Gravitational and electromagnetic perturbations of (near-) $A d S_{2} \times S^{2}$ in (near-)extreme Reissner-Nordstrom

Achilleas P. Porfyriadis

UC Santa Barbara
1805.12409 [JHEP 1807], 1806.07097

Gauge/Gravity Duality 2018, Würzburg, July 2018

The connection problem for AdS/CFT

- Near the horizon of near-extreme black holes: AdS-like spacetimes
- With AdS boundary conditions: Paradigm-shifting AdS/CFT results
- In the real world gravity does not obey AdS boundary conditions

The connection problem:
Extending anti-de Sitter solutions away from the near-horizon region of (near-)extreme black holes and connecting them with solutions in the far asymptotically flat region.

- $A d S_{2}$ is most advantageous over its higher dimensional counterparts:

1. $A d S_{2} \times S^{2}$ is an exact solution of 4D pure Einstein-Maxwell theory
2. $A d S_{2} \times S^{2}$ is the near-horizon of extreme Reissner-Nordstrom
[Bertotti, Robinson (1959)]

$A d S_{2}$ vs near- $A d S_{2}$

Consider a Reissner-Nordstrom black hole of mass M and charge Q and parameterize the deviation from extremality by

$$
\kappa \equiv \sqrt{1-\frac{Q^{2}}{M^{2}}}
$$

- The extreme Reissner-Nordstrom (ERN) is given by: $\kappa=0$
- The near-extreme Reissner-Nordstrom (NERN) is given by: $\kappa \ll 1$

Let r be a dimensionless radial coordinate s.t. the horizon is at $r=0$
The near-horizon spacetimes are as follows

- In ERN for $r \ll 1$ the geometry is given by $A d S_{2} \times S^{2}$:

$$
\frac{1}{M^{2}} d s^{2}=-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+d \Omega^{2}, \quad A_{t}=M r .
$$

- In NERN for $r \sim \kappa \ll 1$ the geometry is given by near-AdS $S_{2} \times S^{2}$:

$$
\frac{1}{M^{2}} d s^{2}=-r(r+2 \kappa) d t^{2}+\frac{d r^{2}}{r(r+2 \kappa)}+d \Omega^{2}, \quad A_{t}=M(r+\kappa)
$$

$A d S_{2}$ vs near- $A d S_{2}$

- Locally, $A d S_{2}$ and near- $A d S_{2}$ are diffeomorphic
- On Penrose diagram of global $A d S_{2}$ they cover the following patches:

$A d S_{2}$: Poincare patch

near-AdS 2 : Rindler patch
- Physically distinct connections to asymptotically flat region:
- Attaching flat region to shaded triangle on left \Rightarrow ERN physics
- Attaching flat region to shaded triangle on right \Rightarrow NERN physics

$A d S_{2}$ vs near- $A d S_{2}$

Near-horizon anti-de Sitter arises in ERN and NERN as follows:

ERN

NERN

In this context, solve the connection problem for coupled gravitational and electromagnetic perturbations of $A d S_{2} \times S^{2}$ and near- $A d S_{2} \times S^{2}$

Solving the connection problem: Outline

Step 1: Reduce the linearized Einstein-Maxwell eqs on the background of the (near-)extreme RN to a single $4^{\text {th }}$ order radial ODE
Step 2: Derive the anti-de Sitter eqs as an appropriate near-horizon approximation of the (near-)extreme RN ones, and solve them
Step 3: Find and solve intermediate and far region approximations such that, together with the near-horizon region, the full (near-)extreme RN spacetime is covered
Step 4: Use the method of matched asymptotic expansions to glue the solutions together in overlapping regions

All computations are entirely analytical!

Solving the connection problem: Outline

[APP (arXiv:1805.12409)]
[APP (arXiv:1806.07097)]
Step 1: Reduce the linearized Einstein-Maxwell eqs on the background of the (near-)extreme RN to a single $4^{\text {th }}$ order radial ODE
Step 2: Derive the anti-de Sitter eqs as an appropriate near-horizon approximation of the (near-)extreme RN ones, and solve them
Step 3: Find and solve intermediate and far region approximations such that, together with the near-horizon region, the full (near-)extreme RN spacetime is covered
Step 4: Use the method of matched asymptotic expansions to glue the solutions together in overlapping regions

All computations are entirely analytical!

Step 1: Reducing the linearized Einstein-Maxwell eqs

- Even parity RN perturbation ansatz in Regge-Wheeler-Zerilli gauge:
[Regge, Wheeler (1957)] [Zerilli (1974)]

$$
\begin{aligned}
h_{\mu \nu} & =\left(\begin{array}{cccc}
-Y(r) & X(r) & 0 & 0 \\
& V(r) & 0 & 0 \\
& & K(r) & 0 \\
& & & K(r) \sin ^{2} \theta
\end{array}\right) e^{i \omega t} Y_{l, 0}(\theta, \phi) \\
a_{\mu} & =\left(\begin{array}{llll}
\chi(r) & \psi(r) & 0 & 0) e^{i \omega t} Y_{l, 0}(\theta, \phi)
\end{array}\right.
\end{aligned}
$$

With this ansatz, the linearized Einstein-Maxwell eqs may be reduced to [APP (arXiv:1805.12409)] [APP (arXiv:1806.07097)]

$$
a_{4}(r) K^{\prime \prime \prime \prime}+a_{3}(r) K^{\prime \prime \prime}+a_{2}(r) K^{\prime \prime}+a_{1}(r) K^{\prime}+a_{0}(r) K=0
$$

Y, V, X, χ, ψ obtained by algebraic expressions of K and its derivatives.
Note: an alternative to the well-known reductions to two $2^{\text {nd }}$ order ODEs

- It is convenient to change variables according to

$$
K(r)=\left(\frac{r}{1+r}\right)^{2} H(r)
$$

- Generic modes do not survive in the near-horizon limit. The modes which do survive and solve the $A d S_{2} \times S^{2}$ and near- $A d S_{2} \times S^{2}$ eqs are

$$
\text { the low energy modes: } \quad \omega \ll 1
$$

Steps 2,3: Anti-de Sitter, Static, and Far solns

Divide the spacetime into three regions:

Near:	
Static:	
Far:	$\max (\kappa, \omega)$

- In the intermediate Static region the soln is given by

$$
H^{s}(r)=(1+r)^{3}\left[C_{1}^{s} r^{I-1}+C_{2}^{s} r^{I-3}(I-r+2 l r)+C_{3}^{s} r^{-l-2}+C_{4}^{s} r^{-l-4}(I+1+3 r+2 / r)\right]
$$

- In the Far region the soln is given by

$$
\begin{aligned}
H^{f}(r)= & C_{1}^{f} r \omega\left((I+1)(I+2) r \omega h_{l+2}^{(1)}(r \omega)-\left((I+1)(I+2)(2 I+3)-2 r^{2} \omega^{2}\right) h_{l+1}^{(1)}(r \omega)\right) \\
+ & C_{2}^{f} r \omega\left((I+1)(I+2) r \omega h_{l+2}^{(2)}(r \omega)-\left((I+1)(I+2)(2 I+3)-2 r^{2} \omega^{2}\right) h_{l+1}^{(2)}(r \omega)\right) \\
+ & C_{3}^{f}\left(r \omega(I I+1)^{3}(I+2)-2\left(I^{2}+I+2\right) r^{2} \omega^{2}\right) h_{l+2}^{(1)}(r \omega) \\
& \left.\quad-(I+2)\left(I(I+1)^{3}(2 I+3)-(I+3)\left(I^{2}+I+2\right) r^{2} \omega^{2}\right) h_{l+1}^{(1)}(r \omega)\right) \\
+ & C_{4}^{f}\left(r \omega\left(I(I+1)^{3}(I+2)-2\left(I^{2}+I+2\right) r^{2} \omega^{2}\right) h_{l+2}^{(2)}(r \omega)\right. \\
& \left.\quad(I+2)\left(I(I+1)^{3}(2 I+3)-(I+3)\left(I^{2}+I+2\right) r^{2} \omega^{2}\right) h_{l+1}^{(2)}(r \omega)\right)
\end{aligned}
$$

where $h_{m}^{(1)}, h_{m}^{(2)}$ are the spherical Hankel functions.

Steps 2,3: Anti-de Sitter, Static, and Far solns

- In the Near region we have:
- For ERN the Near soln is given by

$$
H^{n}(r)=C_{1}^{n} r^{-3} h_{-I-2}^{(1)}(\omega / r)+C_{2}^{n} r^{-3} h_{-I-2}^{(2)}(\omega / r)+C_{3}^{n} r^{-3} h_{-I}^{(1)}(\omega / r)+C_{4}^{n} r^{-3} h_{-1}^{(2)}(\omega / r)
$$

This is an exact soln w.r.t. the $A d S_{2} \times S^{2}$ background.

- For NERN the Near soln is given by

$$
\begin{aligned}
H^{n}(r) & =C_{1}^{n} r^{-2-\frac{i \omega}{2 \kappa}}\left(\frac{r}{2 \kappa}+1\right)^{\frac{i \omega}{2 \kappa}}{ }_{2} F_{1}\left(-1-I, I+2 ; 1-\frac{i \omega}{\kappa} ;-\frac{r}{2 \kappa}\right) \\
& +C_{2}^{n} r^{-2+\frac{i \omega}{2 \kappa}}\left(\frac{r}{2 \kappa}+1\right)^{-\frac{i \omega}{2 \kappa}}{ }_{2} F_{1}\left(-1-I, I+2 ; 1+\frac{i \omega}{\kappa} ;-\frac{r}{2 \kappa}\right) \\
& +C_{3}^{n} r^{-2-\frac{i \omega}{2 \kappa}}\left(\frac{r}{2 \kappa}+1\right)^{\frac{i \omega}{2 \kappa}}{ }_{2} F_{1}\left(1-I, I ; 1-\frac{i \omega}{\kappa} ;-\frac{r}{2 \kappa}\right) \\
& +C_{4}^{n} r^{-2+\frac{i \omega}{2 \kappa}}\left(\frac{r}{2 \kappa}+1\right)^{-\frac{i \omega}{2 \kappa}}{ }_{2} F_{1}\left(1-I, I ; 1+\frac{i \omega}{\kappa} ;-\frac{r}{2 \kappa}\right)
\end{aligned}
$$

This is an exact soln w.r.t. the near $-A d S_{2} \times S^{2}$ background.

- Notice that the Static and Far solns are identical for ERN and NERN

Step 4: Matched Asymptotic Expansions

Since $\kappa, \omega \ll 1$ the Static region overlaps with both Near and Far regions:

- In the Near-Static overlap region $\max (\kappa, \omega) \ll r \ll 1$ the solution is

$$
H^{n s}(r)=C_{1}^{n s} r^{l-1}+C_{2}^{n s} r^{l-3}+C_{3}^{n s} r^{-l-2}+C_{4}^{n s} r^{-l-4}
$$

Using this one may obtain linear relations between the $C_{i}^{n \prime s}$ and C_{i}^{s} 's

- In the Far-Static overlap region $1 \ll r \ll 1 / \omega$ the solution is

$$
H^{f s}(r)=C_{1}^{f s} r^{l+2}+C_{2}^{f s} r^{\prime+1}+C_{3}^{f s} r^{-l+1}+C_{4}^{f s} r^{-l}
$$

Using this one may obtain linear relations between the $C_{i}^{f \text { 's }}$ and $C_{i}^{s \text { 's }}$ Eliminating the $C_{i}^{s \text { 's }}$ one finds the linear relation between the C_{i}^{f} 's and $C_{i}^{n \text { 's }}$. This is the solution to the connection problem for (near-) $A d S_{2} \times S^{2}$ in (N)ERN.

The solutions for the connection problems

- For $A d S_{2} \times S^{2}$ and ERN we have:

$$
\begin{gathered}
C_{12}^{n+}=\frac{(-1)^{I+1}}{2^{2 I+2} \pi} \frac{(I+1)(I+2)}{2 I-1} \Gamma\left(-I-\frac{1}{2}\right)^{2} \omega^{2 I+3}\left((25 I-8) \omega C_{12}^{f+}-3 I(I+1)^{2}(3 I-1) C_{34}^{f+}\right) \\
C_{12}^{n-}=\frac{(-1)^{\prime} 2^{2 I}}{\pi}(I-1) I(I+1)(2 I+1) \Gamma\left(I+\frac{1}{2}\right)^{2} \omega^{-2 I-1}\left(3 \omega C_{12}^{f-}+I^{2}(I+1) C_{34}^{f-}\right) \\
C_{34}^{n+}=\frac{(-1)^{I+1}}{2^{2 I+2} \pi} I(I+1)(I+2)(2 I+1) \Gamma\left(-I-\frac{1}{2}\right)^{2} \omega^{2 I+1}\left(3 \omega C_{12}^{f+}-I(I+1)^{2} C_{34}^{f+}\right) \\
C_{34}^{n-}=\frac{(-1)^{\prime} 2^{2 I}}{\pi} \frac{(I-1) I}{2 I+3} \Gamma\left(I+\frac{1}{2}\right)^{2} \omega^{-2 I+1}\left((25 I+33) \omega C_{12}^{f-}+3 I^{2}(I+1)(3 I+4) C_{34}^{f-}\right) \\
C_{12}^{n \pm}=C_{1}^{n} \pm C_{2}^{n}, \quad C_{34}^{n \pm}=C_{3}^{n} \pm C_{4}^{n}, \\
C_{12}^{f \pm}=C_{1}^{f} \pm C_{2}^{f}, \quad C_{34}^{f \pm}=C_{3}^{f} \pm C_{4}^{f} .
\end{gathered}
$$

The solutions for the connection problems

- For near- $A d S_{2} \times S^{2}$ and NERN we have:

$$
\begin{aligned}
C_{12}^{n+}= & \frac{i}{\pi} \frac{(I+1)(I+2)}{2 I-1} 2^{-2 I-2} \Gamma\left(-I-\frac{1}{2}\right)^{2}\left((25 I-8) \omega C_{12}^{f+}-3 I(I+1)^{2}(3 I-1) C_{34}^{f+}\right) \times \\
& \times(2 \kappa)^{i \omega / 2 \kappa} \kappa^{I+2} \omega^{I}(-i \omega / \kappa)_{I+2} \\
C_{12}^{n-}= & -\frac{i}{\pi}(I-1) I(I+1)(2 I+1) 2^{2 I} \Gamma\left(I+\frac{1}{2}\right)^{2}\left(3 \omega C_{12}^{f-}+I^{2}(I+1) C_{34}^{f-}\right) \times \\
& \times \frac{(2 \kappa)^{i \omega / 2 \kappa}}{\kappa^{I+2} \omega^{\prime}(i \omega / \kappa)_{I+2}} \\
C_{34}^{n+}= & \frac{i}{\pi} I(I+1)(I+2)(2 I+1) 2^{-2 I-2} \Gamma\left(-I-\frac{1}{2}\right)^{2}\left(3 \omega C_{12}^{f+}-I(I+1)^{2} C_{34}^{f+}\right) \times \\
& \times(2 \kappa)^{i \omega / 2 \kappa} \kappa^{\prime} \omega^{I}(-i \omega / \kappa)_{I} \\
C_{34}^{n-}= & -\frac{i}{\pi} \frac{(I-1) I}{2 I+3} 2^{2 I} \Gamma\left(I+\frac{1}{2}\right)^{2}\left((25 I+33) \omega C_{12}^{f-}+3 I^{2}(I+1)(3 I+4) C_{34}^{f-}\right) \times \\
& \times \frac{(2 \kappa)^{i \omega / 2 \kappa}}{\kappa^{\prime} \omega^{\prime}(i \omega / \kappa)_{I}} \\
& \quad C_{12}^{n \pm}=C_{1}^{n} \pm \alpha C_{2}^{n}, \quad C_{34}^{n \pm}=C_{3}^{n} \pm \beta C_{4}^{n}, \\
& C_{12}^{f \pm}=C_{1}^{f} \pm C_{2}^{f}, \quad C_{34}^{f \pm}=C_{3}^{f} \pm C_{4}^{f}, \\
\alpha= & -(2 \kappa)^{i \omega / \kappa(-i \omega / \kappa)_{l+2} /(i \omega / \kappa)_{I+2}, \beta=-(2 \kappa)^{i \omega / \kappa}(-i \omega / \kappa)_{I} /(i \omega / \kappa)_{I}}
\end{aligned}
$$

Thank you

