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The connection problem for AdS/CFT

I Near the horizon of near-extreme black holes: AdS-like spacetimes
I With AdS boundary conditions: Paradigm-shifting AdS/CFT results
I In the real world gravity does not obey AdS boundary conditions

The connection problem:

Extending anti-de Sitter solutions away from the near-horizon region
of (near-)extreme black holes and connecting them with solutions in
the far asymptotically flat region.

I AdS2 is most advantageous over its higher dimensional counterparts:
1. AdS2 × S2 is an exact solution of 4D pure Einstein-Maxwell theory
2. AdS2 × S2 is the near-horizon of extreme Reissner-Nordstrom

[Bertotti, Robinson (1959)]



AdS2 vs near–AdS2
Consider a Reissner-Nordstrom black hole of mass M and charge Q and
parameterize the deviation from extremality by

κ ≡
√

1− Q2

M2

I The extreme Reissner-Nordstrom (ERN) is given by: κ = 0
I The near-extreme Reissner-Nordstrom (NERN) is given by: κ� 1

Let r be a dimensionless radial coordinate s.t. the horizon is at r = 0

The near-horizon spacetimes are as follows
I In ERN for r � 1 the geometry is given by AdS2 × S2:

1
M2 ds2 = −r 2dt2 +

dr 2

r 2 + dΩ2 , At = Mr .

I In NERN for r ∼ κ� 1 the geometry is given by near–AdS2 × S2:

1
M2 ds2 = −r(r + 2κ)dt2 +

dr 2

r(r + 2κ)
+ dΩ2 , At = M(r + κ) .



AdS2 vs near–AdS2
[Maldacena, Michelson, Strominger (1999)]

[Spradlin, Strominger (1999)]

I Locally, AdS2 and near–AdS2 are diffeomorphic
I On Penrose diagram of global AdS2 they cover the following patches:

AdS2: Poincare patch near–AdS2: Rindler patch
I Physically distinct connections to asymptotically flat region:

I Attaching flat region to shaded triangle on left⇒ ERN physics
I Attaching flat region to shaded triangle on right⇒ NERN physics



AdS2 vs near–AdS2

Near-horizon anti-de Sitter arises in ERN and NERN as follows:

ERN NERN

In this context, solve the connection problem for coupled gravitational and
electromagnetic perturbations of AdS2 × S2 and near–AdS2 × S2



Solving the connection problem: Outline

[APP (arXiv:1805.12409)]
[APP (arXiv:1806.07097)]

Step 1: Reduce the linearized Einstein-Maxwell eqs on the background
of the (near-)extreme RN to a single 4th order radial ODE

Step 2: Derive the anti-de Sitter eqs as an appropriate near-horizon
approximation of the (near-)extreme RN ones, and solve them

Step 3: Find and solve intermediate and far region approximations
such that, together with the near-horizon region, the full
(near-)extreme RN spacetime is covered

Step 4: Use the method of matched asymptotic expansions to glue the
solutions together in overlapping regions

All computations are entirely analytical!



Solving the connection problem: Outline

[APP (arXiv:1805.12409)]
[APP (arXiv:1806.07097)]

Step 1: Reduce the linearized Einstein-Maxwell eqs on the background
of the (near-)extreme RN to a single 4th order radial ODE

Step 2: Derive the anti-de Sitter eqs as an appropriate near-horizon
approximation of the (near-)extreme RN ones, and solve them

Step 3: Find and solve intermediate and far region approximations
such that, together with the near-horizon region, the full
(near-)extreme RN spacetime is covered

Step 4: Use the method of matched asymptotic expansions to glue the
solutions together in overlapping regions

All computations are entirely analytical!



Step 1: Reducing the linearized Einstein-Maxwell eqs
I Even parity RN perturbation ansatz in Regge-Wheeler-Zerilli gauge:

[Regge, Wheeler (1957)] [Zerilli (1974)]

hµν =

−Y (r) X(r) 0 0
V (r) 0 0

K (r) 0
K (r) sin2 θ

 eiωt Yl,0(θ, φ)

aµ = (χ(r) ψ(r) 0 0) eiωt Yl,0(θ, φ)

With this ansatz, the linearized Einstein-Maxwell eqs may be reduced to
[APP (arXiv:1805.12409)] [APP (arXiv:1806.07097)]

a4(r)K ′′′′ + a3(r)K ′′′ + a2(r)K ′′ + a1(r)K ′ + a0(r)K = 0

Y ,V ,X , χ, ψ obtained by algebraic expressions of K and its derivatives.

Note: an alternative to the well-known reductions to two 2nd order ODEs
I It is convenient to change variables according to

K (r) =

(
r

1 + r

)2
H(r)

I Generic modes do not survive in the near-horizon limit. The modes
which do survive and solve the AdS2 × S2 and near–AdS2 × S2 eqs are

the low energy modes: ω � 1



Steps 2,3: Anti-de Sitter, Static, and Far solns
Divide the spacetime into three regions:

Near: r � 1
Static: max(κ, ω)� r � 1/ω
Far: 1� r

I In the intermediate Static region the soln is given by

Hs(r) = (1 + r)3
[
Cs

1 r l−1 + Cs
2 r l−3(l − r + 2lr) + Cs

3 r−l−2 + Cs
4 r−l−4(l + 1 + 3r + 2lr)

]
I In the Far region the soln is given by

H f (r) = C f
1 rω

(
(l + 1)(l + 2)rωh(1)

l+2(rω) −
(

(l + 1)(l + 2)(2l + 3) − 2r2
ω

2
)

h(1)

l+1(rω)
)

+C f
2 rω

(
(l + 1)(l + 2)rωh(2)

l+2(rω) −
(

(l + 1)(l + 2)(2l + 3) − 2r2
ω

2
)

h(2)

l+1(rω)
)

+C f
3

(
rω
(

l(l + 1)3(l + 2) − 2
(

l2 + l + 2
)

r2
ω

2
)

h(1)

l+2(rω)

−(l + 2)
(

l(l + 1)3(2l + 3) − (l + 3)
(

l2 + l + 2
)

r2
ω

2
)

h(1)

l+1(rω)
)

+C f
4

(
rω
(

l(l + 1)3(l + 2) − 2
(

l2 + l + 2
)

r2
ω

2
)

h(2)

l+2(rω)

−(l + 2)
(

l(l + 1)3(2l + 3) − (l + 3)
(

l2 + l + 2
)

r2
ω

2
)

h(2)

l+1(rω)
)

where h(1)
m , h(2)

m are the spherical Hankel functions.



Steps 2,3: Anti-de Sitter, Static, and Far solns

I In the Near region we have:
I For ERN the Near soln is given by

Hn(r) = Cn
1 r−3h(1)

−l−2(ω/r)+Cn
2 r−3h(2)

−l−2(ω/r)+Cn
3 r−3h(1)

−l (ω/r)+Cn
4 r−3h(2)

−l (ω/r)

This is an exact soln w.r.t. the AdS2 × S2 background.

I For NERN the Near soln is given by

Hn(r) = Cn
1 r−2− iω

2κ

( r
2κ

+ 1
) iω

2κ
2F1

(
−1 − l, l + 2; 1 −

iω
κ

; −
r

2κ

)
+Cn

2 r−2+ iω
2κ

( r
2κ

+ 1
)− iω

2κ
2F1

(
−1 − l, l + 2; 1 +

iω
κ

; −
r

2κ

)
+Cn

3 r−2− iω
2κ

( r
2κ

+ 1
) iω

2κ
2F1

(
1 − l, l ; 1 −

iω
κ

; −
r

2κ

)
+Cn

4 r−2+ iω
2κ

( r
2κ

+ 1
)− iω

2κ
2F1

(
1 − l, l ; 1 +

iω
κ

; −
r

2κ

)

This is an exact soln w.r.t. the near–AdS2 × S2 background.

I Notice that the Static and Far solns are identical for ERN and NERN



Step 4: Matched Asymptotic Expansions
Since κ , ω � 1 the Static region overlaps with both Near and Far regions:

r = 0 r =∞

Near: r � 1 Far: r � 1

Static: max(κ, ω)� r � 1/ω

I In the Near-Static overlap region max(κ, ω)� r � 1 the solution is

Hns(r) = Cns
1 r l−1 + Cns

2 r l−3 + Cns
3 r−l−2 + Cns

4 r−l−4

Using this one may obtain linear relations between the Cn
i ’s and Cs

i ’s
I In the Far-Static overlap region 1� r � 1/ω the solution is

H fs(r) = Cfs
1 r l+2 + Cfs

2 r l+1 + Cfs
3 r−l+1 + Cfs

4 r−l

Using this one may obtain linear relations between the C f
i ’s and Cs

i ’s

Eliminating the Cs
i ’s one finds the linear relation between the C f

i ’s and Cn
i ’s.

This is the solution to the connection problem for (near-)AdS2×S2 in (N)ERN.



The solutions for the connection problems

I For AdS2 × S2 and ERN we have: [APP (arXiv:1805.12409)]

Cn+
12 =

(−1)l+1

22l+2π

(l + 1)(l + 2)

2l − 1
Γ
(
−l − 1

2

)2
ω

2l+3
(

(25l − 8)ωC f +
12 − 3l(l + 1)2(3l − 1) C f +

34

)
Cn−

12 =
(−1)l 22l

π
(l − 1)l(l + 1)(2l + 1)Γ

(
l + 1

2

)2
ω

−2l−1
(

3ωC f−
12 + l2(l + 1) C f−

34

)
Cn+

34 =
(−1)l+1

22l+2π
l(l + 1)(l + 2)(2l + 1)Γ

(
−l − 1

2

)2
ω

2l+1
(

3ωC f +
12 − l(l + 1)2 C f +

34

)
Cn−

34 =
(−1)l 22l

π

(l − 1)l
2l + 3

Γ
(
l + 1

2

)2
ω

−2l+1
(

(25l + 33)ωC f−
12 + 3l2(l + 1)(3l + 4) C f−

34

)

Cn±
12 = Cn

1 ± Cn
2 , Cn±

34 = Cn
3 ± Cn

4 ,

C f±
12 = C f

1 ± C f
2 , C f±

34 = C f
3 ± C f

4 .



The solutions for the connection problems
I For near–AdS2 × S2 and NERN we have: [APP (arXiv:1806.07097)]

Cn+
12 =

i
π

(l + 1)(l + 2)

2l − 1
2−2l−2 Γ

(
−l − 1

2

)2
(

(25l − 8)ωC f +
12 − 3l(l + 1)2(3l − 1) C f +

34

)
×

× (2κ)iω/2κ
κ

l+2
ω

l (−iω/κ)l+2

Cn−
12 = −

i
π

(l − 1)l(l + 1)(2l + 1)22l Γ
(
l + 1

2

)2
(

3ωC f−
12 + l2(l + 1) C f−

34

)
×

×
(2κ)iω/2κ

κl+2ωl (iω/κ)l+2

Cn+
34 =

i
π

l(l + 1)(l + 2)(2l + 1)2−2l−2 Γ
(
−l − 1

2

)2
(

3ωC f +
12 − l(l + 1)2 C f +

34

)
×

× (2κ)iω/2κ
κ

l
ω

l (−iω/κ)l

Cn−
34 = −

i
π

(l − 1)l
2l + 3

22l Γ
(
l + 1

2

)2
(

(25l + 33)ωC f−
12 + 3l2(l + 1)(3l + 4) C f−

34

)
×

×
(2κ)iω/2κ

κlωl (iω/κ)l

Cn±
12 = Cn

1 ± αCn
2 , Cn±

34 = Cn
3 ± β Cn

4 ,

C f±
12 = C f

1 ± C f
2 , C f±

34 = C f
3 ± C f

4 ,

α = −(2κ)iω/κ(−iω/κ)l+2/(iω/κ)l+2 , β = −(2κ)iω/κ(−iω/κ)l/(iω/κ)l



Thank you


