ≡ J∗

`−1∑
n=0

2ns(δh−2n + δh+2n − 2δh)

As we dial s from−∞ to +∞ we interpolate between nearest neighbor couplings
and 2-adic couplings.

JNN
h ≡ J∗(δh+1 + δh−1 − 2δh) J2−adic

h ≡ J∗|h|−s−12
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Problem: It’s hard to get anywhere with quantum spin-1/2 Hamiltonians without
numerics, absent some special trick like Jordan-Wigner.

Today’s solution: Simplify the model to a free boson on a lattice, still with non-local
interactions, treated in classical stat mech:

H ≡ −1

2

∑
m,n

Jm−nφmφn −
∑
m

bmφm Z[b] ≡

2`−1∏
m=0

∫ ∞
−∞

dφm

 δ(φ̃0)e
−βH .

Require J̃0 = 0, while J̃k < 0 for k 6= 0. In words:

• Interaction is ferromagnetic.

• Uniformly shifting all the φn is a massless mode.

• We explicitly fix that Goldstone-like mode with δ(φ̃0) inside the path integral.

The model is completely determined once we know the two-point function

Gmn = 〈φmφn〉 =
1

β2Z[0]

∂2Z[b]

∂bm∂bn

∣∣∣∣
b=0
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Just to get the idea, consider the most trivial nearest neighbor model:

JNN
h = J∗(δh+1 + δh−1 − 2δh)

JNN
k ≡

1√
N

N−1∑
h=0

e−2πikh/NJNN
h = − 4J∗√

N
sin2

(
πk

N

)
where N = 2`

G̃NN
k = −1− δk

NβJ̃k
=⇒ GNN

h ≈
N

βJ∗
G(h/L) where

g(x) =
1

2

(
x− 1

2

)2

− 1

24

for x ∈ [0, 1) :

g′′(x) = −δ(x) + 1

and
∫ 1

0

dx g(x) = 0 .

0.2 0.4 0.6 0.8 1.0
x

-0.04

-0.02

0.02

0.04

0.06

0.08

g

As we start adding in sparse long-range couplings by dialing up s, we’ll see this
smooth Green’s function become less and less smooth.
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Results for 64 spins. Archimedean side, s < 0:

To make the best comparison
between the sparse coupling results
and a smooth Green’s function, we
introduce power-law couplings:

J̃power
k ≡ − J∗

2s
√
N

[
sin

(
πk

N

)]−s

J̃power
k is a lattice version of the

familiar power-law couplings:
Jpower
h ∼ |h|s−1∞ for |h|∞/N � 1.

Gh < 0 for some h seems wrong given ferromagnetic couplings. In fact, δ(φ̃0)
enforces G̃0 = 1√

N

∑
hGh = 0.
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Results for 64 spins. Ultrametric side, s > 0:

At this point it’s clear that there just
isn’t a real continuum limit of the
Green’s function.

The strong response of spin number
32 happens for the very good reason
that the coupling between 0 and 32 is
strong.

We see from the s = 1 plots almost
degenerate values. Let’s see what
happens when we pass h through the
Monna map!
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Results for 64 spins. Archimedean side, s < 0:

Organizing Gh according to the 2-adics is as useless for s < 0 as using the reals is
for s > 0.
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Results for 64 spins. Ultrametric side, s > 0:

But for s > 0, the 2-adic couplings neatly capture most of what’s going on in the
sparse coupling model.
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6. Back to p-adic field theory
• By increasing density of points (i.e. `→∞), we can pass to a field theory over
Zp.

• If typical correlation lengths are much less than the system size, then we can
ignore the finite size effects that distinguish between Zp and Qp.

• In short, remove UV and IR cutoffs to get free but non-local scalar field theory
over Qp. Focus on p = 2 for simplicity.

S = −
∫
Q2

dxdy
1

2
φ(x)J(x− y)φ(y)

where
J(x) = J∗

∑
n∈Z

2ns [δ(x− 2n) + δ(x + 2n)− 2δ(x)] ,

Setting J∗ = 1/4 for convenience,

J̃(k) = − 1

G̃(k)
=
∑
n∈Z

2ns
χ(2nk) + χ(−2nk)− 2

4
= −

∑
n<−v2(k)

2ns sin2(π{2nk}) .

Our aim is to inquire how smooth or ragged G̃(k) and G(x) are.
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But first...

It’s worth noting that xn ≡ sin2(π{2nk}) for p-adic k is quite a special class of
sequences.

• xn = 0 for n ≥ −v2(k) because then 2nk ∈ Z2, so {2nk} = 0.

• xn solves the integrable limiting case of the logistical map, x→ 4x(1− x).

• Often one thinks of
xRn ≡ sin2(π2nk) with k ∈ R as
the general solution, but actually it
captures only solutions that go to 0
as n→ −∞.

• xn = sin2(π{2nk}) is a whole
other class of solutions: those
which lead to total extinction.

• The 2-adic norm |k|2 = 2−v2

predicts the moment of extinction.
0.2 0.4 0.6 0.8 1.0

x
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A function f is α-Hölder continuous on some domain O iff ∃K such that

|f (x1)− f (x2)| < K|x1 − x2|α .

• For f : R→ R, the smoothest non-constant functions have α = 1.

• For f : Qp → R, piecewise constant functions have α = ∞ (!) provided the
level sets are both open and closed.

Starting from Fourier series for J̃(k), we can establish lower bounds on α which
match numerics for G̃(k) and are clearly sub-optimal for G(x).

2-a
dic
fiel
d th
eor
y

real field theory

• α2-adic

• αpower
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real field theory

• α̃2-adic

• α̃power
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α̃

The transition between Archimedean and 2-adic continuity is clearly at s = 0.
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Free sparsely coupled bosonic field theory should be just the beginning!

Power counting suggests a picture as follows:

• Explicit calculations, e.g. perturbative expansion in ε = s − 1/2, might give
evidence for the beginning of a Wilson-Fisher branch.

• Sparsely coupled Ising Monte Carlo simulations could show anomalous scaling
for theories further out on the WF branch.
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7. Conclusions

• J sparse
h and J2−adic

h lead to nearly the
same dynamics at large s because
couplings are strongly hierarchical.

• Coupling to just one spin in a tightly
bound cluster is nearly the same as
coupling to them all.
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• Geometry emerges from interactions.
I. Kant: Space and Time are not real but ideal.

• Is there some sort of quantum criticality at s = 0?

• Conjecture (from listening to M. Schleier-Smith & G. Bentsen): s = 0 sparse
coupling provides the most efficient possible quantum scrambler.

• Entanglement and dynamical correlations are probably clearer from holographic
perspective, where locality may be more manifest.

• Cold atoms promise to probe an ever-widening range of physical regimes.
Add p-adic CFT to the list!
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