News about Heavy Quarks in Strongly Coupled Plasmas

Heidelberg University & EMMI/GSI & FIAS

Gauge/Gravity Duality 2018 Würzburg July 31, 2018

The Team

Konrad Schade

Paul Wittmer

Andreas Samberg

and: Olaf Kaczmarek

Motivation

quark-gluon plasma: strongly coupled! → holography useful

to approximate real-world QCD use non-conformal, deformed AdS Heavy Quarks in Quark-Gluon Plasma

Heavy quarks as probes of QGP:

- produced early in collision, witness full evolution of fireball to hadronization
- rich phenomenology in heavy-ion collisions
- heavy-quark bound states as sensitive probes of thermal medium
- well-studied in lattice QCD

Our Aim

- look for universal or robust properties generically emerging in strongly coupled theories
- → classes of holographic models

aim is not to find a precise model for QCD

AdS Models for the Plasma

N=4 SYM at Finite Temperature

zero temperature: AdS₅

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$

finite temperature T: AdS₅ with black hole

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$

with $h = 1 - \frac{z}{z_h^4}$ and $T = \frac{1}{\pi z_h}$

Consistent Non-conformal Model

Start with five dimensional gravity action $S_{\rm EHs}$:

$$S_{\rm EHs} = \frac{1}{16\pi G_{\rm N}^{(5)}} \int \mathrm{d}^5 x \sqrt{-G} \left(\mathcal{R} - \frac{1}{2} \left(\partial\Phi\right)^2 - V(\Phi)\right)$$

with general ansatz

$$ds^{2} = e^{2A(z)} \left(-h dt^{2} + d\vec{x}^{2} \right) + e^{2B(z)} \frac{dz^{2}}{h}$$
$$T = e^{A(z_{h}) - B(z_{h})} \underline{|h|}$$

leads to 3 independent equations of motion but 5 unknown functions V, Φ, A, B, h .

• 2-parameter model:
with parameters
$$\phi, c$$

DeWolfe, Rosen; Gubser; 2009
• 1-parameter model:
with parameter κ
Schade
• 2A(z) = $e^{c z^2} \frac{L^2}{z^2}$ and $\Phi(z) = \sqrt{\frac{3}{2}} \phi z^2$
 $\alpha = \frac{c}{\phi}$

Consistent Non-conformal Model

Start with five dimensional gravity action $S_{\rm EHs}$:

$$S_{\rm EHs} = \frac{1}{16\pi G_{\rm N}^{(5)}} \int \mathrm{d}^5 x \sqrt{-G} \left(\mathcal{R} - \frac{1}{2} \left(\partial\Phi\right)^2 - V(\Phi)\right)$$

with general ansatz

$$ds^{2} = e^{2A(z)} \left(-h dt^{2} + d\vec{x}^{2} \right) + e^{2B(z)} \frac{dz^{2}}{h}$$
$$T = e^{A(z_{h}) - B(z_{h})} \frac{|h'(z_{h})|}{4\pi}$$

scalar Φ : can be dilaton ('string frame model') or not ('Einstein frame model')

We consider both possibilities as independent models.

Konrad Schade, CE

Consider static (heavy) quark-antiquark pair

Expectation value of temporal Wegner-Wilson loop in boundary field theory dual to macroscopic string hanging into the bulk

- static $Q\bar{Q}$ -pair in a hot plasma wind blowing in x_2 -direction
- velocity is given by $v = \tanh \eta$
- \bullet orientation angle θ w.r.t. wind

• Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$

distance L:

$$L\pi T = 2\pi T \int_{0}^{L/2} d\sigma = 2\pi T \int_{0}^{L/2} \frac{dz}{z'} = 2\pi T \int_{0}^{z_{c}} dz \sqrt{\frac{h(z_{c}) e^{2B(z) + 4A(z_{c}) - 2A(z)}}{h(z)^{2} e^{4A(z)} - h(z) h(z_{c}) e^{4A(z_{c})}}}$$
lowest point z_c
parametrizes different
configurations

0.0

0.5

1.0

 x_1

maximal distance L_s is screening distance

(different from Debye screening length)

• velocity lowers screening distance $\propto 1/\sqrt{\gamma} \propto (\text{boosted energy density})^{-1/4}$

Screening Distance Conjecture

Konrad Schade, CE

Observation:

At given T screening distance in N=4 SYM is smaller than in all consistently deformed models studied.

- holds for all kinematical parameters

Conjecture:

Screening distance in N=4 SYM is lower bound in a large class of (or maybe all?) consistent theories.

A. Samberg, O. Kaczmarek, CE

An old problem...

Free energy / potential of heavy quark-antiquark pair calculated in 1998: Rey, Theisen, Yee; Brandhuber, Itzhaki, Sonnenschein, Yankielowicz and many times since then. However, ... actually not.

Physical expectation: potential independent of T at small distances

$$F_{Q\bar{Q}}(L) \sim -\frac{S_{\mathrm{NG}}[\mathcal{C}_{L,\mathcal{T}}]}{\mathcal{T}}, \qquad \mathcal{T} \to \infty$$

Nambu-Goto action for hanging string

in general metric

$$ds^{2} = e^{2A(z)} \left(-h(z) dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(z)}}{h(z)} dz^{2}$$

$$\mathcal{T}$$

$$\mathcal{C}_{L,\mathcal{T}}$$

$$\mathcal{C}_$$

we have

$$S_{\rm NG}[\mathcal{C}_{L,\mathcal{T}}] = -\frac{\mathcal{T}}{\pi\alpha'} \int_0^{z_{\rm t}} \mathrm{d}z \,\mathrm{e}^{A+B} \sqrt{\frac{\mathrm{e}^{4A}h}{\mathrm{e}^{4A}h - \mathrm{e}^{4A_{\rm t}}h_{\rm t}}}$$

zt: turning point

UV divergent:

$$S_{\rm NG}^{\rm (reg)}[\mathcal{C}_{L,\mathcal{T}}] = -\frac{\mathcal{T}}{\pi\alpha'} \int_{\varepsilon}^{z_{\rm t}} \mathrm{d}z \, \mathrm{e}^{A+B} \sqrt{\frac{\mathrm{e}^{4A}h}{\mathrm{e}^{4A}h - \mathrm{e}^{4A_{\rm t}}h_{\rm t}}} \sim -\frac{\mathcal{T}L_{\rm AdS}^2}{\pi\alpha'} \left(\frac{1}{\varepsilon} + \dots\right)$$

Subtraction for Nambu-Goto action

subtraction required:

$$F_{Q\bar{Q}}^{(\text{ren})}(L) = \lim_{\mathcal{T} \to \infty} \left(-\frac{S_{\text{NG}}^{(\text{reg})}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S}{\mathcal{T}} \right)$$

$$T$$

$$C_{L,7}$$

subtractions in the literature:

non-interacting string hanging down into black hole (2x)

$$S_{\rm NG}^{\rm (reg)}[{\rm straight string}] = -\frac{\mathcal{T}}{2\pi\alpha'} \int_{\varepsilon}^{z_{\rm h}} \mathrm{d}z \, \mathrm{e}^{A+B} \sim -\frac{\mathcal{T}L_{\rm AdS}^2}{2\pi\alpha'} \left(\frac{1}{\varepsilon} + \dots\right)$$

Subtraction for Nambu-Goto action

subtraction required:

$$F_{Q\bar{Q}}^{(\text{ren})}(L) = \lim_{\mathcal{T} \to \infty} \left(-\frac{S_{\text{NG}}^{(\text{reg})}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S}{\mathcal{T}} \right)$$

subtractions in the literature:

non-interacting string hanging down into black hole (2x)

$$S_{\rm NG}^{\rm (reg)}[{\rm straight string}] = -\frac{\mathcal{T}}{2\pi\alpha'} \int_{\varepsilon}^{z_{\rm h}} \mathrm{d}z \, \mathrm{e}^{A+B} \sim -\frac{\mathcal{T}L_{\rm AdS}^2}{2\pi\alpha'} \left(\frac{1}{\varepsilon} + \dots\right)$$

- real part of action at $L=\infty$

Albacete, Kovchegov, Taliotis

but: then F is T-dependent for small L - unphysical!

Subtraction for Nambu-Goto action

subtraction required:

$$F_{Q\bar{Q}}^{(\text{ren})}(L) = \lim_{\mathcal{T} \to \infty} \left(-\frac{S_{\text{NG}}^{(\text{reg})}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S}{\mathcal{T}} \right)$$

correct subtraction: only UV singularity

$$\Delta S_{\min} \equiv -\frac{\mathcal{T}L_{\text{AdS}}^2}{\pi\alpha'} \int_{\varepsilon}^{\infty} \frac{\mathrm{d}z}{z^2} = -\frac{\mathcal{T}L_{\text{AdS}}^2}{\pi\alpha'} \frac{1}{\varepsilon}$$

then no unphysical T-dependence!

Similar problem with regularization occurs in calculation of entanglement entropy.

Binding Energy of Heavy QQbar pair

quantity with hanging-string subtraction is binding energy

$$E_{Q\bar{Q}}(L) = \lim_{\mathcal{T}\to\infty} \left(-\frac{S_{\mathrm{NG}}[\mathcal{C}_{L,\mathcal{T}}] - 2S_{\mathrm{NG}}[\text{straight string}]}{\mathcal{T}} \right)$$

in fact difference of free energies:

$$E_{Q\bar{Q}}(L) = \lim_{\mathcal{T} \to \infty} \left[-\frac{\left(S_{\text{NG}}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S_{\min} \right) - \left(2S_{\text{NG}}[\text{straight string}] - \Delta S_{\min} \right)}{\mathcal{T}} \right]$$
$$= F_{Q\bar{Q}} - F_{Q;\bar{Q}},$$

(note: defines single-quark free energy)

Free vs Binding Energy in N=4

L

black:T=0 potential

 $V_{Q\bar{Q}}(L) = -\frac{4\pi^2\sqrt{\lambda}}{\Gamma^4\left(\frac{1}{4}\right)L}$

Free vs Binding Energy in N=4

Free and Binding Energy different non-conformalities

I-parameter string frame

Free and Binding Energy quarks in motion

P.Wittmer, CE

Free and Binding Energy quarks in motion

Entropy and Internal Energy of QQbar pair

with (correct!) free energy obtain entropy

$$S_{Q\bar{Q}}(L,T) = -\frac{\partial F_{Q\bar{Q}}(L,T)}{\partial T}$$

and internal energy $U_{Q\bar{Q}}(L,T) = F_{Q\bar{Q}}(L,T) + TS_{Q\bar{Q}}(L,T)$

Entropy and Internal Energy in N=4

black:T=0 potential

 $V_{Q\bar{Q}}(L) = -\frac{4\pi^2\sqrt{\lambda}}{\Gamma^4\left(\frac{1}{4}\right)L}$

Internal Energy - different non-conformalities

I-parameter string frame

Running Coupling

Running Coupling α_{qq}

Running Coupling α_{qq}

with non-conformal deformation:

• universal rise above conformal value

Running Coupling α_{qq}

with non-conformal deformation:

Running Coupling α_{qq}

- Coming close to QCD data if free parameters properly adjusted
- Parameters fixed from thermodynamics

Running Coupling α_{qq} : Length Scales

Complex Static Potential

QQbar Potential at larger distances?

small distances (L < L_s):
 simple string configuration

 very large distances: Debye screening, due to supergravity mode exchange between hanging strings (Bak, Karch, Yaffe)

Try to analytically continue simple string configuration beyond L_s Kovchegov et al

String coordinates & potential become complex

At some distance L_h string hangs into black hole

→ quarks no longer causally connected, better stop there?!

Real part of potential (with correct renormalization)

black points: L_h; colored points: L_s

Imaginary part of potential

black points: L_h; colored points: L_s

Questions:

How does imaginary part connect to real-valued Debye-screened potential at asymptotically large L?

Spectral function of heavy mesons from complex potential?

Summary

- Holography applied to heavy quark bound states / static potential in strongly coupled plasma
- Screening distance conjecture:
 L_s is bounded from below by its value in N=4 SYM
- First systematic calculation of free and internal energy of QQbar pair in holography (correct UV renormalization)
- Running coupling, complex static potential
- Universal strong-coupling behavior in these observables

Thanks for your interest!

