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“Entanglement is not enough” (1411.0690)

Consider the thermofield double state as a realization of ER=EPR:

|TFD〉 =
1√
Zβ

∑

i

e−βEi/2 |i〉L
∣∣̃i
〉
R

Black hole reaches thermal equilibrium quickly, ∼ ttherm

Distance along maximal slices increases linearly with time

with the boundary condition

lim
s!t

r(s) =1. (2.21)

Figure 9: Two-sided ADS black hole foliated by maximal slices.

Figure 9 shows the Penrose diagram for BTZ foliated by maximal surfaces. As the time

at which the surfaces are anchored increases the maximal surface moves toward the final

slice shown as the green curve. The proper length of the ERB can be defined to be the

proper distance, between the left and right horizons, measured along the purple curves. It

grows linearly with t,

length! 2t
q

|f (rf )| (2.22)

At late time almost all of the ERB volume is very close to the final slice. Only the portion

near the ends deviates from rf . Over most of the length the cross-sectional area of the

19

|TFD〉 continues to evolve for ∼ tcomp



Holographic complexity

Susskind proposed “holographic complexity” as the CFT quantity
that encodes the continued evolution of the ERB. [Susskind et al. ’14, ’16]

Two proposals for the bulk dual of complexity:

“complexity = volume” (CV)

CV (tL, tR) = V (tL,tR)
Gl

“complexity = action” (CA)

CA (tL, tR) = A
π~



Holographic complexity: bulk studies

Structure of divergences in CV vs CA [Carmi, Myers, Rath ’16; Reynolds, Ross

’16; Bolognesi, Rabinovici, Roy ’18]

Time dependence [Carmi, Chapman, Marrochio, Myers, Sugishita ’17]

Shockwaves/quenches [Chapman, Marrochio, Myers ’18 ×2; Moosa ’17; Ageev, Aref’eva,

Bagrov, Katsnelson ’18]

Lloyd’s bound [Cottrell, Montero ’17]

Complexity of formation [Chapman, Marrochio, Myers ’16]

Subregion/topological complexity [Abt, Erdmenger, Gerbershagen, Hinrichsen,

Melby-Thompson, Meyer, Northe, Reyes ’17,’18; Agón, Headrick, Swingle ’18]

Solitons, de Sitter [Reynolds, Ross ’17 ×2]

...and many more.



Computational (circuit) complexity

[Jefferson, Myers ’17; Chapman, Heller, Marrochio, Pastawski ’17]

Goal: construct the optimum circuit for a given task

Given a reference state |ψ0〉, what is the least complex
quantum circuit U that produces a given target state |ψ1〉?

|ψ1〉 = U |ψ0〉

U consists of a sequence of gates Qi: U = Q1Q2 . . .

Circuit complexity = length of circuit D(U)

State complexity C(ψ) = complexity of least complex circuit
U that generates the state |ψ〉
Defined relative to a reference state, C(ψ0) ≡ 0

Depends on the set of gates, {Qi}



A free field theory model

Consider a free scalar field as an infinite set of harmonic oscillators:

H =
1

2

∫
dd−1x

[
π(x)2 + ~∇φ(x)2 +m2φ(x)2

]

→ 1

2

∑

~n

{
p(~n)2

δd−1
+ δd−1

[
1

δ2

∑

i

(φ(~n)− φ(~n− x̂i))2 +m2φ(~n)2

]}

Simpler starting point: two oscillators at positions x1, x2,

H =
1

2

[
p2

1 + p2
2 + ω2

(
x2

1 + x2
2

)
+ Ω2 (x1 − x2)2

]

=
1

2

(
p̃2

+ + p̃2
− + ω̃2

+x̃
2
+ + ω̃2

−x̃
2
−
)

where ω = m, Ω = 1/δ, x̃± = 1√
2

(x1 ± x2), ω̃2
+ = ω2,

ω̃2
− = ω2 + 2Ω2.



Choosing our states

Target state: ground state oscillators in normal-mode basis x±

ψ1(x̃+, x̃−) = ψ1(x̃+)ψ1(x̃−)

=
(ω̃+ω̃−)1/4

√
π

exp

[
−1

2

(
ω̃+x̃

2
+ + ω̃−x̃2

−
)]

Equivalently, in physical coordinates x1, x2

ψ1(x1, x2) =

(
ω1ω2 − β2

)1/4
√
π

exp
[
−ω1

2
x2

1 −
ω2

2
x2

2 − βx1x2

]

where ω1 = ω2 = 1
2 (ω̃+ + ω̃−), β ≡ 1

2 (ω̃+ − ω̃−) < 0

Natural reference state: factorized Gaussian

ψ0(x1, x2) =

√
ω0

π
exp
[
−ω0

2

(
x2

1 + x2
2

)]



Choosing our gates

Sufficient set of gates to produce ψ1 from ψ0:

Qab = eiεxapb , Qaa = e
iε
2

(xapa+paxa) = eε/2eiεxapa .

These act on an arbitrary state ψ (x1, x2) as follows:

Q21 ψ(x1, x2) = ψ(x1 + εx2, x2) shift x1 by εx2 (entangling)

Q11 ψ(x1, x2) = eε/2ψ (eεx1, x2) rescale x1 to eεx1 (scaling)

Gaussian states = space of 2× 2 matrices:

ψ0(x1, x2) ' exp
[
−ω0(x2

1 + x2
2)
]

ψ1(x1, x2) ' exp
[
−ω1x

2
1 − ω2x

2
2 − 2βx1x2

]
}
ψ ' exp[−xiAij xj ]

Gates QI = exp[εMI ] act as A′ = QI A QTI , where MI ∈ gl(2,R)



Geometrizing the problem [Nielsen ’05; Nielsen et al. ’06, ’07]

Circuit U as path in GL(2,R)

A1 = U(1)A0 U
T (1) , U(s) =

←−P exp

[∫ s

0
ds′Y I(s′)MI

]

Parametrize U ∈ GL (2,R), components dY I = tr(dUU−1MT
I )

→ construct Euclidean geometry ds2 = GIJdY IdY J :

ds2 = 2dy2 + 2dρ2 + 2 cosh(2ρ) cosh2ρdτ2

+ 2 cosh(2ρ) sinh2ρ dθ2 − 2 sinh2(2ρ) dτdθ

Circuit depth D(U) then becomes geometric length

=⇒ optimum circuit (complexity) given by minimum geodesic



Geodesics on circuit space

For our problem, minimal geodesic has

τ(s) = 0 , ∆θ = 0 =⇒ θ(s) = θ1 = π

Minimum path given by

U(s) = exp

[(
y1 −ρ1

−ρ1 y1

)
s

]

Complexity given by length of U :

C = D(U) =

∫ 1

0
ds
√
GIJY I(s)Y J(s)

=

√∑
I
|Y I(1)|2 =

√
2
(
ρ2

1 + y2
1

)

=
1

2

√
ln2

(
ω̃+

ω0

)
+ ln2

(
ω̃−
ω0

)



Generalization to N oscillators

Reference and target states described by N×N matrices Ã0, Ã1

ψ0 (x̃k) =
(ω0

π

)N/4
exp

[
−1

2
x̃†Ã0x̃

]
, Ã0 = ω01

ψ1 (x̃k) =

N−1∏

k=0

(
ω̃k
π

)1/2

exp

[
−1

2
x̃†Ã1x̃

]
, Ã1 = diag (ω̃0, . . . , ω̃N−1)

Optimum circuit scales-up diagonal entries

Ũ(s) = exp
[
Ỹ ĨM̃Ĩ

]
, Ỹ ĨM̃Ĩ = diag

(
1

2
ln
ω̃0

ω0
, . . . ,

1

2
ln
ω̃N−1

ω0

)

Complexity for one-dimensional lattice of N oscillators:

C =

√∑
Ĩ

∣∣∣Ỹ Ĩ(1)
∣∣∣
2

=
1

2

√√√√
N−1∑

k=0

ln2 ω̃k
ω0



Return to field theory (continuum limit)

Leading order dominated by UV modes, ω̃~k ∼ 1/δ =⇒

C ≈ N
d−1
2

2
ln

(
1

δω0

)
∼
(

V

δd−1

)1/2

, V = Nd−1δd−1

Compare with CV or CA proposals: Cholo ∼ V
δd−1 =⇒ to connect

with holography, Reimannian distance function a bad choice!

D̃κ =

∫ 1

0
ds
∑

Ĩ

∣∣∣Y Ĩ(s)
∣∣∣
κ
, κ ∈ Z+

In particular, κ = 1:

C ≈ V

δd−1

∣∣∣∣ln
1

δω0

∣∣∣∣

ω0 =

{
UV scale e−σ/δ =⇒ C ≈ σ V

δd−1 (CV)

IR scale α
`AdS
� 1

δ =⇒ C ≈ V
δd−1

∣∣∣ln `AdS
αδ

∣∣∣ (CA)



Summary & outlook

TL;DR:

Preliminary steps towards defining holographic complexity in
field theory (goal: new entry in holographic dictionary)

Circuit complexity: complexity of target state given by length
of optimum circuit (constructed from fundamental gates)

Geometrical approach: optimum circuit is minimum geodesic
in circuit space

What’s next?

Extension to free fermions [Hackl, Myers ’18; Reynolds, Ross ’17; Khan, Krishnan,

Sharma ’18]

Extension to coherent states [Guo, Hernandez, Myers, Ruan ’18]

Preliminary Virasoro algebra [Caputa, Magan ’18]

Alternative approaches [Caputa et al. ’17, ’18; Czech ’17; Hashimoto et al. ’17; Yang et

al. ’18]



Applications/advertisement

Question: Complexity, huh? What is it good for?
Answer: Absolutely nothing Probing dynamical quantum systems!

Applied to quantum quenches in 1807.07075
[Camargo, Caputa, Das, Heller, Jefferson ’18; Alves, Camilo ’18]

Universal scalings (complementary
probe to entanglement)
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Applied to TFD in [Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers ’18 (?)]



MERA: a quantum circuit

Connections to MERA (Mutli-scale Entanglement Renormalization
Ansatz – efficiently generates ground-state wavefunction in d = 2
critical systems) [Vidal ’15]MERA as a quantum circuit

“time”

Entanglement introduced by gates at different “times” (= length scales)

quantum 
circuit 

cMERA describes the ground state of a free scalar field


