From *p*-adic AdS/CFT to prospects in cold atoms

Steve Gubser Princeton

1805.07637 with C. Jepsen, Z. Ji, and B. Trundy

July 2018, Würzburg

S. Gubser

1. Overview

• *p*-adic AdS/CFT

[Gubser-Knaute-Parikh-Samberg-Witaszczyk '16, Heydeman-Marcolli-Saberia-Stoica '16] relates field theory dynamics over \mathbb{Q}_p to bulk dynamics on a regular tree T_p .

• $T_p = \frac{p \text{-adic conformal group}}{\max \text{ compact subgroup}}$

is naturally discrete. Easier starting point for quantum gravity?

- Mostly today I will focus on field theory side.
- Long-range couplings among atoms in an optical lattice can be individually tuned.
- Depending on how we dial the couplings, atoms can approximate a real continuum or a *p*-adic continuum.

Discussions with G. Bentsen, and E. Davis and M. Schleier-Smith, cf. [Hung-Gonzalez-Tudela-Cirac-Kimble '16].

2. What are *p*-adic numbers?

Write $h \in \mathbb{Z}$ as

Also define $|0|_p = 0$.

The *p*-adic numbers \mathbb{Q}_p are the completion of \mathbb{Q} wrt the norm $|\cdot|_p$.

The *p*-adic integers \mathbb{Z}_p are the unit ball in \mathbb{Q}_p , i.e. $\{x \in \mathbb{Q}_p : |x|_p \leq 1\}$.

Any $x \in \mathbb{Q}_p \setminus \{0\}$ has a unique base p expansion:

$$x = \underbrace{\dots a_3 a_2 a_1 a_0}_{\text{this part is in } \mathbb{Z}_p} \cdot \underbrace{a_{-1} a_{-2} \dots a_{v_p}}_{\text{fractional part } \{x\}} \equiv \sum_{n=v_p}^{\infty} a_n p^n$$

where $a_n \in \{0, 1, 2, \dots, p-1\}$ and $a_{v_p} \neq 0$.

 \mathbb{R} is called Archimedean because if |a| > |b| > 0, $\exists n \in \mathbb{Z}$ so that |nb| > |a|. The \mathbb{Q}_p have instead the ultrametric property: $|x + y|_p \le \max\{|x|_p, |y|_p\}$. \mathbb{R} and the \mathbb{Q}_p are the only "good" completions of \mathbb{Q} (Ostrowski's theorem). Example for p = 2:

$$x = \dots 11111 = \sum_{n=0}^{\infty} 2^n = \frac{1}{1-2} = \frac{1}{-1} = -1.$$

Arithmetic operations for the 2-adics works just like you expect in base 2:

$$-l + l = 0 \text{ in } Q_2:$$

$$\dots + l = 0 \text{ in } Q_2:$$

$$+ l = 1$$

$$\dots = 0$$

Crucial: We carry to the left. So \mathbb{Q}_2 is *not the same* as just writing real numbers backward in base 2.

3. Hierarchical models

Consider the *furthest neighbor* 1-d Ising model, aka the Dyson hierarchical model:

After using the digit-reversing Monna map, far apart spins are close and vice versa. The 2-adic norm formalizes this alternative notion of closeness: $|i - j|_2 = 2^{-d(i,j)/2}$ where d(i, j) is distance on the tree.

The tree appears to badly break translation invariance, but this is an illusion: $h \rightarrow h + 1$ preserves the tree structure.

6

Dyson '69: Furthest neighbor Ising model has a finite temperature phase transition. Missarov-Lerner '89 (also Bleher-Sinai '75 and others) showed that the critical theory at the transition is characterized by ϕ^4 theory over \mathbb{Q}_2 :

$$S = -\int_{\mathbb{Q}_2 \times \mathbb{Q}_2} dx \, dy \, \frac{1}{2} \frac{\phi(x)\phi(y)}{|x-y|_2^{s+1}} + \int_{\mathbb{Q}_2} dx \, \left[\frac{r}{2}\phi^2 + \frac{\lambda}{4!}\phi^4\right] \quad \text{where} \quad \phi : \mathbb{Q}_2 \to \mathbb{R}$$

and *s* is a parameter.

Ordinary conformal invariance is *not* realized, but $PGL(2, \mathbb{Q}_2)$ is.

- $z \to \frac{az+b}{cz+d}$ with $a, b, c, d, z \in \mathbb{Q}_2$.
- These LFTs map spin clusters to spin clusters, but sometimes changing the size of the clusters by a power of 2.

• $\langle \mathcal{O}(z)\mathcal{O}(0)\rangle \propto \frac{1}{|z|_2^{2\Delta}}$, similar to usual CFTs.

4. Ingredients for field theory over \mathbb{Q}_p

- We have length but not direction: \mathbb{Q}_p isn't naturally ordered.
- We have measure: $\operatorname{Vol}(p^{v}\mathbb{Z}_{p}) \equiv p^{-v}$, and Vol is invariant under translations.
- We have integration à la Lebesgue following from Vol.
- We have translation invariance and plane waves: $\chi(kx) = e^{2\pi i \{kx\}}$.
- We have Fourier transforms and a non-local version of derivatives:

$$\begin{split} \phi(x) &= \int_{\mathbb{Q}_p} dk \, \chi(kx) \tilde{\phi}(k) \qquad \text{(Note } \phi : \mathbb{Q}_p \to \mathbb{R}\text{)} \\ D^s \phi(x) &= \int_{\mathbb{Q}_p} dk \, \chi(kx) |k|^s \tilde{\phi}(k) = \frac{1}{\Gamma_p(-s)} \int_{\mathbb{Q}_p} dy \, \frac{\phi(y) - \phi(x)}{|y - x|_p^{s+1}} \, . \end{split}$$

• The sum of any number of soft momenta is still soft: the "ultra-metric" property.

If all
$$|k_i|_p \leq \Lambda$$
, then $\left|\sum_i k_i\right|_p \leq \Lambda$.

• We can have scale-invariance, but it's discrete in steps of $k \rightarrow pk$.

5. Approximating *p*-adic interactions in a physical system

Cold atom systems allow unprecedented control over the Hamiltonian. E.g. nonlocal interactions for spin chains with spin 1/2 on each site:

 $\hat{H} = -\sum_{m,n} J_{mn} \vec{\sigma}_m \cdot \vec{\sigma}_n$ and variants, e.g. TIM and XY

Recent proposals, incl. [Hung et al 2016] and ongoing work in M. Schleier-Smith's lab, naturally allows for translationally invariant $J_{mn} = J_{m-n}$ (up to endpoint effects). Details of AMO at the level I can explain:

• Each site in a 1d optical lattice contains (ideally) one atom.

- $|\downarrow\rangle \leftrightarrow |e\rangle$ is coupled to photons we pump into the cavity.
- $|\uparrow\rangle \leftrightarrow |e\rangle$ is coupled to cavity photons that propagate across the whole sample.

• Applied magnetic field shifts the hyperfine states unequally, so a linear gradient in *B* provides a site-dependent shift in energy, say in $|\downarrow\rangle$ but not $|\uparrow\rangle$.

$$\frac{|\downarrow\rangle_{1}}{|\uparrow\rangle_{1}} \quad \frac{|\downarrow\rangle_{2}}{|\uparrow\rangle_{2}} \quad \frac{|\downarrow\rangle_{3}}{|\uparrow\rangle_{3}} \quad \frac{|\downarrow\rangle_{4}}{|\uparrow\rangle_{4}} \quad \frac{|\uparrow\rangle_{5}}{|\downarrow\rangle_{5}} \quad \frac{|\uparrow\rangle_{6}}{|\downarrow\rangle_{6}} \quad \frac{|\uparrow\rangle_{7}}{|\downarrow\rangle_{7}} \quad \frac{|\uparrow\rangle_{8}}{|\downarrow\rangle_{8}} \quad \frac{|\uparrow\rangle_{9}}{|\downarrow\rangle_{9}}$$

Energy difference between low-lying states at site m is

$$(\Delta E)_m \equiv (E_{\uparrow})_m - (E_{\downarrow})_m = (m - m_0)\epsilon$$
 with ϵ fixed.

• $\sigma_m^+ \sigma_n^-$ interaction mediates $|\downarrow\uparrow\rangle_{mn} \rightarrow |\uparrow\downarrow\rangle_{mn}$ and proceeds in four steps:

For $|\downarrow\uparrow\rangle_{mn} \rightarrow |\uparrow\downarrow\rangle_{mn}$ to proceed, we need on-resonance condition

We must pump in *both* ω_{α} photons and ω_{β} photons to get $|\downarrow\uparrow\rangle_{mn} \leftrightarrow |\uparrow\downarrow\rangle_{mn}$.

• Current prospect is to realize pure hopping Hamiltonian: $\sigma_m^+ \sigma_n^- + \sigma_m^- \sigma_n^+$.

-11

• Dissipative effects associated with each new pumped mode encourage selecting frequencies parsimoniously.

Schleier-Smith's sparse coupling proposal: Say $J_h = 0$ unless $h = 2^n$ For example, with $N = 2^{\ell}$ spins,

$$J_{h}^{\text{sparse}} \equiv J_{*} \sum_{n=0}^{\ell-1} 2^{ns} (\delta_{h-2^{n}} + \delta_{h+2^{n}} - 2\delta_{h}).$$

This is an approximation to

$$J_h^{2-\text{adic}} \equiv J_* |h|_2^{-s-1} \quad \text{if } h \neq 0.$$

At first blush these couplings do not seem very similar! A primary aim of the remainder of the talk is to see that actually they are when s > 0.

As we dial s from $-\infty$ to $+\infty$ we interpolate between nearest neighbor couplings and 2-adic couplings.

$$J_{h}^{\rm NN} \equiv J_{*}(\delta_{h+1} + \delta_{h-1} - 2\delta_{h}) \qquad \qquad J_{h}^{2-\rm adic} \equiv J_{*}|h|_{2}^{-s-1}$$

Today's solution: Simplify the model to a free boson on a lattice, still with non-local interactions, treated in classical stat mech:

$$H \equiv -\frac{1}{2} \sum_{m,n} J_{m-n} \phi_m \phi_n - \sum_m b_m \phi_m \qquad Z[b] \equiv \left(\prod_{m=0}^{2^\ell - 1} \int_{-\infty}^{\infty} d\phi_m\right) \delta(\tilde{\phi}_0) e^{-\beta H} \,.$$

Require $\tilde{J}_0 = 0$, while $\tilde{J}_k < 0$ for $k \neq 0$. In words:

- Interaction is ferromagnetic.
- Uniformly shifting all the ϕ_n is a massless mode.
- We explicitly fix that Goldstone-like mode with $\delta(\tilde{\phi}_0)$ inside the path integral.

The model is completely determined once we know the two-point function

$$G_{mn} = \langle \phi_m \phi_n \rangle = \frac{1}{\beta^2 Z[0]} \left. \frac{\partial^2 Z[b]}{\partial b_m \partial b_n} \right|_{b=0}$$

Just to get the idea, consider the most trivial nearest neighbor model:

As we start adding in sparse long-range couplings by dialing up *s*, we'll see this smooth Green's function become less and less smooth.

Results for 64 spins. Archimedean side, s < 0:

To make the best comparison between the sparse coupling results and a smooth Green's function, we introduce power-law couplings:

$$\widetilde{J}_{k}^{\text{power}} \equiv -\frac{J_{*}}{2^{s}\sqrt{N}} \left[\sin\left(\frac{\pi k}{N}\right) \right]^{-s}$$

 $\tilde{J}_k^{\text{power}}$ is a lattice version of the familiar power-law couplings: $J_h^{\text{power}} \sim |h|_{\infty}^{s-1}$ for $|h|_{\infty}/N \ll 1$.

 $G_h < 0$ for some *h* seems wrong given ferromagnetic couplings. In fact, $\delta(\tilde{\phi}_0)$ enforces $\tilde{G}_0 = \frac{1}{\sqrt{N}} \sum_h G_h = 0$.

Results for 64 spins. Ultrametric side, s > 0:

At this point it's clear that there just isn't a real continuum limit of the Green's function.

The strong response of spin number 32 happens for the very good reason that the coupling between 0 and 32 is strong.

We see from the s = 1 plots almost degenerate values. Let's see what happens when we pass h through the Monna map!

Results for 64 spins. Archimedean side, s < 0:

Organizing G_h according to the 2-adics is as useless for s < 0 as using the reals is for s > 0.

But for s > 0, the 2-adic couplings neatly capture most of what's going on in the sparse coupling model.

6. Back to *p*-adic field theory

- By increasing density of points (i.e. $\ell \to \infty$), we can pass to a field theory over \mathbb{Z}_p .
- If typical correlation lengths are much less than the system size, then we can ignore the finite size effects that distinguish between Z_p and Q_p.
- In short, remove UV and IR cutoffs to get free but non-local scalar field theory over Q_p. Focus on p = 2 for simplicity.

$$S = -\int_{\mathbb{Q}_2} dx dy \, \frac{1}{2} \phi(x) J(x-y) \phi(y)$$

where

$$J(x) = J_* \sum_{n \in \mathbb{Z}} 2^{ns} \left[\delta(x - 2^n) + \delta(x + 2^n) - 2\delta(x) \right] \,,$$

Setting $J_* = 1/4$ for convenience,

$$\tilde{J}(k) = -\frac{1}{\tilde{G}(k)} = \sum_{n \in \mathbb{Z}} 2^{ns} \frac{\chi(2^n k) + \chi(-2^n k) - 2}{4} = -\sum_{n < -v_2(k)} 2^{ns} \sin^2(\pi \{2^n k\}).$$

Our aim is to inquire how smooth or ragged $\tilde{G}(k)$ and G(x) are.

But first...

It's worth noting that $x_n \equiv \sin^2(\pi \{2^n k\})$ for *p*-adic *k* is quite a special class of sequences.

- $x_n = 0$ for $n \ge -v_2(k)$ because then $2^n k \in \mathbb{Z}_2$, so $\{2^n k\} = 0$.
- x_n solves the integrable limiting case of the logistical map, $x \to 4x(1-x)$.
- Often one thinks of
 x_n^ℝ ≡ sin²(π2ⁿk) with k ∈ ℝ as
 the general solution, but actually it
 captures only solutions that go to 0
 as n → -∞.
- $x_n = \sin^2(\pi \{2^n k\})$ is a whole other class of solutions: those which lead to total extinction.
- The 2-adic norm $|k|_2 = 2^{-v_2}$ predicts the moment of extinction.

A function f is α -Hölder continuous on some domain O iff $\exists K$ such that

 $|f(x_1) - f(x_2)| < K |x_1 - x_2|^{\alpha}.$

- For $f : \mathbb{R} \to \mathbb{R}$, the smoothest non-constant functions have $\alpha = 1$.
- For $f : \mathbb{Q}_p \to \mathbb{R}$, piecewise constant functions have $\alpha = \infty$ (!) provided the level sets are both open and closed.

Starting from Fourier series for $\tilde{J}(k)$, we can establish lower bounds on α which match numerics for $\tilde{G}(k)$ and are clearly sub-optimal for G(x).

The transition between Archimedean and 2-adic continuity is clearly at s = 0.

Free sparsely coupled bosonic field theory should be just the beginning!

Power counting suggests a picture as follows:

- Explicit calculations, e.g. perturbative expansion in $\epsilon = s 1/2$, might give evidence for the beginning of a Wilson-Fisher branch.
- Sparsely coupled Ising Monte Carlo simulations could show anomalous scaling for theories further out on the WF branch.

7. Conclusions

- J_h^{sparse} and $J_h^{2-\text{adic}}$ lead to nearly the same dynamics at large *s* because couplings are strongly hierarchical.
- Coupling to just one spin in a tightly bound cluster is nearly the same as coupling to them all.
- Geometry emerges from interactions. I. Kant: Space and Time are not real but ideal.
- Is there some sort of quantum criticality at s = 0?
- Conjecture (from listening to M. Schleier-Smith & G. Bentsen): s = 0 sparse coupling provides the most efficient possible quantum scrambler.
- Entanglement and dynamical correlations are probably clearer from holographic perspective, where locality may be more manifest.
- Cold atoms promise to probe an ever-widening range of physical regimes. Add *p*-adic CFT to the list!

