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The connection problem for AdS/CFT

» Near the horizon of near-extreme black holes: AdS-like spacetimes
» With AdS boundary conditions: Paradigm-shifting AdS/CFT results
» In the real world gravity does not obey AdS boundary conditions

The connection problem:

Extending anti-de Sitter solutions away from the near-horizon region
of (near-)extreme black holes and connecting them with solutions in
the far asymptotically flat region.

» AdS; is most advantageous over its higher dimensional counterparts:

1. AdS; x S?is an exact solution of 4D pure Einstein-Maxwell theory
2. AdS; x S? is the near-horizon of extreme Reissner-Nordstrom
[Bertotti, Robinson (1959)]



AdS> vs near—AdS,

Consider a Reissner-Nordstrom black hole of mass M and charge Q and
parameterize the deviation from extremality by

Q2

Lz

=
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» The extreme Reissner-Nordstrom (ERN) is given by: xk =0
» The near-extreme Reissner-Nordstrom (NERN) is given by: x <« 1

Let r be a dimensionless radial coordinate s.t. the horizonisat r =0
The near-horizon spacetimes are as follows
» In ERN for r < 1 the geometry is given by AdS, x S%:

#dszf —rPdt? +dr +d?. A=Mr.

» In NERN for r ~ k < 1 the geometry is given by near-AdS, x S?:
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stz = —r(r+2r)df® + +dQ%, A=M(r+x).



AdS> vs near—AdS,

[Maldacena, Michelson, Strominger (1999)]
[Spradlin, Strominger (1999)]

» Locally, AdS; and near—AdS; are diffeomorphic
» On Penrose diagram of global AdS; they cover the following patches:

AdS;: Poincare patch near—AdS;: Rindler patch
» Physically distinct connections to asymptotically flat region:

> Attaching flat region to shaded triangle on left = ERN physics
> Attaching flat region to shaded triangle on right = NERN physics



AdS> vs near—AdS,

Near-horizon anti-de Sitter arises in ERN and NERN as follows:

ERN NERN

In this context, solve the connection problem for coupled gravitational and
electromagnetic perturbations of AdS, x S? and near—AdS, x S?



Solving the connection problem: Outline

Step 1:
Step 2:

Step 3:

Step 4:

[APP (arXiv:1805.12409)]
[APP (arXiv:1806.07097)]

Reduce the linearized Einstein-Maxwell egs on the background
of the (near-)extreme RN to a single 4" order radial ODE
Derive the anti-de Sitter egs as an appropriate near-horizon
approximation of the (near-)extreme RN ones, and solve them
Find and solve intermediate and far region approximations

such that, together with the near-horizon region, the full
(near-)extreme RN spacetime is covered

Use the method of matched asymptotic expansions to glue the
solutions together in overlapping regions



Solving the connection problem: Outline

[APP (arXiv:1805.12409)]
[APP (arXiv:1806.07097)]

Step 1: Reduce the linearized Einstein-Maxwell egs on the background
of the (near-)extreme RN to a single 4" order radial ODE

Step 2: Derive the anti-de Sitter eqs as an appropriate near-horizon
approximation of the (near-)extreme RN ones, and solve them

Step 3: Find and solve intermediate and far region approximations
such that, together with the near-horizon region, the full
(near-)extreme RN spacetime is covered

Step 4: Use the method of matched asymptotic expansions to glue the
solutions together in overlapping regions

All computations are entirely analytical!



Step 1: Reducing the linearized Einstein-Maxwell egs

» Even parity RN perturbation ansatz in Regge-Wheeler-Zerilli gauge:
[Regge, Wheeler (1957)] [Zerilli (1974)]

-Y(r) X(r) 0 0
hu = v K(()r) 8 et Yi,0(0,9)

K(r)sin® 0
a,=(x(r) »(r) 0 0)e™'Yo(6,¢)

With this ansatz, the linearized Einstein-Maxwell eqs may be reduced to
[APP (arXiv:1805.12409)] [APP (arXiv:1806.07097)]

ag(NK"" + ag(r)K" + ax(r)K” + ay(r)K’ + ag(r)K =0
Y, V, X, x, ¢ obtained by algebraic expressions of K and its derivatives.

Note: an alternative to the well-known reductions to two 2" order ODEs
> |t is convenient to change variables according to

k0 = (+4) HO

» Generic modes do not survive in the near-horizon limit. The modes
which do survive and solve the AdS, x S? and near—AdS; x S? egs are

the low energy modes: w1



Steps 2,3: Anti-de Sitter, Static, and Far solns

Divide the spacetime into three regions:

Near: r<i
Static: max(k,w) K r< 1/w
Far: 1<r

» In the intermediate Static region the soln is given by
HS(ry=(1+r)° [cf =ty esr3u—r+ain+Cir' P CEr Tt U+ 1+ 3 + 2/r)]
» In the Far region the soln is given by
H'(r) = C! rw ((/ + 1)1+ 2)rwh ) (rw) — ((/+ 1) +2)(2 +3) — 2r2w2> hﬁﬁ(m))
+Chrw ((/ + 1)1+ 2)rwh@)(rw) — ((/ T +2)@ +3) - 2r2w2) h}ﬂ(rw))
+C! (rw (/(/+ 13(+2) -2 (/2 e 2) r2w2> hi(rw)
—(I+2) (/(/ +1%@21+3) - (1 +3) (/2 e 2) r%ﬁ) hY) (rw))
o (fw (l+1°0+2) -2 (/2 1+ 2) Pu?) hy(re)
—(I+2) (/(/ +1%@+8) — (1 +3) (/2 1+ 2) r2w2> he) (rw))

where hf;,), hf,z,) are the spherical Hankel functions.



Steps 2,3: Anti-de Sitter, Static, and Far solns

> In the Near region we have:
> For ERN the Near soln is given by

H(ry = C r=3H")_(w/r)+C8 r=2h®) _(w/r)+C§ r= M (w/n+Cf r2h®(w/r)

This is an exact soln w.r.t. the AdS; x S? background.

»> For NERN the Near soln is given by
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This is an exact soln w.r.t. the near—AdS; x S? background.
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» Notice that the Static and Far solns are identical for ERN and NERN



Step 4: Matched Asymptotic Expansions

Since «,w < 1 the Static region overlaps with both Near and Far regions:

Static: max(k,w) € r < 1/w
Near: r < 1 Far: r > 1

r=0 r=o0

» In the Near-Static overlap region max(x,w) < r < 1 the solution is
HHS(r) — C1"SI”71 + Cgsr’*:’ + Cgsr7l72 + C‘TSI’7174

Using this one may obtain linear relations between the C’s and C;’s
> In the Far-Static overlap region 1 < r < 1/w the solution is

HIS(,.) _ C{sfl+2 + CéSI’H1 + Césf_’+1 + C‘{sr—l

Using this one may obtain linear relations between the C!’s and C{’s

Eliminating the C®’s one finds the linear relation between the C!’s and C"s.
This is the solution to the connection problem for (near-)AdS; x S? in (N)ERN.



The solutions for the connection problems

» For AdS, x S? and ERN we have: [APP (arXiv:1805.12409)]
(=DM 1+ 1) +2) 2 2143 f 2 f
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The solutions for the connection problems

» For near—AdS, x S? and NERN we have: [APP (arXiv:1806.07097)]
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x (26)“/20 k1R (—iw [ K)i2
Cly = - %(/— DI+ 1)@+ 10221 (14 1) (3w Cl; + U+ 1) Cl )
(Zm)iw/zn
KP2wl(iw/ k)12

Coi =1+ DI +2)(@+ 1272721 (=1 = )7 (3w Cff — 10+ 1) € ) x
x (2K)"/2% Wl (—iw/K),
i(=1l
w2l+3
(zn)iw/Z»c
wlwl(io/rk)

n— _
Ca = —

22 (1+ )2 ((25/+ 33)w Cly +3R(I+1)(3 + 4) c;;) x

Cpf=Cl+aCf, ClF=Cj+pCy,
Ciz=cl+c), ci=cl+d],

a=—(26)“/ " (—iw /K)o /(iw/K) 0 B = —(26)“/" (—iw/K),/(iw/k),



Thank you



