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I would like to convince you that studying

instead of the textbook

is a very interesting thing to do.



Mixed dimensional QED has 
something for everyone
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FnA = g ̄�A Dµ = rµ � igAµwhere boundary conditions:

•relation to graphene
•relation to large Nf QED3 (Kotikov-Teber ’13)
•behavior under electric-magnetic duality (Son ’17) 
•example of a bCFT with an exactly marginal coupling
•supersymmetric versions
•playground for computing trace anomalies our work



Relation to Graphene

Son’s model of graphene (cond-mat/0701501):
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•only electric interactions
•electrons travel at speed 

things to note
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beta function for the electron velocity
once v gets sufficiently large, 
can restore magnetic interactions and
flow to a relativistic fixed point



Relation to large Nf QED3
(Kotikov-Teber ’13)

propagator for mixed dimensional QED (don’t FT the normal direction y) 
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p
⌘AB (Feynman gauge)

propagator for large Nf QED3, resummed
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p2(1 +⇧(p)) where

Compensated by vertices, 3d e drops out of the amplitudes.
For scattering processes on the boundary (y=0), 
the Feynman rules are the same in the IR with the identification 
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Behavior under EM Duality
(Hsiao-Son ’17)

Using recent progress in 2+1 dimensional non-SUSY dualities

Integrating out aB and Aµ yields same mixed QED theory but with a new 
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Can use the duality to calculate the current-current and stress tensor 
correlation function at the self-dual point and at infinite coupling — 
calculate transport coefficients. 

(similar in spirit to H, Kovtun, Sachdev, Son ’07)



Mixed QED is a bCFT

The usual Ward identity for QED relates Z = Zg

The superficial degree of divergence of the photon self energy is one
(compared with two in four dimensional QED).

The gauge invariant prefactor pµp⌫ � �µ⌫p
2 ⇧µ⌫(p)of

cuts down the degree of divergence to -1.

In other words, Z� is finite.

 coupling is not perturbatively renormalized.=)

g0Z
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Z = gZg



Our work…
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possibility of a 
theta term (that we 

could have added before)
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could have added before)
SUSY gives us

a photino and auxiliary
field D as well
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to the boundary electron and selectron
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            Super Graphene

✤ The photino is symplectic Majorana instead of just 
Majorana

✤ Two extra bulk scalars, X and Y with corresponding 
extra Yukawa terms.

✤ The boundary multiplet can be kept the same, but 
there is now a preserved U(1) R-symmetry

N = 2
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…we could do something similar with              super grapheneN = 4



Claim: Mixed dimensional QED along with 
                 and 4 super graphene are all bCFTs where the 
gauge coupling is exactly marginal.
N = 1, 2,



Put Graphene Like Theories to Work 
Computing Trace Anomalies…



Trace Anomaly with a Codimension 
One Boundary
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Jensen-O’Bannon (’15) b-theorem

Solodukhin-Fursaev (’16) conjecture
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aUV > aIR

KAB extrinsic curvature
hat on K removes trace



Results for Boundary Charges

Can we say anything more about 
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4d

aR

b tr K̂2

b1 tr K̂
3
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conjecture

yes

yes

yes

Related to displacement operator
two and three point functions



Displacement Operator

definition: operator sourced by small 
changes in the embedding
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diffeomorphism Ward identity:

@µT
µn = Dn�(xn)

@µT
µA = 0 tangential components

still conserved
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Results
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Argument analogous to Osborn
and Petkou’s result for c in 4d.  
(Fails for a in 3d because R is 
topological.)

Next: Look at b1 and b2 
for the graphene-like 
theories



Summary of Perturbative Results
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Marginal Directions

b1 and b2 depend on the exactly marginal coupling!

Unlike the situation for the bulk charges a and c in 4d.

Wess-Zumino consistency forces a 
to be constant along marginal directions.

No such argument for c.  However, SUSY fixes c
to be a constant, and it’s unknown how to construct
4d CFTs with marginal directions but without SUSY
(and without boundaries).

In contrast, the charges b1 and b2 are not protected by supersymmetry.



Effect of the Theta Term

tan(↵) ⌘ g2✓

4⇡2

g ! g cos↵

An integer part of q can be traded for a boundary CS term, but the mixed 
dimensional nature means q is neither integral nor periodic

The perturbative results above hold with the replacement

The q term “screens” the boundary charges by “rotating” 
the boundary condition.



Summary of results

✤ Presented graphene like theories both with and without 
SUSY that are bCFTs with an exactly marginal coupling.

✤ Related boundary central charges in three and four 
dimensional bCFTs to two and three point functions of 
the displacement operator.

✤ Discussed graphene like theories as examples where b2 
= 8c and where both b1 and b2 depend on a marginal 
coupling.
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b1 tr K̂
3
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Future Projects

✤ Verify our proposal for b2 by computing it directly, for mixed QED in 
a curved space-time.

✤ Higher codimension defects. (Billo, Goncalves et al. ’16)

✤ Find bounds on these boundary central charges. (Hofman-Maldacena ‘08)

✤ Computation of these central charges in AdS/CFT, for example in 
Janus solutions. (Takayanagi ’11, Miao et al., Astaneh et al. ’17)

✤ Models with only boundary interactions, like mixed QED.

✤ Boundary bootstrap. (Liendo et al. ‘12)



Larger Vision: Structure of QFT

✤ Constrain QFT by constraining CFTs

✤ Provide a more local view of QFT by figuring out how 
to deal with boundaries.
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Extra Slides



             in 3db tr K̂2

The term in the trace anomaly can be produced from 
an effective anomaly action in limit e goes to zero where 
µ is a UV regulator:

I(b) =
b

4⇡

µ✏

✏

Z

@M
tr K̂2

For small deviations from planarity KAB ⇡ @A@Bx
n

=) scale dependence of displacement 2-pt function

µ@µhDn(~x)Dn(0)i = b

4⇡
⇤2�(~x)

hDn(~x)Dn(0)i = cnn
|~x|6

hDn(~x)Dn(0)i = cnn
512

⇤3(logµ2~x2)2

The short distance behavior of 

can be regulated by writing instead
(Freedman, Johnson, Latorre ’92)

(similar arguments for b1 and b2)



Checks for Free Fields

Using heat kernel methods, a number of these charges were
computed for free fields in the late 80s and early 90s 
(Melmed, Moss, Dowker, Schofield)  and later revisited in the 
last couple of years (Solodukhin, Fursaev, Jensen, Huang, CPH).
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The displacement operator correlation functions 
yield the same results!



Why is               for free fields?b2 = 8c

For free theories

theory without
boundary

effect of image
points on other side

of the boundary

=) 2↵(0) = ↵(1)

v ! 1

v ! 0

:  boundary limit
:  coincident limit

by the old Osborn-Petkou (’93) argument↵(0) ⇠ c

↵(v) ⇠ 1 + v2d

conformal symmetry means the stress tensor 
2-pt functions depends on a single function 
a(v) of a cross ratio 

v =
(x� x0)2

(x� x0)2 + 4xnx0n



What about interactions?

Wilson-Fisher fixed point for f4 scalar field theory, starting in 4d

McAvity and Osborn (’93, ’95) showed, both in the e expansion
and in a large N expansion that

2↵(0) 6= ↵(1)

Downside: We need to be in exactly 4d to connect
to b2, and in exactly 4d f4 scalar field theory is free

We need some more examples …. enter our graphene like theories.



Perturbative corrections to a(1)
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Conjecture for a in 3d
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Analogous to b in 3d.  Now we need to 
match scale dependent contributions of 

and

scale dependence of 3-pt function 
relies on recent work by 
Bzowski, Skenderis, and McFadden ‘13
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Could extract from hDniW 6=0

We’ll do something more roundabout.
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Aside on Stress Tensor 2-point 
function with boundary

Depends on a function a(v) of a cross ratio v =
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To reproduce the scale dependence of the 2-pt function in 
the boundary limit,           , we should use this effective action 
with a different value of c, in order to match to a(1).
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