Holographic Pomeron in low-x QCD

- Miguel S. Costa Faculdade de Ciências da Universidade do Porto
 - 1804.07778 [hep-ph] with Amorim & Quevedo

Gauge/Gravity Duality 2018 - Universitat Wurzburg

(Soft) Pomeron

• Elastic scattering in QCD dominate vacuum quantum numbers.

$$A(s,t) \sim s^{j(t)}$$

j(t) = 1.08 + 0.25 t (GeV units) [Donnachie, Landshoff 92]

Elastic scattering in QCD dominated by exchange of Regge trajectory with

(Soft) Pomeron

• Elastic scattering in QCD dominate vacuum quantum numbers.

j(t) = 1.08 + 0.25 t (GeV units) [Donnachie, Landshoff 92]

Total cross sections in QCD

$$\sigma \sim s^{j(0)-1} \sim s^{0.08}$$

Evidence from lattice QCD that there are glueballs on this trajectory with $J \ge 2$.

50

40

30

Elastic scattering in QCD dominated by exchange of Regge trajectory with

• Pomeron also enters in diffractive processes, e.g. DIS e^{-1}

• Pomeron also enters in diffractive processes, e.g. DIS

e

Effective slop varies with Q

One or two pomerons (soft and hard)?

Effective slop varies with Q

One or two pomerons (soft and hard)?

This talk: Graviton Regge trajectory dual to pomeron trajectory [Brower, Polchinski, Strassler, Tan 06]

Effective slop varies with Q

Hard and soft pomeron are distinct Regge trajectories

• Explain DIS data with two Regge trajectories [Donnachie, Landshoff 01]

$$\sigma(Q^2, x) \propto f_0(Q^2) x^{-j_0} + f_1(Q^2) x^{-j_1}$$

Hard and soft pomeron are distinct Regge trajectories

• Explain DIS data with two Regge trajectories [Donnachie, Landshoff 01]

$$\sigma(Q^2, x) \propto f_0(Q^2) x^{-j_0} + f_1(Q^2) x^{-j_1}$$

 Let us apply this idea to gauge/string duality [Bayona, MSC, Quevedo 17]

Holographic direction $z \sim 1/Q$

$$f_k(Q^2) = P_k(Q^2)\psi_k(Q^2)$$
Wave fur
Schrodin
holograp

Known function of Q^2 and J_k

nction of a 1D iger problem in holographic direction

Hard and soft pomeron are distinct Regge trajectories

• Explain DIS data with two Regge trajectories [Donnachie, Landshoff 01]

$$\sigma(Q^2, x) \propto f_0(Q^2) x^{-j_0} + f_1(Q^2) x^{-j_1}$$

 Let us apply this idea to gauge/string duality [Bayona, MSC, Quevedo 17]

Holographic direction $z \sim 1/Q$

$$f_k(Q^2) = P_k(Q^2)\psi_k(Q^2)$$
Wave furstion of Q^2 and i_k
Wave furstion of Q^2 and i_k

Known function of Q^2 and J_k

It seems data "knows" about holographic QCD!!

nction of a 1D iger problem in holographic direction

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

Exchange of spin J field in AdS

(symmetric, traceless and transverse)

$$\left(D^2 - m^2\right)h_{a_1\dots a_J} = 0$$

with $m^2 = \Delta(\Delta - 4) - J$

AdS scattering process

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

 Exchange of spin J field in AdS (symmetric, traceless and transverse)

$$\left(D^2 - m^2\right)h_{a_1...a_J} = 0$$

with $m^2 = \Delta(\Delta - 4) - J$

$$A_J(s,t) \approx i V \kappa_J \kappa'_J s \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{dz'}{z'^3} \Phi$$

S = z z' s , AdS energy squared

$$\cosh L = \frac{z^2 + z'^2 + l_\perp^2}{2zz'}$$
 , i

AdS impact parameter repres. In Regge limit [Cornalba, MSC, Penedones, Schiappa 07]

 $\Phi_1(z)\Phi_3(z)\Phi_2(z')\Phi_4(z')S^{j}$ $G_J(L)$

impact parameter

$$A_J(s,t) \approx i V \kappa_J \kappa'_J s \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{dz}{z'}$$

• $G_J(L)$ is the integrated propagator along light rays. Obeys scalar propagator equation in transverse space

$$\left[\Box_{H_3} - 3 - \Delta(\Delta - 4)\right]G_J(L) =$$

 $\frac{dz'}{d^{3}}\Phi_{1}(z)\Phi_{3}(z)\Phi_{2}(z')\Phi_{4}(z)S^{J-1}G_{J}(L)$

- $-\delta_{H_3}(y,y')$

$$A_J(s,t) \approx i V \kappa_J \kappa'_J s \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{dz}{z'}$$

• $G_J(L)$ is the integrated propagator along light rays. Obeys scalar propagator equation in transverse space

$$\left[\Box_{H_3} - 3 - \Delta(\Delta - 4)\right]G_J(L) =$$

 $G_J(L) = e^{iq_\perp \cdot l_\perp} \sqrt{z} \, \psi(z)$, reduces to Schrodinger problem

 $\frac{dz'}{du'^3} \Phi_1(z) \Phi_3(z) \Phi_2(z') \Phi_4(z) S^{J-1} G_J(L)$

- $-\delta_{H_3}(y,y')$

$$(\Delta - 4) \left(\frac{1}{z^2} \right)$$

$$A_J(s,t) \approx i V \kappa_J \kappa'_J s \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{dz}{z'}$$

• $G_J(L)$ is the integrated propagator along light rays. Obeys scalar propagator equation in transverse space

$$\left[\Box_{H_3} - 3 - \Delta(\Delta - 4)\right]G_J(L) =$$

 $G_J(L) = e^{iq_{\perp} \cdot l_{\perp}} \sqrt{z} \psi(z)$, reduces to Schrodinger problem

 $\frac{z'}{z'^{3}}\Phi_{1}(z)\Phi_{3}(z)\Phi_{2}(z')\Phi_{4}(z)S^{J-1}G_{J}(L)$

- $-\delta_{H_3}(y,y')$

- $\Delta = \Delta(J)$

Holographic QCD

QCD dual is a 5D theory with a graviton and a dilaton

$$ds^{2} = e^{2A(z)} \left(dz^{2} + \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} \right)$$
$$\Phi = \Phi(z)$$

Test our ideas with a 5D dilaton-gravity model [Gursoy, Kiritsis, Nitti 07]

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} e^{-2\Phi} \left[R + 4(\partial\phi)^2 + V(\phi) \right]$$

Holographic QCD

QCD dual is a 5D theory with a graviton and a dilaton

$$ds^{2} = e^{2A(z)} \left(dz^{2} + \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} \right)$$
$$\Phi = \Phi(z)$$

Test our ideas with a 5D dilaton-gravity model [Gursoy, Kiritsis, Nitti 07]

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \, \epsilon$$

 Considered non-minimal coupling between U(1) gauge field and graviton trajectory. Recall case of graviton in AdS

$$\int d^5 X \sqrt{-g} e^{-\Phi} \left(F_{ab} F^{ab} + \beta R_{abcd} F^{ab} F^{cd} \right)$$

• Spin J field dual to gluon operator $\mathcal{O}_J \sim \text{Tr}\left(F_{\alpha\beta_1}D_{\beta_2}\dots D_{\beta_{J-1}}F_{\beta_J}^{\alpha}\right)$

• Spin J field dual to gluon operator $\mathcal{O}_J \sim \text{Tr} \left(F_{\alpha\beta_1} D_{\beta_2} \dots D_{\beta_{J-1}} F_{\beta_J} \right)$

Decompose symmetric, traceless, transverse field $h_{a_1...a_J}$ with respect to global SO(1,3) boundary symmetry. Propagating modes have boundary indices $h_{\alpha_1 \dots \alpha_J}$

• In AdS limit reduce to $(\nabla^2 - m^2) h_{a_1...a_J} = 0$

$$m^2 = \Delta(\Delta - 4) - J, \quad \Delta = \Delta($$

• For J = 2 reproduce TT metric fluctuations

- J)

• Spin J field dual to gluon operator $\mathcal{O}_J \sim \text{Tr} \left(F_{\alpha\beta_1} D_{\beta_2} \dots D_{\beta_{J-1}} F_{\beta_J} \right)$

Decompose symmetric, traceless, transverse field $h_{a_1...a_T}$ with respect to global SO(1,3) boundary symmetry. Propagating modes have boundary indices $h_{\alpha_1...\alpha_J}$

• In AdS limit reduce to $(\nabla^2 - m^2) h_{a_1...a_J} = 0$

$$m^2 = \Delta(\Delta - 4) - J, \quad \Delta = \Delta($$

• For J = 2 reproduce TT metric fluctuations

Equation for propagating mode in effective field theory

$$\left(\nabla^2 - 2\dot{\Phi}\nabla_z + J\dot{A}^2 e^{-2A} - \Delta(\Delta - 4) + (J - 2)e^{-2A} \left[a\ddot{\Phi} + b\dot{\Phi}^2 + c\left(\ddot{A} - \dot{A}^2\right)\right]\right)h_{\alpha_1\dots\alpha_J}$$

J)

= 0

• Spin J field dual to gluon operator $\mathcal{O}_J \sim \text{Tr} \left(F_{\alpha\beta_1} D_{\beta_2} \dots D_{\beta_{J-1}} F_{\beta_J} \right)$

Decompose symmetric, traceless, transverse field $h_{a_1...a_T}$ with respect to global SO(1,3) boundary symmetry. Propagating modes have boundary indices $h_{\alpha_1 \dots \alpha_J}$

• In AdS limit reduce to $(\nabla^2 - m^2) h_{a_1...a_J} = 0$

$$m^2 = \Delta(\Delta - 4) - J, \quad \Delta = \Delta($$

• For J = 2 reproduce TT metric fluctuations

Equation for propagating mode in effective field theory

$$\left(\nabla^2 - 2\dot{\Phi}\nabla_z + J\dot{A}^2 e^{-2A} - \Delta(\Delta - 4) + (J - 2)e^{-2A}\left[a\ddot{\Phi} + b\dot{\Phi}^2 + c\left(\ddot{A} - \dot{A}^2\right)\right]\right)h_{\alpha_1\dots\alpha_J}$$

J)

= 0

• Spin J field dual to gluon operator $\mathcal{O}_J \sim \text{Tr} \left(F_{\alpha\beta_1} D_{\beta_2} \dots D_{\beta_{J-1}} F_{\beta_J} \right)$

Decompose symmetric, traceless, transverse field $h_{a_1...a_J}$ with respect to global SO(1,3) boundary symmetry. Propagating modes have boundary indices $h_{\alpha_1 \dots \alpha_J}$

• In AdS limit reduce to $(\nabla^2 - m^2) h_{a_1...a_J} = 0$

$$m^2 = \Delta(\Delta - 4) - J, \quad \Delta = \Delta($$

• For J = 2 reproduce TT metric fluctuations

Equation for propagating mode in effective field theory

$$\left(\nabla^2 - 2\dot{\Phi}\nabla_z + J\dot{A}^2 e^{-2A} - (\Delta(\Delta - 4)) + (J - 2)e^{-2A} \left[a\ddot{\Phi} + b\dot{\Phi}^2 + c\left(\ddot{A} - \dot{A}^2\right) \right] \right) h_{\alpha_1...\alpha_J}$$

Many Regge trajectories

Consider 5D exchange of spin J field in the Regge limit

$$A_{J}(s,t) = iV \frac{\kappa_{J}\kappa'_{J}}{(-2)^{J}} s_{J}$$
$$|v_{1}|^{2}|v_{2}'|^{2} (s_{1})$$

$\int dz dz' e^{3A+3A'-\Phi-\Phi'}$ $\int se^{-A-A'} \int^{J-1} G_J(z,z',t)$

Many Regge trajectories

Consider 5D exchange of spin J field in the Regge limit

$$A_{J}(s,t) = iV \frac{\kappa_{J}\kappa'_{J}}{(-2)^{J}} s_{J}$$
$$|v_{1}|^{2}|v_{2}'|^{2} \left(s_{1}\right)$$

Reduces to a Schrodinger problem (spectral representation)

$$G_J(z, z', t) = e^{\Phi - \frac{A}{2} + \Phi' - \frac{A'}{2}} \sum_n \frac{\psi_n(z)\psi_n^*(z')}{t_n(J) - t}$$

Many Regge trajectories

Consider 5D exc

change of spin J field in the Regge limit

$$A_{J}(s,t) = iV \frac{\kappa_{J}\kappa'_{J}}{(-2)^{J}} s \int dz dz' e^{3A+3A'-\Phi-\Phi'}$$

$$|v_{1}|^{2}|v'_{2}|^{2} \left(se^{-A-A'}\right)^{J-1} G_{J}(z,z',t)$$

$$v(z)$$

$$\int_{J=1.5}^{J=2.0} f_{J}(z,z',t)$$

$$\int_{0}^{J=1.5} f_{J}(z,z',t)$$

$$\int_{0}^{J=1.5} f_{J}(z,z',t)$$

$$\int_{0}^{J=1.5} f_{J}(z,z',t)$$

$$\int_{0}^{J=1.5} f_{J}(z,z',t)$$

Reduces to a Schrodin

$$G_J(z, z', t) = e^{\Phi - \frac{A}{2} + \Phi' - \frac{A'}{2}} \sum_n \frac{\psi_n(z)\psi_n^*(z')}{t_n(J) - t}$$

• Sum over spin J exchanges \rightarrow Poles in the J-plane at $t = t_n(J) \Rightarrow J = j_n$

$$\int \frac{dJ}{\sin \pi J}$$

$$i_n(t)$$

$$F_2(x,Q^2) = \sum_n \left(f_n^{MC}(Q^2) + f_n^{NMC}(Q^2) \right) x^{1-j_n}$$

 Dependence on virtual photon wave function $f_n^{\rm MC}(Q^2) = g_n Q^{2j_n} \int dz \, e^{-(j_n - \frac{3}{2})A} \left(f_Q^2 + \frac{\dot{f}_Q^2}{Q^2} \right) \psi_n$ $f_n^{\rm NMC}(Q^2) = \tilde{g}_n Q^{2j_n} \int dz \, e^{-\left(j_n - \frac{3}{2}\right)A} \left(f_Q^2 \tilde{\mathcal{D}}_\perp + \frac{\dot{f}_Q^2}{Q^2} \tilde{\mathcal{D}}_\parallel \right) \psi_n$

$$F_2(x,Q^2) = \sum_n \left(f_n^{MC}(Q^2) + f_n^{NMC}(Q^2) \right) x^{1-j_n}$$

 Dependence on virtual photon wave function $f_n^{\rm MC}(Q^2) = g_n Q^{2j_n} \int dz \, e^{-(j_n - \frac{3}{2})A} \left(f_Q^2 + \frac{\dot{f}_Q^2}{Q^2} \right) \psi_n$ $f_n^{\text{NMC}}(Q^2) = \tilde{g}_n Q^{2j_n} \int dz \, e^{-\left(j_n - \frac{3}{2}\right)A} \left(f_Q^2 \tilde{\mathcal{D}}_{\perp} + \frac{\dot{f}_Q^2}{Q^2} \tilde{\mathcal{D}}_{\parallel} \right) \psi_n$

$$egin{aligned} ilde{\mathcal{D}}_{\perp} &= e^{-2A} \left(\dot{A} \dot{a} & \dot{a} &$$

$$F_2(x,Q^2) = \sum_n \left(f_n^{MC}(Q^2) + f_n^{NMC}(Q^2) \right) x^{1-j_n}$$

 Dependence on virtual photon wave function $f_n^{\rm MC}(Q^2) = g_n Q^{2j_n} \int dz \, e^{-(j_n - \frac{3}{2})A} \left(f_Q^2 + \frac{\dot{f}_Q^2}{Q^2} \right) \psi_n$ $f_n^{\rm NMC}(Q^2) = \tilde{g}_n Q^{2j_n} \int dz \, e^{-\left(j_n - \frac{3}{2}\right)A} \left(f_Q^2 \tilde{\mathcal{D}}_{\perp} + \frac{\dot{f}_Q^2}{Q^2} \tilde{\mathcal{D}}_{\parallel} \right) \psi_n$ $ilde{\mathcal{D}}_{\perp} = e^{-2A} \left(\dot{A} \partial_z + \dot{A}^2 + \dot{A} \dot{B}
ight)$

$$ilde{\mathcal{D}}_{\parallel} = e^{-2A} \left(\partial_z^2 - \left(\dot{A} - 2\dot{B} \right) \partial_z + \ddot{B} + A \right)$$

Dependence on fixed target absorbed in coupling

$$g_n = -2\pi^2 \frac{\kappa_{j_n(0)} \bar{\kappa}_{j_n(0)}}{2^{j_n(0)}} j'_n(0) \int dz \, P_{24}(P^2, z) \, e^{(1-j_n(0))A(z)} e^{B(z)} \psi_n^*(j_n(0), z)$$

Test model agains low x DIS data from HERA

Test model agains low x DIS data from HERA

Truncated data to x < 0.01 region. Has 249 data points and large range in Q $\left(0.1 < Q^2 < 400 \text{ GeV}^2\right)$

Kept the first 4 Regge trajectories (up to intercept of meson trajectory) that will also contribute)

5 parameters from spin J equation; 4x2 parameters from coupling of each pomeron

Parameters fixed with $\chi^2_{d.o.f.} = 1.1$

 $l_s^{-1} = 6.93 \text{ GeV}, \ \beta^{-1/2} = 6.20 \text{ GeV}$

parameter	value	couplings	value	couplings	value
a	-4.68	g_0	-0.154	$ ilde{g}_0$	0.0707
b	4.85	g_1	-0.424	$ ilde{g}_1$	-0.0378
с	0.665	g_2	2.12	$ ilde{g}_2$	-0.248
d	-0.328	g_3	-0.721	$ ilde{g}_3$	0.363

• Reproduced long sought running of effective exponent $\sigma \sim f(Q) \left(\frac{1}{r}\right)^{\epsilon_{eff}(Q)}$

 - consistent with universal behavior of soft pomeron 1.09 intercept observed for soft probes in elastic processes

ω

Reproduced long sought running of effective exponent $\epsilon_{eff}(Q)$ $\sigma \sim f(Q)$

- consistent with universal behavior of soft pomeron 1.09 intercept observed for soft probes in elastic processes

Non-minimal coupling defines scale of 1-10 GeV; matches order of magnitude of gap between spin 4 and 2 glueballs [CMEZ 14]

ω

Regge trajectories consistent with lattice [Meyer 05] QCD glueball spectrum!

In green meson trajectories

 Gauge/strings duality sheds light into long standing puzzle in QCD: the that arise form graviton Regge trajectory in dual 5D space.

- Gauge/strings duality sheds light into long standing puzzle in QCD: the that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.

- Gauge/strings duality sheds light into long standing puzzle in QCD: the that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.

- Gauge/strings duality sheds light into long standing puzzle in QCD: the that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.
- Coupling of Pomeron to gluon jets.

- Gauge/strings duality sheds light into long standing puzzle in QCD: the that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.
- Coupling of Pomeron to gluon jets.

connection between hard and soft pomeron. They are just different Reggeons

How generic are our results? Should try other holographic QCD models...

