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Part I: (holographic) boundary CFTs

Boundary CFTs: CFTs that live on a space with a boundary, e.g. the half

plane. Can be used to describe interaction of CFT with defects.

Holographic models [Takayanagi 1105.5165]:

N: AdS bulk, M: asymptotic (AdS) boundary, P: boundary/defect of CFT,

Q: dynamic boundary of spacetime N, ”brane”.
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Part I: (holographic) boundary CFTs

S =
1

2κ

∫
N

dd+1x
√
−g (R − 2Λ + κLM)− 1

κ

∫
Q

ddx
√
−γ (K + κLQ) + S

(M,P)
c.t.

Equation for geometry of Q (similar to Israel junction conditions [Israel, 1966]):

Kij − γijK = −κSij (1)

Sij : energy momentum tensor on Q, γij : induced metric,

K : extrinsic curvature depending on embedding.

⇒ Embedding (location of the brane Q) will be a dynamical function x(z) with

(1) its own equations of motion.

Mario Flory Complexity g-theorem 4 / 18



The Kondo model

Spin-spin interaction of electrons with a localised magnetic impurity impacts

resistivity [Kondo 1964], at low temperatures electrons form a bound state around

impurity, the Kondo cloud .
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The holographic Kondo model

Spin-spin interaction of electrons with a localised magnetic impurity impacts

resistivity [Kondo 1964], at low temperatures electrons form a bound state around

impurity, the Kondo cloud .

Holographic bottom-up Kondo model [Erdmenger et al. 1310.3271]:

Effectively, a holographic superconductor on Q in AdS3/BCFT2.

RG flow from UV to IR ⇔ decreasing temperature from T = Tc to T = 0

(OR increasing chemical potential µ ≥ µc).

g -theorem for boundary entropy ln g [Affleck, Ludwig 1991, Friedan, Konechny

2004]:

T∂T ln g(T ) ≥ 0
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A holographic Kondo model

S = SCS [A]−
∫

d3xδ(x)
√
−g
(
1
4 f mnfmn + γmn(DmΦ)†DnΦ + V (Φ†Φ)

)
[Erdmenger et al. 1310.3271]
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Part II: Complexity and fidelity susceptibility

A quantum computer is to compute an output state |ψ〉 from a simple input

state |0〉 by implementing an operation U on the input:

|ψ〉 = U |0〉

In practice, this will be accomplished by successively acting on the input

with a series of specific quantum gates that are selected from a set of

allowed operations {µi} (”Program” of the computer):

|ψ〉 = U |0〉 = µ1µ2µ3... |0〉

The complexity of the state |ψ〉 is the number of quantum gates µi that

have to be applied in its computation. [Nielsen et al. Science 311, 5764, (2006)]
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New entries to the holographic dictionary: Complexity

There are two proposals how to compute complexity C holographically:

Volume proposal: C ∝ V
LGN

with Newton’s constant GN , the AdS scale L and

the extremal surface volume V. [Susskind Fortsch.Phys. 64 (2016) 24-43]

Action Proposal: C = A
π~ where A is the action of the bulk gravity

integrated over the Wheeler de-Witt patch. [Brown et al. PRL 116, 191301 (2016)]

V

A

Conformal diagram of a black hole in AdS space. The vertical

sides of the square are the conformal boundaries where the

dual field theory state is understood to live. The dashed line is

an extremal spacelike surface, the shaded region is the Wheeler

de-Witt patch.
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New entries to the holographic dictionary: Fidelity

susceptibility

Fidelity susceptibility Gλλ measures how much a state (labeled by a

parameter λ) changes under variations δλ:

| 〈ψ(λ)|ψ(λ+ δλ)〉 |︸ ︷︷ ︸
”Fidelity”

= 1− Gλλδλ
2 +O(δλ3)

[Braunstein, Caves, PRL 72, 3439 (1994)]

If |ψ(λ)〉 is the ground state of a CFT perturbed by a marginal operator

δλO, then holographically:

Gλλ ∼
V
Ld

with the AdS scale L and V the volume of an extremal co-dimension one

spacelike bulk surface. [Miyaji et al. PRL 115, 261602 (2015)]

Mario Flory Complexity g-theorem 10 / 18



Backreaction in the Kondo model

Sbrane [am,Φ] = −
∫

dVbrane

(
1
4 f mnfmn + γmn(DmΦ)†DnΦ + V (Φ†Φ)

)
Brane starts at boundary and falls into black hole. As T is lowered (resp. µ

is raised), it sweeps over the background like a curtain.
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[Erdmenger et al.: 1511.03666]
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Entanglement entropy in the Kondo model
By calculating the impurity entropy

ln g(T ) = Simp(T ) ≡ S(T )|impurity present − S(T )|impurity absent,

we can verify the g -theorem

T∂T ln g(T ) ≥ 0.
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[Erdmenger et al.: 1511.03666]
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Complexity and fid. susc. in the Kondo model
Along the RG-flow, volume of bulk spacetimes decreases:
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Similar to impurity entropy Simp ≡ SEE |impurity present − SEE |impurity absent, define

relative complexity

∆C ∝ VT − VT=Tc

with VT : bulk volume of condensed phase, VT=Tc : bulk volume of uncondensed

phase.

[Erdmenger et al.: 1511.03666; MF 1702.06386]
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Complexity and fid. susc. in the Kondo model
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∆C ∝ VT − VT=Tc , i.e. the holographic Kondo model satisfies a

complexity/fidelity susceptibility analogue of the g -theorem.

Volume difference is finite, divergencies near AdS boundary cancel!

Prescription for calculating complexity: Volume vs. action?

Relation to energy conditions/RG-flow/g -theorem for general AdS/BCFT?

[MF 1702.06386]
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Complexity and fid. susc. in general AdS3/BCFT2 models

Sij(µ)

x

z

Sij(µ+ δµ) ≡ Sij(µ) + δSij

x
(µ)
+ (z) = x0(z)

x
(µ+δµ)
+ (z) = x0(z) + δx(z)

Assume the RG-flow from UV to IR to be described by some parameter µ

(T/Tc in Kondo model) which changes the embedding of the brane Q into

BTZ ambient spacetime N.

Assume Sij(µ) satisfies ”NEC” and violates ”SEC”. [Erdmenger et al. 1410.7811]

Assume δSij(µ) satisfies NEC and SEC (”δNEC” and ”δSEC”).

[MF 1702.06386]
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Complexity and fid. susc. in general AdS3/BCFT2 models

δSEC ⇒ δC(µ) ∝ Vµ+δµ − Vµ ≤ 0

for every µ, hence

δSEC ⇒ ∆C(µ) ∝ Vµ − VµUV ≤ 0

This suggests the complexity/fidelity susceptibility analogue of the g -theorem for

AdS3/BCFT2 models:

When going from the UV to the IR, the complexity/fidelity susceptibility of the

BCFT state decreases. States get ”simpler”.

[MF 1702.06386]
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Summary

We studied an AdS3/BCFT2 model inspired by the Kondo effect and generic

AdS3/BCFT2 models. [Takayanagi 1105.5165]

We obtained general results constraining possible geometries of the brane by

energy conditions. [Erdmenger et al. 1410.7811]

The specific Kondo model was solved numerically, the Affleck-Ludwig

g -theorem was verified. [Erdmenger et al. 1511.03666]

A complexity/fidelity susceptibility analogue of the g -theorem for similar

AdS3/BCFT2 models was proven assuming certain energy conditions. [MF

1702.06386]
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Thank you very much
for your attention

Mario Flory Complexity g-theorem 18 / 18



Please also visit the poster of Nina Miekley
for our recent joint work
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Back up slides...
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Comparison to MERA model?
Coincidentally, there exists a MERA model of the Kondo effect [Matsueda

1208.2872]:
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Curly red line: event horizon, dashed red line: ”artificial horizon”⇔ our brane?

How much of the intuition and results gained from the holographic model

can be applied to MERA model? (geometry of boundary/brane, g -theorem,

coth-formula, volume decrease,...)

MERA-geometry: AdS or kinematic space?
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The top-down Kondo model

Holographic top-down model, brane setup:

0 1 2 3 4 5 6 7 8 9

N D3 x x x x

N7 D7 x x x x x x x x

N5 D5 x x x x x x

D3/D7 strings: chiral fermions in 1+1 d → electrons ψL.

D3/D5 strings: slave fermions in 0+1 d → impurity spin ~S = χ†~Tχ.

D5/D7 strings: tachyonic scalar → Formation of Kondo cloud:

〈O〉 ≡
〈
ψ†
Lχ
〉
6= 0

[Erdmenger et al. 1310.3271]
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The top-down Kondo model

Holographic top-down model, near horizon limit: D3⇒ AdS5 × S5, hence probe

D5⇒ AdS2 × S4, probe D7⇒ AdS3 × S5.

Boundary Bulk

k channels of chiral fermions U(k) Chern-Simons field

ψL Aµ in AdS3

slave fermions Yang-Mills field

q = χ†χ am in AdS2

Operator charged scalar

O = ψ†
Lχ Φ in AdS2

[Erdmenger et al. 1310.3271]
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Energy conditions

Utilising the barrier theorem [Engelhardt, Wall: 1312.3699], we can constrain the

possible geometries allowed by different energy conditions.

Whether or not a brane Q bends back to the boundary or goes deep into the bulk

depends on whether Sij satisfies or violates WEC and SEC.

[Erdmenger et al. 1410.7811]
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Entanglement entropy in the Kondo model

Numerical results on impurity entropy Simp ≡ SEE |impurity present− SEE |impurity absent.
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[Erdmenger et al. 1511.03666]

Mario Flory Complexity g-theorem 25 / 18


