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Motivation

quark-gluon plasma:  
strongly coupled! 
➞ holography useful

to approximate  
real-world QCD 
use non-conformal,  
deformed AdS



Heavy Quarks in Quark-Gluon Plasma

Heavy quarks as probes of QGP: 

• produced early in collision, witness full  
evolution of fireball to hadronization

• rich phenomenology in heavy-ion collisions
• heavy-quark bound states as sensitive probes 

of thermal medium
• well-studied in lattice QCD
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Our Aim

look for universal or robust properties 
generically emerging in strongly coupled 
theories 
→ classes of holographic models

aim is not to find a precise model for QCD 



AdS Models for the Plasma
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 Start with five dimensional gravity action           :SEHs

 leads to 3 independent equations of motion but 5 unknown functions                      .

• 1-parameter model:

• 2-parameter model:

Schade

T = eA(zh)−B(zh) |h
′(zh)|

4π

↵ =
c

�

We will in the following consider typical values of the deformation parameter6 in a similar

range as in the SWT model, 0 
p
/T  2.5. In the limit  ! 0 the 1-parameter model

reduces to the pure AdS metric, and hence to a conformal boundary theory. Finally, the

scalar � in the 1-parameter model can be but need not be the dilaton. In the bottom-up

models that we consider here, this is simply a choice one can make, and this alternative

gives in fact rise to two distinct versions of the 1-parameter model, cf. a similar discussion in

[73]. (This choice would no longer exist if the model were derived from a higher-dimensional

string theory in which case the dilaton would be distinguished from other scalars. In our

bottom-up models we assume no such embedding into a string theory.) The di↵erence

between the two versions lies in the metric used in the calculation of the string configuration

as outlined in sec. 2. The metric (2.1) with the functions A, B, and h just described is

called the Einstein-frame metric, g(E). The string configuration has to be calculated using

the string-frame metric, g(s), which is obtained by multiplying the Einstein-frame metric

by a factor containing the dilaton,

g
(s) = e

q
2
3�dilaton

g
(E)

. (5.8)

If � is the dilaton, the string-frame metric hence di↵ers from the Einstein-frame metric by

the warp factor in (5.8) with the scalar profile in (5.5). In a model without a dilaton, i. e.

if � is some other scalar, the two frames coincide. To distinguish the models, we therefore

speak of the ‘string frame’ version of the 1-parameter model if � is the dilaton, and of

the ‘Einstein frame’ version if � is not the dilaton. The additional warp factor of the

string-frame model makes this version of the 1-parameter metric rather similar to the SWT

metric, and the qualitative similarity of these two models will also be seen in our results

below.

Let us now turn to the free energy of the heavy quark–antiquark pair in these non-

conformal models. In fig. 6 we show the free energy FQQ̄ at a fixed temperature and a

large value of the dimensionless ratios of the deformation parameters and the temperature,

c/T = 2.5 and
p
/T = 2.5 for the SWT model and the 1-parameter models, respectively.

For comparison, we have also plotted FQQ̄ in N = 4 SYM (black curve). Note that here

and in some of the plots below we show all quantities in units of temperature, that is we

use dimensionless ratios on the axes, here FQQ̄/T and LT . For non-conformal theories,

however, the values of the observables for a di↵erent temperature T
0 cannot be read o↵

from the same curve, instead one would have to regard the curve corresponding to an

accordingly changed ratio of deformation parameter and temperature, c/T 0 or
p
/T

0. We

show such di↵erent curves only in some cases where we vary the deformation parameter.

In spite of this slight complication in the interpretation of the curves, the representation in

terms of dimensionless quantities appears to be the best way to compare di↵erent theories,

that is models with di↵erent non-conformal deformation parameters c or .

6In the 1-parameter model it turns out that for a given temperature there is in fact a maximal deformation

 beyond which no solution can be found for that temperature [71], given by (
p
/T )|max = 2.94. Our choice

of the deformation parameter 0 
p
/T  2.5 covers almost all of the possible range.
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of motion of the action (5.3) [37]. One option is to start by specifying a potential V , see

for example [37]. The coupled equations also permit another possibility, namely to specify

the scalar profile in z and to calculate a suitable potential V [73]. We choose the latter

option as it allows us to study models that come very close to the phenomenologically well-

motivated soft-wall model. Also in this case it is possible to study large classes of metrics

with one or more parameters. A two-parameter model of this kind has been proposed in

[73]. In [71] a simplified 1-parameter version of that model has been devised which has

the advantage that all functions in the metric can be expressed in closed form. We will in

the following work with this 1-parameter model as it captures the main features relevant

for our considerations. Before we describe the model in detail, a comment is in order

concerning its general construction. We fix the same scalar profile in z and then for each

temperature calculate the scalar potential V (�) from the equations of motion of (5.3). In

general, this leads to di↵erent potentials V (�) for di↵erent temperatures, which implies

that we consider di↵erent theories for di↵erent temperatures. This is, strictly speaking,

an inconsistent procedure. However, it turns out that for the specific models that we

consider here this approach is acceptable from a practical perspective, as was shown for

the 2-parameter model in [73] and for the 1-parameter model in [71]. Our choice of scalar

potential will be quadratic in z as in the soft-wall model, and therefore large values of

the scalar � correspond to large z. Solving for V (�) one finds that the potentials for

di↵erent temperatures follow a universal curve up to values of � corresponding to the

respective horizon position for the chosen temperature. Up to the respective horizon, the

deviation from the universal curve is numerically very small. Our observables are computed

from string configurations for which only the region above the horizon is relevant, and the

di↵erences in the scalar potentials at di↵erent temperatures have a negligible e↵ect on these

strings. Therefore, we here follow the practical approach to fix the scalar potential as this

method is numerically simpler and allows a better comparison to the SWT model.

To obtain the one-parameter model, one makes in the general metric (2.1) the ansatz

�(z) =

r
3

2
z

2
,

A(z) = log

✓
LAdS

z

◆ (5.5)

with a dimensionful deformation parameter  � 0. The equations of motion of (5.3) then

lead to

B(z) = log

✓
LAdS

z

◆
� 1

4

2
z
4
. (5.6)

Also h and V can be obtained in closed form. We do not give these somewhat lengthy

expressions as their details will not be relevant for the following discussion. With these

functions one obtains from (2.5) the temperature T in terms of the horizon position zh in

the 1-parameter model,

T =
1

⇡zh


2
z
4
h

4

e
2z4h/4

e
2z4h/4 � 1

. (5.7)
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Consistent Non-conformal Model

with general ansatz

ds2 = e2A(z)
(

− h dt2 + dx⃗ 2
)

+ e2B(z) dz
2
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 Start with five dimensional gravity action           :SEHs

T = eA(zh)−B(zh) |h
′(zh)|

4π

scalar    : 
   can be dilaton ('string frame model')
   or not ('Einstein frame model') 

We consider both possibilities as independent models.

�



boundary field theory

horizon

string

Q

zc

z
x1

t

Q̄

2-dimensional 
worldsheet

L/2−L/2 0

Expectation value of temporal Wegner-Wilson loop in 
boundary field theory dual to macroscopic string hanging into 
the bulk

Screening Distance
Konrad Schade, CE

Consider static (heavy) quark-antiquark pair



• static       -pair in a hot plasma wind blowing in     -direction

• velocity is given by                   

• orientation angle    w.r.t. wind 

with

Rajagopal, Liu, Wiedemann
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• Nambu-Goto action:

Screening Distance



Screening Distance

distance L:

lowest point zc  
parametrizes different 
configurations 
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Screening Distance Conjecture

Observation:
At given T screening distance in N=4 SYM is smaller  
than in all consistently deformed models studied. 

 - holds for all kinematical parameters 

Conjecture: 
Screening distance in N=4 SYM is lower bound in 
a large class of (or maybe all?) consistent theories.

Konrad Schade, CE



Energies

A. Samberg, O. Kaczmarek, CE



An old problem…

Free energy / potential of heavy quark-antiquark 
pair calculated in 1998:
 Rey, Theisen, Yee;  
 Brandhuber, Itzhaki, Sonnenschein, Yankielowicz  
and many times since then.  
However, … actually not. 

Physical expectation:  
potential independent of T at small distances 
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Free Energy of Heavy QQbar pair

in field theory:

for temporal Wilson loop

calculation in AdS/CFT:
worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
dz eA+B

s
e4Ah

e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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Figure 1: Sketch of a static quark–antiquark pair separated by a distance L along the

boundary coordinate direction x
1. The quarks’ worldlines are parallel to the time direction

t. Also shown is the bulk coordinate direction z and sketches of spacelike slices of the

worldsheet of the string connecting the quarks. Also indicated is the integration contour

CL,T used in the integration for the Wegner–Wilson loop (2.6). Its timelike edges are of

length T and coincide with the worldlines of the quarks. Eventually, the limit T ! 1 will

be taken.

path ordering. For our purposes, the integration contour to consider is a rectangular

contour CL,T , composed of the timelike worldlines of length T of the heavy quarks and two

small segments along the spacelike direction in which they are separated by the distance

L. We choose the separation L to be in the x = x
1 direction. The limit T ! 1 of infinite

temporal extension is required for the quantities we want to study. Fig. 1 shows a sketch

of this setup.

In the holographic description, the Wegner–Wilson loop is related to the Nambu–Goto

action of an open string that hangs down into the bulk (fifth) dimension of the AdS space

and whose endpoints trace out the contour of the loop situated at z = 0. The Nambu–Goto

action is given by

SNG = � 1

2⇡↵0

Z
d2�

p
� det gab . (2.7)

The integral extends over the worldsheet of the string. 1/(2⇡↵0) is the string tension and

gab the induced metric on the worldsheet,

gab = gMN
@X

M

@�a

@X
N

@�b
, a, b = 0, 1 , (2.8)

where X
M = (t, x, 0, 0, z(x)) are the five-dimensional coordinates of the string worldsheet

in the AdS space. Erklaerung Wahl sigmas. Working in the general metric (2.1), we

derive the following explicit form of the Nambu–Goto action (2.7) for the string worldsheet

bounded by CL,T ,

SNG[CL,T ] = � T
2⇡↵0

Z L/2

�L/2
dx e2A

s

h

✓
1 +

e2B�2A

h
z02

◆
, (2.9)
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energetically favored string

worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
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e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt
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dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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and our general metric (2.1) always includes a factor L2
AdS due to the boundary conditions

(2.2) and (2.3) satisfied by all our models. We define

p
� =

L
2
AdS

↵0 (2.12)

for the combination of LAdS and ↵
0 that will generically appear in our observables. In

the holographic dual of N = 4 SYM, � coincides with the ’t Hooft coupling � = g
2
YMNc.

However, when we consider non-conformal models obtained by non-conformal deformations

of the bulk theory we have less precise information about the dual boundary theory. In

particular, we do not know its Lagrangian and its (gauge) field content. As a consequence,

we cannot be sure of the exact meaning of � in the boundary theory. In any case, it stands

to reason that also in our non-conformal models � still is a proxy for the coupling strength

in the boundary field theory. In phenomenological applications to the quark-gluon plasma

one would have to dial a particular value for � in a given model with a non-conformal

deformation. In practice this amounts to treating � as an additional free parameter of

the model, with the caveat that it should be large for the duality to be applicable in the

approximation that we use. The observables that we consider below will always contain a

factor
p
�. Since in this work we are mainly interested in their qualitative behavior we will

divide out that overall factor in plots showing these quantities.

3 Free energy versus binding energy of a heavy quark pair

We now turn to the heavy quark–antiquark free energy. From the field-theory perspective,

the Wegner–Wilson loop considered in the previous section is a gauge-invariant object that

in particular encodes the free energy of the QQ̄ pair. To wit, in the limit of infinite temporal

extent of the contour, T ! 1, we have the relation

⌦
W (CL,T )

↵
⇠ exp

�
�iFQQ̄(L)T

�
, T ! 1 , (3.1)

where FQQ̄(L) is the QQ̄ free energy [7–9].2 The expectation value is to be taken for a

thermal state of the medium surrounding the quarks. This introduces the dependence of

FQQ̄ in eq. (3.1) on the temperature T of the medium. The relation (3.1) holds up to

an infinite renormalization constant that we will discuss in the context of the holographic

computation below.

The problem now is to compute the expectation value of the Wegner–Wilson loop

on the gravity side. The basic prescription was given by Maldacena [13]; see also [14].

From the bulk perspective, the integration contour C coincides with the boundary of the

2More precisely, recent studies starting with [10] have argued that in QCD the real-time Wegner–Wilson

loop in the limit T ! 1 gives rise to an e↵ective quark potential that is in general complex. However, the

real part of this potential appears to coincide [11] with the QQ̄ (singlet) free energy that is defined from a

Euclidean-time Wegner–Wilson loop. Indeed, this seems to be confirmed by lattice QCD calculations which

reconstruct the real-time potential from the Euclidean-time spectral function (see e. g. [12]). Therefore, we

call the quantity extracted from the real-time Wegner–Wilson loop via the holographic procedure discussed

in the following the QQ̄ free energy, and, in accordance with the literature, interpret it as such.
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in general metric

we have

2 String in general AdS-type metric

Let us first review the calculation of the string configuration holographically corresponding

to a heavy quark-antiquark pair in a thermal medium. We will do this using a general form

of the metric of the five-dimensional AdS-type space. The results for particular holographic

theories, i. e. N = 4 SYM and non-conformal models, are later obtained as special cases.

The most general form of the five-dimensional, asymptotically AdS metric compatible

with translation symmetry in the boundary directions (t, ~x) = (t, x1, x2, x3) = (xµ) and

SO(3) invariance in ~x is

ds2 = e2A(z)
�
�h(z) dt2 + d~x2

�
+

e2B(z)

h(z)
dz2 , (2.1)

where z is the fifth-dimensional, holographic coordinate.

All our model spacetimes are asymptotically AdS. This implies boundary conditions

at z = 0 for the functions A, B, and h in the ansatz (2.1), namely

A(z) ⇠ log

✓
LAdS

z

◆
as z ! 0 , (2.2)

B(z) ⇠ log

✓
LAdS

z

◆
as z ! 0 , (2.3)

h(z = 0) = 1 . (2.4)

LAdS sets the curvature scale of the AdS space. A zero in the ‘blackening’ function h(z)

signals the presence of a black hole (more precisely, a black brane extended in the t and

~x directions), and we denote its horizon position by zh, that is h(zh) = 0. For the general

metric (2.1) the Hawking temperature is [4, 5]

T =
eA(zh)�B(zh)|h0(zh)|

4⇡
. (2.5)

For simplicity, we will generically refer to asymptotically AdS spaces given by metrics with

the above properties as ‘AdS spaces’.

For the quantities that we want to compute, we will need to evaluate the expectation

value of a rectangular Wegner–Wilson loop in the boundary theory. The holographic

calculation of this quantity by means of a dual macroscopic open string with both endpoints

on the boundary (representing an infinitely heavy quark–antiquark pair) is well known and

can by now be found in textbooks such as [6]. In the following we present a brief outline

of the calculation, concentrating on the points relevant for the discussion in the following

sections.

The Wegner–Wilson-loop operator in the gauge-theory medium is defined as

W (C) = trP exp

0

@i

I

C

dxµAµ(x)

1

A . (2.6)

Here, C is a closed contour in spacetime, Aµ(x) = A
a
µ(x)T

a is the non-Abelian gauge field

where T
a are the generators in the representation that the trace is taken over. P denotes
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worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
dz eA+B

s
e4Ah

e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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zt: turning point
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by
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holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain
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⇡↵0
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0
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, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action
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⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
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(reg)
NG [CL,T ]��S

T
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. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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L ! 1

subtraction required:

subtractions in the literature:  
  - non-interacting string hanging down  
    into black hole (2x)  
 

Subtraction for Nambu-Goto action

worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
dz eA+B

s
e4Ah

e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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choice of �Smin can be used in all models that we will consider here, and more generally

in any model for which the metric asymptotically reduces to AdS. The choice (3.7) ensures

that the right-hand side of eq. (3.6) does in fact yield the free energy, and that the latter

does not depend on T (and neither on a possible deformation scale) for small QQ̄ distances

L.

Consequently, using formula (3.6) with the subtraction (3.7) we find the following

expression for the free energy in terms of a string in our general AdS metric,

⇡FQQ̄(zt)p
�

=

Z zt

0
dz

2

4eA+B

L2
AdS

s
e4Ah

e4Ah� e4Atht
� 1

z2

3

5� 1

zt
. (3.8)

Here, we have used the abbreviation
p
� = L

2
AdS/↵

0, see eq. (2.12).

As we have pointed out in the introductory section, there have been studies in the

literature using a subtraction procedure essentially equivalent to the one that we have just

described, see for example [21–25]. However, to the best of our knowledge the consequences

of di↵erent choices of subtraction have not been discussed in depth so far. In particular,

the di↵erent choices for the subtraction give rise to di↵erent physical quantities as we will

describe momentarily. Our aim here is to clarify these di↵erences. In the following sections,

we will then compute further quantities the definition of which crucially depends on the

correct (temperature-independent) subtraction procedure in the computation of the free

energy.

The quantity obtained via the commonly used subtraction procedure (the first one in

the list above) is the di↵erence of the string action of the ‘U’-shaped string connecting the

quarks and twice the string action of a straight string stretching from the boundary to the

horizon,

EQQ̄(L) = lim
T !1

✓
�SNG[CL,T ]� 2SNG[straight string]

T

◆
. (3.9)

In a general metric of the form (2.1) the Nambu–Goto action for a worldsheet corresponding

to a static straight string hanging down from the boundary to the horizon is given by

SNG[straight string] = � T
2⇡↵0

Z zh

0
dz eA+B

. (3.10)

It can be regularized in the same way as SNG[CL,T ] above by cutting o↵ the integral at a

distance " away from the boundary. Its divergence for " ! 0 is found in analogy to (3.5),

S
(reg)
NG [straight string] = � T

2⇡↵0

Z zh

"
dz eA+B ⇠ �

T L
2
AdS

2⇡↵0

✓
1

"
+ . . .

◆
. (3.11)

Hence, its divergent part equals �Smin/2. We will again drop the superscript ‘reg’ in our

notation.

Now the quantity EQQ̄(L) in eq. (3.9) can be understood as a di↵erence of free energies.

Namely, by inserting a zero in the form ��Smin +�Smin with the minimal �Smin defined
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subtraction required:

subtractions in the literature:  
  - non-interacting string hanging down  
    into black hole (2x)  
 
 
  - real part of action at L=∞

Subtraction for Nambu-Goto action

worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
dz eA+B

s
e4Ah

e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:
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choice of �Smin can be used in all models that we will consider here, and more generally

in any model for which the metric asymptotically reduces to AdS. The choice (3.7) ensures

that the right-hand side of eq. (3.6) does in fact yield the free energy, and that the latter

does not depend on T (and neither on a possible deformation scale) for small QQ̄ distances

L.

Consequently, using formula (3.6) with the subtraction (3.7) we find the following

expression for the free energy in terms of a string in our general AdS metric,

⇡FQQ̄(zt)p
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=

Z zt

0
dz

2

4eA+B

L2
AdS

s
e4Ah

e4Ah� e4Atht
� 1

z2

3

5� 1

zt
. (3.8)

Here, we have used the abbreviation
p
� = L

2
AdS/↵

0, see eq. (2.12).

As we have pointed out in the introductory section, there have been studies in the

literature using a subtraction procedure essentially equivalent to the one that we have just

described, see for example [21–25]. However, to the best of our knowledge the consequences

of di↵erent choices of subtraction have not been discussed in depth so far. In particular,

the di↵erent choices for the subtraction give rise to di↵erent physical quantities as we will

describe momentarily. Our aim here is to clarify these di↵erences. In the following sections,

we will then compute further quantities the definition of which crucially depends on the

correct (temperature-independent) subtraction procedure in the computation of the free

energy.

The quantity obtained via the commonly used subtraction procedure (the first one in

the list above) is the di↵erence of the string action of the ‘U’-shaped string connecting the

quarks and twice the string action of a straight string stretching from the boundary to the

horizon,

EQQ̄(L) = lim
T !1

✓
�SNG[CL,T ]� 2SNG[straight string]

T

◆
. (3.9)

In a general metric of the form (2.1) the Nambu–Goto action for a worldsheet corresponding

to a static straight string hanging down from the boundary to the horizon is given by

SNG[straight string] = � T
2⇡↵0

Z zh

0
dz eA+B

. (3.10)

It can be regularized in the same way as SNG[CL,T ] above by cutting o↵ the integral at a

distance " away from the boundary. Its divergence for " ! 0 is found in analogy to (3.5),

S
(reg)
NG [straight string] = � T

2⇡↵0

Z zh
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dz eA+B ⇠ �

T L
2
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2⇡↵0
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◆
. (3.11)

Hence, its divergent part equals �Smin/2. We will again drop the superscript ‘reg’ in our

notation.

Now the quantity EQQ̄(L) in eq. (3.9) can be understood as a di↵erence of free energies.

Namely, by inserting a zero in the form ��Smin +�Smin with the minimal �Smin defined
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but: then F is T-dependent for small L  -  unphysical!  

Albacete, Kovchegov, Taliotis



subtraction required:

correct subtraction: only UV singularity

Subtraction for Nambu-Goto action

worldsheet of the string dual to the quarks, as discussed in the previous section. The

expectation value of the Wegner–Wilson loop is then related to the on-shell string action

by
⌦
W (C)

↵
⇠ exp (iSNG[C]) , (3.2)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point

approximation of the more general statement where on the right-hand side we would have

a path integral over all string configurations in the bulk with the prescribed boundary

conditions [13].

From equations (3.1) and (3.2) it follows that the QQ̄ free energy can be computed

holographically from

FQQ̄(L) ⇠ �SNG[CL,T ]
T , T ! 1 . (3.3)

This relation still needs to be renormalized. For that we introduce a regularization on the

gravity side as follows. For our system, an expression for SNG[CL,T ] can be obtained by

plugging z
0(x) from the equation of motion (2.10) into the action functional (2.9). After

rewriting the integration over the coordinate x as an integration over the bulk coordinate

z we obtain

SNG[CL,T ] = � T
⇡↵0

Z zt

0
dz eA+B

s
e4Ah

e4Ah� e4Atht
, (3.4)

using again a subscript ‘t’ on functions to indicate their evaluation at the turning point

zt. Recall from eq. (2.11) that the turning point zt is directly related to the QQ̄ distance

L. As it stands, the expression (3.4) is divergent. For all models whose metric approaches

the AdS metric asymptotically, as z ! 0, the first factor eA+B is asymptotic to L
2
AdS/z

2,

whereas the square root approaches unity asymptotically. Thus, we have a divergence from

the lower integral limit, which can be regularized by restricting the integration to start a

small distance " away from the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = � T

⇡↵0

Z zt

"
dz eA+B

s
e4Ah

e4Ah� e4Atht
⇠ �

T L
2
AdS

⇡↵0

✓
1

"
+ . . .

◆
. (3.5)

The divergence is a pole ⇠ 1/". It appears because the string endpoints should be situated

at the boundary z = 0, which is the holographic realization of the infinite-quark-mass limit

[13]. Subtracting an appropriate (infinite) quantity �S containing the 1/" pole, we can

write eq. (3.3) in an operational form for the computation of the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T !1

 
�
S
(reg)
NG [CL,T ]��S

T

!
. (3.6)

This expression tacitly includes the limit " ! 0 that removes the regulator. Henceforth,

we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized free energy;

likewise, we will drop the superscript ‘reg’. It remains to specify the subtraction �S.

There are two main choices for �S that have been used in the literature:

– 7 –then no unphysical T-dependence!  
 
Similar problem with regularization occurs in 
calculation of entanglement entropy. 

• Expectation values of Wilson loops at finite temperature in AdS/CFT were first

computed in [15] and [16]. There, the subtraction is chosen as twice the action of

a straight string stretching from the boundary at z = 0 to the black hole horizon

at z = zh. This is the commonly used procedure in the literature, it is also used in

non-conformal theories, see for instance [6] and references therein.

• In [17] the real part of the Nambu–Goto action for infinite QQ̄ distance L is sub-

tracted. Given that there are no real solutions to the string equation of motion for

L > Ls, the authors of [17] continue the string configuration into the complex domain.

These two procedures di↵er from each other only at non-zero temperature. For T ! 0 both

reduce to the procedure used in the first papers on the computation of the heavy-quark

free energy (or heavy-quark potential) at T = 0 in AdS/CFT [13, 14].

We argue in the following that neither of these procedures is appropriate for the cal-

culation of the QQ̄ free energy at finite temperature. Let us first discuss our expectations

for this quantity on the field theory side. For small distances L, we expect the temperature

T as well as a possible deformation scale to have negligible e↵ect on the QQ̄ interaction.

The physical reason is that the corresponding scales are widely separated: the thermal

excitations of the medium have typical wavelengths of order 1/T and hence cannot resolve

the interaction of the QQ̄ pair at very small distances L ⌧ 1/T . In other words, the

physics in the UV region of small distances cannot be a↵ected by the thermal scale T .

This consideration is supported by data from lattice QCD, e. g. [18, 19], where indeed for

LT ⌧ 1 the free energy becomes independent of T , see also [20]. Now consider eq. (3.6)

for the holographic computation of the free energy. The first term SNG[CL,T ] becomes in-

dependent of any scale other than L for very small L. This is straightforward to see in the

bulk picture for all spacetimes that are asymptotically AdS, which in particular includes all

models that we consider here. Note that small L implies a small turning point zt. (Recall

that of the two string configurations corresponding to a given L we choose the one with

the turning point closer to the boundary, i. e. the one with smaller zt. We will explicitly

verify below that indeed that string configuration is energetically preferred over the one

with larger zt.) Thus, a string corresponding to very small L only probes the part of the

spacetime that is essentially fixed by the boundary conditions and does not depend on the

temperature or a possible deformation parameter, which manifest themselves significantly

only deeper in the bulk. We will numerically confirm this bulk argument when discussing

the free energy in the following sections.

Now, if FQQ̄ should not depend for small L on T (nor a potential deformation scale),

then also the subtraction �S should not depend on these scales either. Moreover, �S

should not depend on L. We therefore advocate a minimal choice �Smin that just subtracts

the 1/" pole in the regularized Nambu–Goto action (3.5). Explicitly, we choose

�Smin ⌘ �
T L

2
AdS

⇡↵0

Z 1

"

dz

z2
= �

T L
2
AdS

⇡↵0
1

"
. (3.7)

As the free energy is defined only up to an overall constant o↵set, one could of course modify

�Smin by an additive constant as long as it is T -independent. Gitterzitat dazu?! Our
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quantity with hanging-string subtraction is  
binding energy

in fact difference of free energies:

Binding Energy of Heavy QQbar pair

choice of �Smin can be used in all models that we will consider here, and more generally

in any model for which the metric asymptotically reduces to AdS. The choice (3.7) ensures

that the right-hand side of eq. (3.6) does in fact yield the free energy, and that the latter

does not depend on T (and neither on a possible deformation scale) for small QQ̄ distances

L.

Consequently, using formula (3.6) with the subtraction (3.7) we find the following

expression for the free energy in terms of a string in our general AdS metric,

⇡FQQ̄(zt)p
�

=

Z zt

0
dz

2

4eA+B

L2
AdS

s
e4Ah

e4Ah� e4Atht
� 1
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3

5� 1

zt
. (3.8)

Here, we have used the abbreviation
p
� = L

2
AdS/↵

0, see eq. (2.12).

As we have pointed out in the introductory section, there have been studies in the

literature using a subtraction procedure essentially equivalent to the one that we have just

described, see for example [21–25]. However, to the best of our knowledge the consequences

of di↵erent choices of subtraction have not been discussed in depth so far. In particular,

the di↵erent choices for the subtraction give rise to di↵erent physical quantities as we will

describe momentarily. Our aim here is to clarify these di↵erences. In the following sections,

we will then compute further quantities the definition of which crucially depends on the

correct (temperature-independent) subtraction procedure in the computation of the free

energy.

The quantity obtained via the commonly used subtraction procedure (the first one in

the list above) is the di↵erence of the string action of the ‘U’-shaped string connecting the

quarks and twice the string action of a straight string stretching from the boundary to the

horizon,

EQQ̄(L) = lim
T !1

✓
�SNG[CL,T ]� 2SNG[straight string]

T

◆
. (3.9)

In a general metric of the form (2.1) the Nambu–Goto action for a worldsheet corresponding

to a static straight string hanging down from the boundary to the horizon is given by

SNG[straight string] = � T
2⇡↵0

Z zh

0
dz eA+B

. (3.10)

It can be regularized in the same way as SNG[CL,T ] above by cutting o↵ the integral at a

distance " away from the boundary. Its divergence for " ! 0 is found in analogy to (3.5),

S
(reg)
NG [straight string] = � T

2⇡↵0

Z zh

"
dz eA+B ⇠ �

T L
2
AdS

2⇡↵0

✓
1

"
+ . . .

◆
. (3.11)

Hence, its divergent part equals �Smin/2. We will again drop the superscript ‘reg’ in our

notation.

Now the quantity EQQ̄(L) in eq. (3.9) can be understood as a di↵erence of free energies.

Namely, by inserting a zero in the form ��Smin +�Smin with the minimal �Smin defined

– 9 –

in eq. (3.7) we can reinterpret this quantity as the di↵erence of two finite quantities,

EQQ̄(L) = lim
T !1

"
�
�
SNG[CL,T ]��Smin

�
�

�
2SNG[straight string]��Smin

�

T

#

= FQQ̄ � FQ ; Q̄ ,

(3.12)

where we have used eq. (3.6) and the analogous relation for the free energy of two non-

interacting heavy quarks, which we denote by FQ ; Q̄, that is

FQ ; Q̄ = lim
T !1

✓
�2SNG[straight string]��Smin

T

◆
. (3.13)

This quantity can be written as FQ ; Q̄ = 2FQ where we may call FQ the free energy of a

single heavy quark. More explicitly, in our general AdS metric (2.1) we obtain FQ as

⇡FQp
�

=
1

2

Z zh

0
dz

✓
eA+B

L2
AdS

� 1

z2

◆
� 1

zh

�
, (3.14)

where we have again used the abbreviation
p
� = L

2
AdS/↵

0. We will discuss this single-quark

free energy further in section 7.

Let us turn back to EQQ̄(L). We see from eq. (3.12) that EQQ̄(L) is an energy di↵er-

ence. It vanishes when the free energy of the interacting QQ̄ pair equals the free energy of

a pair of non-interacting heavy quarks. We can thus interpret EQQ̄(L) (or more precisely,

its negative) as the binding energy of the QQ̄ pair. Explicitly, for the binding energy we

obtain the relation

⇡EQQ̄(zt)p
�

=

Z zt

0
dz

eA+B

L2
AdS

2

4
s

e4Ah

e4Ah� e4Atht
� 1

3

5�
Z zh

zt

dz
eA+B

L2
AdS

. (3.15)

The binding energy has been extensively studied (often as a ‘finite-temperature quark–

antiquark potential’) by means of the gauge/gravity duality, see for instance [15, 16, 21, 27–

32]. These references include investigations in N = 4 SYM (in the strict limit of infinite ’t

Hooft coupling � as well as including first-order corrections in an expansion in 1/� [32]) and

in models with non-conformal deformation, at vanishing and non-zero temperature, and

with the QQ̄ pair stationary or moving with respect to the rest frame of the background

medium (including analyses of the dependence on the angle of the QQ̄ dipole to its velocity

[28]). Furthermore, EQQ̄ has been studied in holographic models of anisotropic strongly

coupled plasma [33, 34], as well as at non-zero chemical potential in N = 4 SYM [35] and

non-conformal models [36].

We will see in the following sections that the behavior of the binding energy is funda-

mentally di↵erent from that of the free energy. Moreover, we will find that the free energy

in N = 4 SYM, as in the non-conformal models, behaves qualitatively like the QQ̄ free

energy computed in lattice QCD, whereas the binding energy does not. This corroborates

our general arguments for the use of the subtraction (3.7) for the computation of the free

energy.

– 10 –

(note: defines single-quark free energy)
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correspondence to zt). In the limit T ! 0, which is zh ! 1 on the gravity side, FQQ̄ and

EQQ̄ coincide.

We have expressed both the binding energy and the free energy in terms of the turning

point zt. The latter is related to the inter-quark distance L via the explicit relation

L(zt) =
2
p
⇡ �

�
7
4

�

3�
�
5
4

�

s

1� z4t

z4h
2F1

✓
1

2
,
3

4
;
5

4
;
z
4
t

z4h

◆
zt , (4.5)

derived from the general expression (2.11). This explicit form has also been obtained in

[37].

For T = 0 it is possible to explicitly solve eq. (4.5) for zt and to compute VQQ̄(L) ⌘
FQQ̄(L) = EQQ̄(L), the heavy quark–antiquark potential, analytically as a function of L,

VQQ̄(L) = � 4⇡2
p
�

�4
�
1
4

�
L
, (4.6)

which has been first obtained in [13]. The strict proportionality VQQ̄ / 1/L reflects the

absence of any other dimensionful scale at T = 0.

There is another interesting fact that we would like to point out here. In N = 4 SYM,

the zero-temperature limit of the action (3.11) for a straight string hanging into the black

hole is, as a consequence of (4.1) and (4.2),

SNG[straight string]
��
N=4,T=0

= �
T L

2
AdS

2⇡↵0

Z 1

"

dz

z2
. (4.7)

This quantity receives a contribution only from the lower limit of the integral and is thus

fully given by the UV divergence of the straight string. It exactly coincides with one half

of the minimal subtraction �Smin that we advocate for the definition of FQQ̄ in all models

and for all temperatures, see (3.7). One could therefore think of the minimal subtraction

for any asymptotically AdS metric as subtracting two straight strings corresponding to

pure N = 4 SYM at T = 0.

Let us now consider again general temperature T . In figure 2, we plot FQQ̄(L) and

EQQ̄(L) in N = 4 SYM for varying temperature. Both FQQ̄(L) and EQQ̄(L) actually have

two values for every distance L smaller than the screening distance Ls, i. e., both functions

have two branches. This is a consequence of there being two string configurations for every

distance L < Ls, as discussed in section 2. The inset in fig. 2 displays the full FQQ̄(L)

and EQQ̄(L), showing their lower and upper branches. The lower branches correspond

to the string configurations that stay closer to the boundary. Since their free energy is

smaller than that of the string configurations protruding farther into the bulk, they are

energetically preferred. In addition, it turns out that the solutions that protrude farther

into the bulk possess runaway modes when subjected to small perturbations whereas the

string configurations that stay closer to the boundary are stable against such perturbations

[38]. From now on, we will always restrict our discussion to the stable, lower branches of

both FQQ̄ and EQQ̄, and accordingly we have not plotted the upper branches in the main

plot in fig. 2.
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with (correct!) free energy obtain entropy

and internal energy

Entropy and Internal Energy of QQbar pair

very robust in the 1-parameter Einstein-frame model, staying quantitatively close to its

counterpart in N = 4 SYM for all values of the deformation parameter. Also the feature

that clearly distinguishes the two quantities FQQ̄ and EQQ̄ from each other turns out to

be universal in all our non-conformal models: while FQQ̄(L) at fixed L increases with in-

creasing non-conformality, EQQ̄(L) decreases with increasing non-conformality. EQQ̄(L)

in N = 4 SYM might possibly be an upper bound for the binding energy of a heavy

quark-antiquark pair in a large class of non-conformal theories.

6 Entropy and internal energy of a heavy quark pair

In this section we want to discuss two quantities that can be derived from the free energy

FQQ̄ of the heavy quark-antiquark pair, namely the entropy and the internal energy of the

pair. For the derivation of these observables it is crucial to use the correct (temperature-

independent) subtraction in the renormalization (3.6) of the free energy.

The entropy and the internal energy of the heavy quark-antiquark pair can be com-

puted from the free energy using standard thermodynamic relations. In a given holographic

model the heavy-quark free energy FQQ̄(L, T ) depends on the inter-quark distance L and

the temperature T of the medium. The entropy SQQ̄ of the pair can be computed (following

the definition also used in lattice QCD, see for examle [44]) as the derivative

SQQ̄(L, T ) = �
@FQQ̄(L, T )

@T
. (6.1)

With the entropy in hand, the internal energy can be obtained from

UQQ̄(L, T ) = FQQ̄(L, T ) + TSQQ̄(L, T ) . (6.2)

The explicit computation in our holographic models, where we have the parametric ex-

pressions (3.8) for FQQ̄ and (2.11) for the distance L in terms of the bulk length scales zt
and zh, is not entirely straightforward. We give details on the computation and an explicit

formula for the derivative @FQQ̄/@T in appendix A.

Macht das hier Sinn? Olaf? Both the free and the internal energy are phenomeno-

logically interesting as candidates for model potentials for the interaction of heavy quarks in

a finite-temperature medium. Model potentials are used for the computation of properties

of heavy quarkonia from Schrödinger-like equations in the spirit of potential non-relativistic

QCD (pNRQCD; see [45] for a review, and e. g. [46] for more recent work including finite-

temperature e↵ects). At zero temperature, pNRQCD provides a systematic framework

for the derivation of an e↵ective QQ̄ potential. At non-zero temperature the choice of a

potential to model the heavy-quark interaction is to some extent ambiguous. The internal

and the free energy di↵er from each other due to the entropy contribution, and it is thus

worth exploring the behavior of both of these quantities. See also, for instance, [44, 47, 48]

for discussions of heavy-quark energies and potentials in the context of lattice QCD.

Let us first compute the QQ̄ entropy and internal energy in N = 4 SYM. The above

formulae (6.1) and (6.2) can be evaluated explicitly based on the expressions (4.4) and (4.5)
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correspondence to zt). In the limit T ! 0, which is zh ! 1 on the gravity side, FQQ̄ and

EQQ̄ coincide.

We have expressed both the binding energy and the free energy in terms of the turning

point zt. The latter is related to the inter-quark distance L via the explicit relation

L(zt) =
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derived from the general expression (2.11). This explicit form has also been obtained in

[37].

For T = 0 it is possible to explicitly solve eq. (4.5) for zt and to compute VQQ̄(L) ⌘
FQQ̄(L) = EQQ̄(L), the heavy quark–antiquark potential, analytically as a function of L,

VQQ̄(L) = � 4⇡2
p
�

�4
�
1
4

�
L
, (4.6)

which has been first obtained in [13]. The strict proportionality VQQ̄ / 1/L reflects the

absence of any other dimensionful scale at T = 0.

There is another interesting fact that we would like to point out here. In N = 4 SYM,

the zero-temperature limit of the action (3.11) for a straight string hanging into the black

hole is, as a consequence of (4.1) and (4.2),

SNG[straight string]
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N=4,T=0

= �
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2
AdS

2⇡↵0

Z 1

"

dz

z2
. (4.7)

This quantity receives a contribution only from the lower limit of the integral and is thus

fully given by the UV divergence of the straight string. It exactly coincides with one half

of the minimal subtraction �Smin that we advocate for the definition of FQQ̄ in all models

and for all temperatures, see (3.7). One could therefore think of the minimal subtraction

for any asymptotically AdS metric as subtracting two straight strings corresponding to

pure N = 4 SYM at T = 0.

Let us now consider again general temperature T . In figure 2, we plot FQQ̄(L) and

EQQ̄(L) in N = 4 SYM for varying temperature. Both FQQ̄(L) and EQQ̄(L) actually have

two values for every distance L smaller than the screening distance Ls, i. e., both functions

have two branches. This is a consequence of there being two string configurations for every

distance L < Ls, as discussed in section 2. The inset in fig. 2 displays the full FQQ̄(L)

and EQQ̄(L), showing their lower and upper branches. The lower branches correspond

to the string configurations that stay closer to the boundary. Since their free energy is

smaller than that of the string configurations protruding farther into the bulk, they are

energetically preferred. In addition, it turns out that the solutions that protrude farther

into the bulk possess runaway modes when subjected to small perturbations whereas the

string configurations that stay closer to the boundary are stable against such perturbations

[38]. From now on, we will always restrict our discussion to the stable, lower branches of

both FQQ̄ and EQQ̄, and accordingly we have not plotted the upper branches in the main

plot in fig. 2.
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Running Coupling



Running Coupling αqq

N=4:

Konrad Schade, CE,  
Paul Wittmer

↵QQ̄ =
3L2
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dF (L, T )

dL
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Running Coupling αqq

with non-conformal deformation:

• universal rise above conformal value
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Running Coupling αqq

with non-conformal deformation:
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• Coming close to QCD data if free parameters properly adjusted

• Parameters fixed from thermodynamics

Running Coupling αqq
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Running Coupling αqq: Length Scales
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Complex Static Potential



QQbar Potential at larger distances?

• small distances (L < Ls):  
simple string configuration 
 
 

• very large distances:  
Debye screening,  
due to supergravity mode 
exchange between hanging 
strings 
(Bak, Karch, Yaffe)
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Complex QQbar Potential

Try to analytically continue simple string 
configuration beyond Ls

String coordinates & potential become complex
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Complex QQbar Potential

At some distance Lh string hangs into black hole 
→ quarks no longer causally connected,  
     better stop there?!
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Complex QQbar Potential
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Figure 4. Real part of the QQ̄-potential in N = 4 SYM for varying temperature. The screening
distance is denoted by a colored point and the distance Lh by a black point. All dimensionful
quantities are expressed in AdS units specified by LAdS = 1.

Figure 5. Imaginary part of the QQ̄-potential in N = 4 SYM for varying temperature.

real or imaginary part, we denote the screening distance of the quark-anti-quark-pair by
a colored point and the characteristic distance Lh by a black point. In all of our plots all
dimensionful quantities are expressed in AdS units specified by LAdS = 1.

The real part of the potential can be seen in figure 4 for varying temperatures. Anal-
ogously, the imaginary part can be seen in figure 5. For the imaginary part similar results
have been obtained before by different authors [34, 60, 61]17. The real part on the other
hand has so far, to the best of our knowledge, not been calculated in this way using the
renormalization procedure discussed in section 3. We find that the real part of the potential

17Some of these authors calculate the imaginary potential by considering fluctuations of the string. The
results are not the same as the one we obtained but the general behavior of the imaginary part of the
potential is similar.
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Real part of potential (with correct renormalization)

black points: Lh; colored points: Ls



Complex QQbar Potential

Imaginary part of potential 

Figure 4. Real part of the QQ̄-potential in N = 4 SYM for varying temperature. The screening
distance is denoted by a colored point and the distance Lh by a black point. All dimensionful
quantities are expressed in AdS units specified by LAdS = 1.
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Figure 5. Imaginary part of the QQ̄-potential in N = 4 SYM for varying temperature.

real or imaginary part, we denote the screening distance of the quark-anti-quark-pair by
a colored point and the characteristic distance Lh by a black point. In all of our plots all
dimensionful quantities are expressed in AdS units specified by LAdS = 1.

The real part of the potential can be seen in figure 4 for varying temperatures. Anal-
ogously, the imaginary part can be seen in figure 5. For the imaginary part similar results
have been obtained before by different authors [34, 60, 61]17. The real part on the other
hand has so far, to the best of our knowledge, not been calculated in this way using the
renormalization procedure discussed in section 3. We find that the real part of the potential

17Some of these authors calculate the imaginary potential by considering fluctuations of the string. The
results are not the same as the one we obtained but the general behavior of the imaginary part of the
potential is similar.
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black points: Lh; colored points: Ls



Complex QQbar Potential

Questions:  
 
How does imaginary part connect to real-valued 
Debye-screened potential at asymptotically large L? 

Spectral function of heavy mesons from complex 
potential?



Summary

• Holography applied to heavy quark bound states /  
   static potential in strongly coupled plasma 

• Screening distance conjecture:  
   Ls is bounded from below by its value in N=4 SYM

• First systematic calculation of free and internal  
   energy of QQbar pair in holography  
  (correct UV renormalization)

• Running coupling, complex static potential

• Universal strong-coupling behavior in these  
   observables



Thanks for your interest!


