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J � 2
Evidence from lattice QCD that there are 
glueballs on this trajectory with          .

Total cross sections in QCD

Chapter 1. Introduction

Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ≃ 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be

4

� ⇠ sj(0)�1 ⇠ s0.08

A(s, t) ⇠ sj(t)

j(t) = 1.08 + 0.25 t (GeV units)
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Graviton Regge trajectory dual to pomeron trajectory [Brower, Polchinski, Strassler, Tan 06]
This talk:



• Explain DIS data with two Regge trajectories
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It seems data “knows” about holographic QCD!!
z ⇠ 1/Q
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• Exchange of spin J field in AdS
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(symmetric, traceless and transverse) AdS scattering
 process
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• AdS impact parameter repres. In Regge limit [Cornalba, MSC, Penedones, Schiappa 07]

AJ (s, t) ⇡ iV J
0
J s

Z
dl?e

iq?·l?
Z

dz

z3
dz0

z03
�1(z)�3(z)�2(z

0)�4(z
0)SJ�1GJ (L)

,  AdS energy squaredS = zz0s

,  impact parameter
coshL =

z2 + z02 + l2?
2zz0
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• Considered non-minimal coupling between U(1) gauge field and 
graviton trajectory. Recall case of graviton in AdS

F ba1ra2 . . .raJ�1F aJ
bha1...aJ , F ba1ra2 . . .raJ�1F aJcrbrcha1...aJ
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Many Regge trajectories

• Consider 5D exchange of spin J field in the Regge limit

AJ (s, t)

O O

J

j j

• Sum over spin J exchanges

Poles in the J-plane at t = tn(J) ) J = jn(t)

X

J

!
Z

dJ

sin⇡J

J

� � �
2 4 6

j2(t) j1(t)

j0(t)

Reduces to a Schrodinger problem (spectral representation)
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• Dependence on fixed target absorbed in coupling

gn = �2⇡2jn(0)̄jn(0)
2jn(0)

j0n(0)

Z
dz P24

�
P 2, z

�
e(1�jn(0))A(z)eB(z) ⇤

n

�
jn(0), z

�

• Dependence on virtual photon wave function
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Test model agains low x DIS data from HERA

Kept the first 4 Regge trajectories 
(up to intercept of meson trajectory 
that will also contribute)

5 parameters from spin J equation; 
4x2 parameters from coupling of each pomeron

Truncated data to                 region. 
Has 249 data points and large range in Q  ⇣

0.1 < Q2 < 400 GeV2
⌘

x < 0.01

Parameters fixed with 

x

F2

�2

d.o.f. = 1.1

l�1
s = 6.93 GeV , ��1/2 = 6.20 GeV
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• Regge trajectories consistent with 
lattice               QCD glueball spectrum!

In green meson trajectories

[Meyer 05]

J
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Non-minimal coupling defines scale of 1-10 GeV; matches order 
of magnitude of gap between spin 4 and 2 glueballs [CMEZ 14]
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• Gauge/strings duality sheds light into long standing puzzle in QCD: the 
connection between hard and soft pomeron. They are just different Reggeons 
that arise form graviton Regge trajectory in dual 5D space. 

• Test this picture against other processes such as DVCS and VMP. 

• Coupling of Pomeron to gluon jets.

• How generic are our results? Should try other holographic QCD models...
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