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Entanglement plays a very important role in the current understanding of 
holography, and more generally in the quest for quantum gravity.

Focus on geometric states: states of holographic CFTs dual to a classical geometry.

• What is the entanglement structure of geometric states?  
• How can we characterize it? 
• Does it somehow capture the fact that they are geometric?

For geometric states the von Neumann entropy of an arbitrary subsystem is 
computed by the RT/HRT formula.
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• subadditivity (SA) 

• strong subadditivity (SSA)
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�I3(A : B : C) � 0SAB + SAC + SBC � SA � SB � SC � SABC � 0

But geometric states also satisfy non-universal constraints. 
Example, monogamy of mutual information (MMI) Hayden et al. 11’

Note that SSA is implied by SA and MMI

I2(A : B)� I3(A : B : C) = I2(A : B|C)
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First systematic search of new constraints of this kind: holographic entropy cone

However: 
• static set-up (RT) only 
• the constraints were found via a computer search that does not provide any 

guidance for finding new ones 
• it does not provide an interpretation

Bao et al. 15’

Main results: 
• proof that MMI is the only constraint for three parties 
• proof that there are no new constraints for four parties 
• found four new constraints for five parties 
• found an infinite family of constraints, one for any odd number of parties



We would like to develop: 
• a formulation also valid for dynamical cases (HRT) 
• technique which generates candidates for new inequalities, for an arbitrary 

number of parties 
• technique to prove inequalities from these candidates

Final goal: find an interpretation for these constraints and understand the 
implications for the entanglement structure of geometric states.
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In quantum field theory all entropies are generically infinite and fixing a regulator is 
unphysical. Therefore entropy vectors are meaningless and we focus instead on 
entropy relations. 
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H1 ⌦H2 ⌦ ...⌦HN

Entropy space

Entropy vector

R2N�1
+

~S(⇢A1A2...AN) = (SA1 , SA2 , ..., SA1A2 , SA1A3 , ..., SA1A2...AN)

Definition 1 (faithful information quantity): 
an information quantity is faithful if there exists a geometric state and a choice of 
subsystems such that  

independently from the cut-off.

Q(~S(⇢N)✏) = 0

Generic linear information quantity Q(~S) =
X

J

QJSJ
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Definition 2 (primitive information quantity - PIQ):  
an information quantity is primitive if  
• it is faithful, and therefore there exists a choice of geometric state and field 

theory subsystems such that 

• but for any other faithful information quantity (and same state and subsystems) 
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Definition 2 (primitive information quantity - PIQ):  
an information quantity is primitive if  
• it is faithful, and therefore there exists a choice of geometric state and field 

theory subsystems such that 

• but for any other faithful information quantity (and same state and subsystems) 

for “sufficiently generic” cut-off.

Q(~S(⇢N)✏) = 0

Q0(~S(⇢N)✏) 6= 0

First goal: find all PIQ for any number of parties.
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The set of faithful information quantities associated to       is the solution to a 
system of linear equations 

⇢N

The configuration       “generates” a PIQ if the solution to these equations is a one-
dimensional space. 
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Example: derivation of the tripartite information 



Surfaces SA SB SC SAB SAC SBC SABC Relations

a1 X X ↵¯�
b1 X X �↵̄
a1b1 X X ↵�
b2 X X ��̄
c1 X X � ¯�
b2c1 X X ��
c2 X X �↵̄
a2 X X ↵�̄
a2c2 X X ↵�
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What we have so far: 
• a framework that does not make any distinction between static and dynamical 

spacetimes (RT vs HRT) 
• derivation of all three parties PIQ 
• derivation of a particular class of PIQ for an arbitrary number of parties which 

generalizes the tripartite information 
• we know that at least some of these PIQ do not correspond to new constraints

To find all PIQ we need to scan over all possible states and choices of subsystems.



What we have so far: 
• a framework that does not make any distinction between static and dynamical 

spacetimes (RT vs HRT) 
• derivation of all three parties PIQ 
• derivation of a particular class of PIQ for an arbitrary number of parties which 

generalizes the tripartite information 
• we know that at least some of these PIQ do not correspond to new constraints
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What next 
• complete the derivation of all PIQ for an arbitrary number of parties (in progress) 
• develop a technique to extract new constraints from the PIQ (in progress) 
• what is the meaning of the PIQ which do not correspond to new constraints? 
• ultimately the hope is that this framework will shed light on the implications of 

the constraints on the entanglement structure of geometric states


