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What is Complexity?

(from computer science) quantifying the difficulty of carrying out a task. 

(Computational) complexity

(Circuit) complexity

Minimal number of gates for the transformation from the reference to target state

| T i = U | Ri = gngn�1 · · · g2g1| Ri
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0⟩ state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}
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Figure 3: A universal collection of quantum gates: Toffoli, Hadamard, phase-shift, ancillary, and
erasure gates.

III.2 A finite universal gate set

Restrictions must be placed on the gates from which quantum circuits may be composed if the
quantum circuit model is to be used for complexity theory—for without such restrictions it cannot
be argued that each quantum gate corresponds to an operation with unit-cost. The usual way in
which this is done is simply to fix a suitable finite set of allowable gates. For the remainder of this
article, quantum circuits will be assumed to be composed of gates from the following list:

1. Toffoli gates. Toffoli gates are three-qubit unitary gates defined by the following action on
standard basis states:

T : |a⟩ |b⟩ |c⟩ %→ |a⟩ |b⟩ |c ⊕ ab⟩ .

2. Hadamard gates. Hadamard gates are single-qubit unitary gates defined by the following
action on standard basis states:

H : |a⟩ %→ 1√
2
|0⟩ +

(−1)a

√
2

|1⟩ .

3. Phase-shift gates. Phase-shift gates are single-qubit unitary gates defined by the following
action on standard basis states:

P : |a⟩ %→ ia |a⟩ .

4. Ancillary gates. Ancillary gates are non-unitary gates that take no input and produce a single
qubit in the state |0⟩ as output.

5. Erasure gates. Erasure gates are non-unitary gates that take a single qubit as input and pro-
duce no output. Their effect is represented by the partial trace on the space corresponding
to the qubit they take as input.

The symbols used to denote these gates in quantum circuit diagrams are shown in Figure 3. Some
additional useful gates are illustrated in Figure 4, along with their realizations as circuits with
gates from the chosen basis set.
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What is Complexity?

~minimal number of gates the reference to target state

Complexity of quantum states

| T i = U | RiFor given states

Complexity is kind of distance

|0000000001i|0000000000i

does varying over Hamiltonians lead to an almost space-filling set on SU(2K)? The answer

is no; the number of parameters specifying H (the J ’s) is polynomial in K and given by

Eq. 2.10. Thus for a given k the dimension of the set covered by k-local evolution is only

slightly bigger than a 2K-dimensional subset.

On the other hand we may ask: For each Hamiltonian is the motion on the 2K-torus

ergodic? Generically the answer is yes. Ergodicity is equivalent to the incommensurability

of the energy eigenvalues, a condition which will be satisfied for almost all members of the

ensemble of J ’s.

To summarize, while the A-system is formally defined on a 4K-dimensional configura-

tion space, the e↵ective dimension of the system is actually much smaller ⇠ 2K .

In Sec. 2.1 we explained that by starting with a random time-dependent quantum

Hamiltonian, a stochastic system can be defined. That stochastic system can be thought

of as a classical stochastic version of the auxiliary system A. Reference [17] refers to such

systems as Brownian circuits. In that case, since the Hamiltonian is now time-dependent,

the motion on SU(2K) is a random walk not restricted to a torus—it fills up all 4K

dimensions and is ergodic on SU(2K).

4 Geometry of Complexity

4.1 The Distance Between Quantum States

Consider the question: how far apart are two quantum states |Ai and |Bi? The usual

measure of the distance between them is defined by

dAB = arccos |hB|Ai|. (4.1)

The distance dAB is bounded between 0 (when the two states are the same) and ⇡/2 (when

the two states are orthogonal). The metric defined by Eq. 4.1 is called the Fubini-Study

metric. It has the property that if dAB is very small then the expectation values of all

observables in the states |Ai and |Bi are very close. But this definition misses something

important. Suppose we have a very large number of qubits in a complicated pure state that

looks thermal, although it is actually pure. Now add one more qubit, either in state |0i or
state |1i. Let’s call the two states that we get this way |Ai and |Bi. They are orthogonal

so they are as far apart as possible according to Eq. 4.1. But in some sense they are not

very di↵erent; they only di↵er by the orientation of a single qubit.

14

0 ⇠ ⇡/2(close) (far)Fubini-Study distance:

“Complexity distance?”

For a given operator

Complexity of operator (unitary transformation)

U = gngn�1 · · · g2g1 ~ minimum number of gates

I U

| (n)i = gn....g3g2g1| (0)i

= u(n)| (0)i. (3.1)

Here u(n) is an element of SU(2K). Let us think of 3.1 as defining a path in the space

SU(2K). This is schematically shown in the left side of figure 4. The path begins at

The left side shows a discrete path induced by a series of gates. The right side shows a
curve induced by a Hamiltonian evolution.

Figure 4: The shaded area represents the group manifold SU(2K).

u(0) = I and ends at u(n). The rule for such paths is that every link corresponds to a gate

and therefore displaces the endpoint by a one or two qubit operator.

With these concepts in hand we can define the complexity of a unitary operator u as

the smallest number of gates of any circuit that can yield u as an outcome. That is to say,

it is the number of links of the shortest allowable path connecting I and u.

In the past, random quantum circuits have been used to model black hole evolution

[7][1] but our real interest is in continuous Hamiltonian evolution. Part of the reason

for this paper is to draw attention to an innovation of Nielsen and collaborators [5][6]

who introduced a continuum description of complexity. Their purpose was to construct

an approximation to a quantum circuit that used Hamiltonian evolution and Riemannian

geometry. However, the methods of [5][6] seems well suited to the study of Hamiltonian

systems of the kind that may represent black hole evolution.

7

This talk focuses on the complexity of operator
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Figure 1: Eternal black hole with extremal surface anchored at the boundary
time t where t runs upwards in both CFT’s (Left Figure). As time evolves
upwards, the wormhole inside black holes keeps growing linearly with respect
to time t (Right Figure).

typically scales as the exponential of the entropy [9],

tmax ⇠ eS � ttherm ⇠ (S)p , (1.1)

where p is generically some O(1) number. One of the goals in this paper is
to have a better understanding of the time evolution of the complexity in
gauge theories both qualitatively and quantitatively.

It should be clear why we want to conduct analysis in gauge theories.
Needless to say, gauge theories are a core of our modern understanding of
physics describing not only all of the non-gravitational forces in our world
but also they describe gravity too via holography. In order to apply the
notion of the complexity, rather than spin systems, we have to deal with
gauge theories. In this paper, as a first step toward understanding the time
evolution of complexity in generic gauge theories, we study the complexity in
generic discrete Abelian gauge theories in 2+1 dimensions: namely generic
ZN gauge theories on a spatial two-dimensional lattice.

The reason why we consider ZN gauge theory is to discretize the continuous
gauge group so that we can handle it as if it is a qubit system. The gauge
group is recovered to U(1) in the limit N ! 1. For the same reason, we
adopt a lattice regularization for the two-dimensional space.2 Taking into
account a gauge invariance, we may consider only physical operators for the
universal gate sets, which we will explain later, and evaluate the complexity
of the theory. Note that Z2 gauge theory is essentially the same as Kitaev’s
toric code [11].

typically scales as the entropy of the system.
2Generalization to higher dimensions, or to multiple U(1) gauge group is straightfor-

ward.

3

Fig. from [Koji, Norihiro, Sotaro: 1707.03840] 

[Susskind: 1402.5674 
 Stanford and Susskind: 1406.2678] 

1. Einstein-Rosen bridge increases even after thermalization 
2. The field theory meaning of this? complexity? 
3. Physics inside black hole?
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Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of

the eternal AdS black hole (see Fig. 1) and T is the temperature. With the Hamiltonians

HL and HR at the left and right dual CFTs, the time evolution of a TFD state

| (tL, tR)i := e
�i(tLHL+tRHR)

|TFDi (1.2)

can be characterized by the codimension-two surface at fixed times t = tL and t = tR at

the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the

complexity of | (tL, tR)i state holographically: CV(complexity=volume) conjecture and

CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.

– 2 –

As for the first equation in 1.6, one additional point is that almost all states are exponen-

tially complex. The statements about time scales for thermalization, maximum complexity,

and recurrences are assuming the actual evolution of the system is generated by what I’ll

call an easy Hamiltonian. An easy Hamiltonian is one that is a sum of simple Hermitian

operators: a simple Hermitian being one involving a small number of qubits—to be specific

one and two-qubit terms. The evolution by easy Hamiltonian is analogous to evolution be

a quantum circuit composed of simple gates.

The thing to notice is the spectacular di↵erence between the classical and quantum

maximal entropy and maximal complexity. The time ttherm is the time to achieve maxi-

mal entropy, while the time tcomp is the time to achieve maximal complexity. Quantum

mechanically those times are vastly di↵erent. What this proves is that there are subtle

changes that take place in a chaotic quantum system long after it has come to thermal

equilibrium. Complexity is a real property of a quantum state, but normally we are not

interested in it because the information that it encodes does not show up in ordinary local

properties. However, it seems that the incredibly subtle correlations encoding complexity

correspond to global unsubtle properties of the inside geometry of black holes [6][7][8][9].

Another point is that the state of a system does not become generic at the thermaliza-

tion time. It takes an exponential time to reach the complexity of a generic state. A graph

of the increase of complexity for a typical chaotic system looks like figure 1. It increases

Figure 1

linearly for a long time, but since the complexity is bounded by an exponential in K the

growth must saturate at logC ⇠ K. On the same graph the history leading up to thermal

equilibrium would occupy a tiny region shown schematically in the red circle.

6

Conjecture: complexity

Why quantum field theory?

Entanglement is not enough!
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Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of
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the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the
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CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.

– 2 –

This unsatisfactory feature motivated the second conjecture: CA conjecture [9, 10]. In

this conjecture, the complexity of a | (tL, tR)i is dual to the action in the Wheeler-DeWitt

(WDW) patch associated with tL and tR, i.e.

CA =
IWDW

⇡~ . (1.4)

The WDW patch associated with tL and tR is the collection of all space-like surface con-

necting tL and tR with the null sheets coming from tL and tR. More precisely it is the

domain of dependence of any space-like surface connecting tL and tR (see the right panel of

Fig. 1 as an example). This conjecture has some advantages compared with the CV con-

jecture. For example, it has no free parameter and can satisfy Lloyd’s complexity growth

bound in very general cases [13–15]. However, the CA conjecture has its own obstacle in

computing the action: it involves null boundaries and joint terms. Recently, this problem

has been overcome by carefully analyzing the boundary term in null boundary [16, 17].

As both the CV and CA conjectures involve the integration over infinite region, the

complexity computed by the Eqs. (1.3) and (1.4) are divergent. The divergences appearing

in the CV and CA conjectures are similar to the one in the holographic entanglement

entropy. It was shown that the coe�cients of all the divergent terms can be written as the

local integration of boundary geometry [18, 19], which is independent of the bulk stress

tensor. This result gives a clear physical meaning of the divergences in the holographic

complexity: they come from the UV vacuum structure at a given time slice and stand for

the vacuum CFT’s contribution to the complexity. One interesting thing is to consider the

contribution of excited state or thermal state to the complexity. As the divergent parts of

the holographic complexity is fixed by the boundary geometry, the contribution of matter

fields and temperature can only appear in the finite term of the complexity. This gives us

a strong motivation to study how to obtain the finite term in the complexity.

The first work regarding this finite quantity is the “complexity of formation” [20],

which is defined by the di↵erence of the complexity in a particular black hole space time

and a reference vacuum AdS space-time. By choosing a suitable vacuum space-time, we

can obtain a finite complexity of formation. However, there are two somewhat ambiguous

aspects in using “complexity of formation” to study the finite term of complexity. First,

we need to appoint additional space-time as the reference vacuum background. In general

cases, it will not be obvious how to choose the reference vacuum space-time. For example,

in Ref. [20], the reference vacuum space-time for the BTZ black hole is not the naive

limit of setting mass M = 0. Second, to make the computation about the di↵erence of

complexity at the finite cut-o↵ between two space-times meaningful, we need to appoint

a special coordinate and apply this coordinate to both space-times. For example, in the

Ref. [20], the holographic complexity of two space-time at the finite cut-o↵ is computed in

Fe↵erman-Graham coordinate [21, 22]. It will be better if we can compute the complexity

without referring to a specific coordinate system.

As the Refs. [18, 19] have shown that the divergent terms have some universal struc-

tures, a naive consideration is that, we can separate the divergent term and just discard

them. However, this may give a coordinate dependent result as we shows in the section

– 3 –

- Equation of motion 
- Free scale: ambiguity

- Boundary terms 
- Singularity

[Susskind: 1402.5674 
 Stanford and Susskind: 1406.2678] 

[Brown, Roberts, Susskind Swingle and Zhao:  
                       1509.07876, 1512.04993]
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Figure 1. Complexity=volume (CV, left) and complexity=action (CA, right) for the eternal AdS
black hole dual to the thermofield double state (1.1). In the left panel, the blue curve represents the
maximal spacelike surfaces that connects the specified time slices on the left and right boundaries.
In the right image, the shaded region is the corresponding WDW patch.

This question is the focus of the present paper. Specifically, our objective is to provide

the first steps towards defining circuit complexity in quantum field theory (QFT).1 A precise

understanding of this quantity will not only shed light on the CV and CA proposals, but

is also an interesting question deserving of study in its own right. For example, it may

also provide new insights into quantum algorithms for the simulation of quantum field

theories [28–31], or more generally into Hamiltonian complexity [32, 33], or the efficient

description of many-body wave functions [34, 35].

In computer science, the notion of computational complexity refers to the minimum

number of operations necessary to implement a given task [36, 37]. In the present context,

the task of interest will be the preparation of a state in the QFT, and we will define the

complexity in terms of a quantum circuit model. That is, we will begin with a simple

reference state |ψR⟩, and construct a unitary transformation U that produces the desired

target state |ψT⟩ via
|ψT⟩ = U |ψR⟩ . (1.4)

The unitary U will be constructed from a particular set of simple elementary or universal

gates, which can be applied sequentially to the state. When working with such discrete

operations, we should also introduce a tolerance ε so that even if we cannot achieve the

precise equality above, we may still judge the transformation to be successful when the two

states are sufficiently close to one another according to some distance measure, i.e.,

∣∣∣∣ |ψT⟩ − U |ψR⟩
∣∣∣∣2 ≤ ε . (1.5)

Of course, there will not be a unique circuit which implements the desired transforma-

tion (1.4): generally there will exist infinitely many sequences of gates which produce the

1We also refer the reader to ref. [27] for a recent complementary investigation in this direction.

– 3 –
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Figure 1. Complexity=volume (CV, left) and complexity=action (CA, right) for the eternal AdS
black hole dual to the thermofield double state (1.1). In the left panel, the blue curve represents the
maximal spacelike surfaces that connects the specified time slices on the left and right boundaries.
In the right image, the shaded region is the corresponding WDW patch.

This question is the focus of the present paper. Specifically, our objective is to provide

the first steps towards defining circuit complexity in quantum field theory (QFT).1 A precise

understanding of this quantity will not only shed light on the CV and CA proposals, but

is also an interesting question deserving of study in its own right. For example, it may

also provide new insights into quantum algorithms for the simulation of quantum field

theories [28–31], or more generally into Hamiltonian complexity [32, 33], or the efficient

description of many-body wave functions [34, 35].

In computer science, the notion of computational complexity refers to the minimum

number of operations necessary to implement a given task [36, 37]. In the present context,

the task of interest will be the preparation of a state in the QFT, and we will define the

complexity in terms of a quantum circuit model. That is, we will begin with a simple

reference state |ψR⟩, and construct a unitary transformation U that produces the desired

target state |ψT⟩ via
|ψT⟩ = U |ψR⟩ . (1.4)

The unitary U will be constructed from a particular set of simple elementary or universal

gates, which can be applied sequentially to the state. When working with such discrete

operations, we should also introduce a tolerance ε so that even if we cannot achieve the

precise equality above, we may still judge the transformation to be successful when the two

states are sufficiently close to one another according to some distance measure, i.e.,

∣∣∣∣ |ψT⟩ − U |ψR⟩
∣∣∣∣2 ≤ ε . (1.5)

Of course, there will not be a unique circuit which implements the desired transforma-

tion (1.4): generally there will exist infinitely many sequences of gates which produce the

1We also refer the reader to ref. [27] for a recent complementary investigation in this direction.

– 3 –

Fig. from [Jefferson, Myers: 1707.08570] 

CV (complexity-volume) CA (complexity-action)
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Figure 2. The complexity C(|TFD(0, tR)i, |0i) and its growth rate when d > 2. C0 is the complexity
when tR = �tc and Ċm = 2M/⇡~. Higher dimensional cases give the similar results.
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Figure 3. The complexity C(|TFD(0, tR)i, |0i) and their growth rates for the BTZ black hole. C0
is the complexity when tR = 0 and Ċm = 2M/⇡~.

directly from this expression, which reads8

d
dtR

C(|TFD(T, tR)i, |0i)

=
2M

⇡~

⇢
1 +

yd0f1(y0)

2⇡~ [ln(�f1(y0)) + 2 ln(d� 1))

�
.

(3.37)

The time evolution of the complexity C(|TFD(T, tR)i, |0i) and its growth rate are shown
in Fig. 2 and Fig. 3. We find that the relationship between the complexity and tR is not
monotonic. When tR runs from �tc to infinite, the value of complexity will first decrease
and then increase, so there is a minimal value. For the case that tR ! �tc, we have

8When this paper was finished, Ref. [23] appeared which also studied the complexity growth rate. Our
result Eq. (3.37) is the same as Eq. (E.9) in Ref. [23].
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Figure 5. The values of C(|TFD(T, tL + tR)i, |0i) and its growth rate when d = 2, 3, 4, 5. The
higher dimensions give similar results. C0 is the complexity when tL + tR = 0 and Ċf is the Lioyd’s
bound of growth rate, which is given by Eq. (3.58).

The time evolution of the complexity C(|TFD(T, tL + tR)i, |0i) and its growth rate are
shown in Fig. 5 where the relationship between the complexity and tL + tR is monotonic
contrary to the CA case.

In the early time limit (t̃B ! 0 or 0 ! 0 ), we have

t̃B = �sin d0
2

Z
⇢1

0

d⇢
⇣
cosh d⇢

2

⌘ 2
d
sinh2 d⇢

2

, (3.53)

so the complexity C(|TFD(T, tL + tR)i, |0i) can be written as

C(|TFD(T, tL + tR)i, |0i) = CV,ren + 4⇡�2,d`
2
AdS

=
⌃̃d�1`dAdS

`

 p
⇡(d� 2)�(1 + 1

d
)

(d� 1)�(12 + 1
d
)

+
r2
h
d2�(12 + 1

d
)

8`4
AdS

p
⇡�(1

d
)
(tL + tR)

2 + . . .

!
+ 4⇡�2,d`

2
AdS

/`.

(3.54)

At tL + tR = 0,

C(|TFD(T, 0)i, |0i) =
d
p
⇡(d� 2)�(1 + 1

d
)

⇡2(d� 1)�(12 + 1
d
)

M

~T +
(d� 1)`AdS

⇡~ �2,d , (3.55)

where we use Eq. (3.9) and take the length scale `/`AdS = 4⇡2~/(d� 1).

In the late time limit (t̃B ! 1 or 0 ! m = ⇡

2d ), the renormalized complexity (3.49)
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As for the first equation in 1.6, one additional point is that almost all states are exponen-

tially complex. The statements about time scales for thermalization, maximum complexity,

and recurrences are assuming the actual evolution of the system is generated by what I’ll

call an easy Hamiltonian. An easy Hamiltonian is one that is a sum of simple Hermitian

operators: a simple Hermitian being one involving a small number of qubits—to be specific

one and two-qubit terms. The evolution by easy Hamiltonian is analogous to evolution be

a quantum circuit composed of simple gates.

The thing to notice is the spectacular di↵erence between the classical and quantum

maximal entropy and maximal complexity. The time ttherm is the time to achieve maxi-

mal entropy, while the time tcomp is the time to achieve maximal complexity. Quantum

mechanically those times are vastly di↵erent. What this proves is that there are subtle

changes that take place in a chaotic quantum system long after it has come to thermal

equilibrium. Complexity is a real property of a quantum state, but normally we are not

interested in it because the information that it encodes does not show up in ordinary local

properties. However, it seems that the incredibly subtle correlations encoding complexity

correspond to global unsubtle properties of the inside geometry of black holes [6][7][8][9].

Another point is that the state of a system does not become generic at the thermaliza-

tion time. It takes an exponential time to reach the complexity of a generic state. A graph

of the increase of complexity for a typical chaotic system looks like figure 1. It increases

Figure 1

linearly for a long time, but since the complexity is bounded by an exponential in K the

growth must saturate at logC ⇠ K. On the same graph the history leading up to thermal

equilibrium would occupy a tiny region shown schematically in the red circle.

6

CV (TFD)  CA (TFD)

Circuit complexity 
(discrete quantum circuit)

Complexity in QFT

Comparisons for duality [Yang, Niu, Zhang, KK: 1710.00600]

See also [Carmi, Chapman Marrochio,  
Myers, and Sugishita: 1709.10184] 

For holographic  
conjectures:  

The reference state  
is not clear
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Why Axiomatic?

Axiomatic complexity in quantum field theory

Instead of quantum circuits gauge/gravity duality
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Continuous case: Nielsen’s idea
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| (n)i = gn....g3g2g1| (0)i

= u(n)| (0)i. (3.1)

Here u(n) is an element of SU(2K). Let us think of 3.1 as defining a path in the space

SU(2K). This is schematically shown in the left side of figure 4. The path begins at

The left side shows a discrete path induced by a series of gates. The right side shows a
curve induced by a Hamiltonian evolution.

Figure 4: The shaded area represents the group manifold SU(2K).

u(0) = I and ends at u(n). The rule for such paths is that every link corresponds to a gate

and therefore displaces the endpoint by a one or two qubit operator.

With these concepts in hand we can define the complexity of a unitary operator u as

the smallest number of gates of any circuit that can yield u as an outcome. That is to say,

it is the number of links of the shortest allowable path connecting I and u.

In the past, random quantum circuits have been used to model black hole evolution

[7][1] but our real interest is in continuous Hamiltonian evolution. Part of the reason

for this paper is to draw attention to an innovation of Nielsen and collaborators [5][6]

who introduced a continuum description of complexity. Their purpose was to construct

an approximation to a quantum circuit that used Hamiltonian evolution and Riemannian

geometry. However, the methods of [5][6] seems well suited to the study of Hamiltonian

systems of the kind that may represent black hole evolution.

7

[Susskind and Zhao: 1408.2823]
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0⟩ state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}

10

Continuous case: Nielsen’s idea

Susskind and collaborators 
• introduced Nielsen’s idea introduced to hep-th in 2014 
• have been developing the theory of complexity in QFT  

based on intuitions from circuit complexity
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Why Axiomatic?

Axiomatic complexity in quantum field theory

Instead of quantum circuits gauge/gravity duality

• extract some general axioms for complexity  
from properties of computational (circuit) complexity 

• take into account properties of QFT, 
some of which may not be compatible with circuit complexity 
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Final result

5.2 Geodesics and complexity of SU(n) operators

Even though we have the precise Finsler metric, to compute the complexity, we still have
to find a geodesic path as shown in (3.6). This minimization procedure is greatly simplified
thanks to bi-invariance, (4.17). It has been shown that the curve c(s) is a geodesic if and
only if there is a constant generator H(s) = H̄ such that [24, 25]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.8)

With the condition Ô = c(1) = exp(H̄), we can solve H̄ formally H̄ = ln Ô. The logarithm
of a unitary operator always exists but may not be unique (theorem 1.27 in Ref. [26]).
Because H̄ is constant, from Eqs. (3.4) ,

L[c] = F̃ (H̄) = Tr
p
H̄H̄† . (5.9)

Finally, the complexity of Ô in Eq. (3.6) is given by

C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} , (5.10)

The minimization ‘min’ in (3.6) in the sense of ‘geodesic’ is already taken care of in (5.8).
Here ‘min’ means the minimal value due to multi-valuedness of ln Ô.

For example, let us consider the SU(2) group in its fundamental representation. For
any operator Ô 2SU(2), there is a unit vector ~n and a real number ✓ such that,

Ô = exp(i✓~n · ~�) = Î cos ✓ + i(~n · ~�) sin ✓ , (5.11)

where ~� := (�x,�y,�z) stands for three Pauli matrixes. Because ln Ô = i✓m~n · ~� with

✓m = arccos[Tr(Ô)/2] + 2m⇡ , (5.12)

for 8m 2 N, the complexity of Ô is given by

C(Ô) = 2 arccos[Tr(Ô)/2] , (5.13)

where H̄H̄† = ✓2mÎ is used.

6 Properties of complexity in SU(n) group

6.1 Complexity of principle

The fact that the process of complexity is generated by a constant generator allows an
interesting interpretation of the Schrödinger’s equation. In a quantum system with a time-
independent Hamilton H, the time evolution of the quantum state | (t)i is given by a time
evolution operator Û(t), i.e. | (t)i = Û(t)| (0)i, where Û(t) satisfies the Schrödinger’s
equation,

d
dt

Û(t) = �i~�1HÛ(t), Û(0) = Î . (6.1)

– 15 –

Complexity of SU(n) operator

4 general axioms + 2 symmetries of QFT
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General axioms 

Finsler geometry from general axioms 

Constrain the geometry by QFT symmetry 

Complexity for SU(n) operator

Outline
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# gates of 

2x̂

+ 

# gates of # gates of 

1̂x

2x̂

1
ˆ

1̂x

2
ˆ

Figure 1. Schematic diagram for the complexity of the Cartesian product. As two operators x̂1

and x̂2 are simulated independently, the minimally required gates for (x̂1, x̂2) is the sum of the
minimally required gates for x̂1 and x̂2. Thus, we have C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)).

approximate operator Ô1,2 = (Ô1, Ô2), we have to build two individual quantum systems
to approximate Ô1 and Ô2 respectively.3 Thus, if we use quantum circuits to approximate
it, the minimal required gates to realize (Ô1, Ô2) is the summation of the minimal required
gates to realize Ô1 and Ô2,

C((Ô1, Ô2)) = C((Ô1, Î2)) + C((Î1, Ô2)) = C(Ô1) + C(Ô2) ,

where C((Ô1, Î2)) = C(Ô1) and C((Î1, Ô2)) = C(Ô2). This rule is shown schematically in
Fig. 1.

One may worry about the self-consistency between the G2 and G3 and argue that we
can only require C((Ô1, Ô2))  C(Ô1)+C(Ô2), as there may be other operators {Ôa, Ô0

a, Ôb, Ô0
b
}

to satisfiy (Ôa, Ô0
a)(Ôb, Ô0

b
) = (Ô1, Ô2) but the total gates is less than C(Ô1)+C(Ô2). How-

ever, this is impossible. One can see that the sum of the minimal gates of {Ôa, Ô0
a, Ôb, Ô0

b
} is

C(Ôa)+C(Ô0
a)+C(Ôb)+C(Ô0

b
). But according to the fact that ÔaÔ0

a = Ô1 and ÔbÔ0
b
= Ô2,

we see that
C(Ôa) + C(Ô0

a) + C(Ôb) + C(Ô0
b) � C(Ô1) + C(Ô2).

Thus, C(Ô1) + C(Ô2) is the minimal gates to obtain (Ô1, Ô2).

3 Complexity and Finsler manifolds

In this section, we show that the Finsler metric arises from the minimal and general axioms
for the complexity G1-G3 and the smoothness of the complexity. From here, the group
element may repent either an abstract object or a faithful representation, which will be
understood by context.

3
This is different from the case that we combine two subsystem by the tensor product (direct product).

For example, for the tensor product operator Ô1 ⌦ Ô2, it is possible to obtain it by other operators, for

example Ô3 ⌦ Ô4 but Ô3 6= Ô1 and Ô4 6= Ô2.

– 5 –

Three axioms for the complexity

2.2 Definitions and axioms

[Need to add brief explanation on the definition of the circuit complexity ADN compu-
tational complexity because all our axioms are based on them. Please omit my "kind of
distance" argument, if you don’t want to mention "distance" concept at this stage.]

Intuitively speaking, the complexity of an operator is a minimal ‘cost’ to build an
operator from the identity. Or it is a kind of minimal ‘distance’ between a given operator
and the identity. Based on this intuitive concept of the complexity of operators and inspired
by the complexity in quantum circuit, we propose that the complexity defined in an arbitrary
monoid O should satisfy the following three axioms. We denote a complexity of an operator
x̂ in an operators set O by C(x̂).

G1 [Nonnegativity ] 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 [Series decomposition rule (triangle inequality)] 8x̂, ŷ 2 O, C(x̂ŷ)  C(x̂) + C(ŷ).

G3 [Parallel decomposition rule] 8(x̂1, x̂2) 2 O1 ⇥O2 ✓ O,
C
�
(x̂1, x̂2)

�
= C

�
(x̂1, Î2)

�
+ C

�
(Î1, x̂2)

�
.

Here, in G3, we consider the case that there is a sub-monoid N ✓ O which can be de-
composed into the Cartesian product of two monoids, i.e., N = O1 ⇥ O2. Î1 and Î2
are the identities of O1 and O2. The Cartesian product of two monoids implies that
(x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary (x̂1, x̂2), (ŷ1, ŷ2) 2 N .

The axiom G1 is obvious by definition. We call the axiom G2 “series decomposition
rule” because the decomposition of the operator Ô = x̂ŷ to x̂ and ŷ is similar to the
decomposition of a big circuit into a series of small circuits. Reversely, the ‘product’ of
two operators corresponds to a serial connection of two circuits. The axiom G2 answers
a basic question: what is the relationship between the complexities of two operators and
the complexity of their products? Because the complexity is a kind of distance, we require
a “triangle inequality”, which is G2. For this reason G2 is also usually called “triangle
inequality”. 2

In contrast to G2 (series decomposition rule), we call the axiom G3 “parallel decompo-
sition rule”. This concept of this axiom is proposed in this paper for the first time. It comes
from the following fundamental question: if an operator (task) Ô contains two totally inde-
pendent sub-operators (sub-tasks) x̂1 and x̂2, what should be the relationship between the
total complexity and the complexities of two sub-operators (sub-tasks)? Here, the totally
independent means that: (a) Ô needs two inputs and gives out two outputs corresponding
to x̂1 and x̂2, and (b) the inputs for x̂1 (or x̂2) will never effect the outputs of x̂2 (or x1).
See Fig. 2 for this explanation.

Mathematically, the construction of a bigger operator Ô by x̂1 and x̂2 under two re-
quirements (a) and (b) corresponds to the Cartesian product denoted by Ô = (x̂1, x̂2). Note
that the Cartesian product of two monoids does not correspond to the tensor product in

2
Maybe omit the following blue part: The reason about why axiom G2 should be hold has been explained

clearly in the Nielson’ works [10–12]. We will show that it is because of G2 we can obtain a kind of “triangle

inequality” (see F3 in the Sec. 3). Thus, the axiom G2 is also usually called “triangle inequality”.
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0⟩ state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}
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1Ô

2Ô3Ô
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

– 6 –
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Fourth axiom for the complexity: smoothness
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Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0⟩ state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.
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{Rn : n ∈ N}
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element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:
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n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
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Ôn = c(sn) = �Ô(r)
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be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
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Ôn = c(sn) = �Ô(r)
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ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:
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n �Ô(r)

n�1 · · · �Ô
(r)
2 �Ô(r)
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(l)
n , (3.3)
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n �Ô(r)

n�1 · · · �Ô
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Ô

1ÔG
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4ÔG

5ÔG
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the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
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0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)
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(l)
n , (3.3)
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the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,

– 6 –

Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
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approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
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there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
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Ôn = �Ô(l)
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0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)
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should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
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(l)
n (3.7)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
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Fourth axiom for the complexity: smoothness
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3ÔG

1Ô
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understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:
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(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
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same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1

after the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0.
For the former, a new operator is added to the left side of the original circuit while for the
latter, a new operator is added to the right. The previous works such as Refs. [10–12, 17]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
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c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn
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ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
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should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
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This curve can be approximated by discrete forms:
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where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ =

r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of
the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
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be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
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the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
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↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
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ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:
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n Ôn�1 = Ôn�1�Ô
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where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
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the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
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Ôn = c(sn) = �Ô(r)
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(l)
n , (3.3)
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Fourth axiom for the complexity: smoothness

N ! 1

Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)
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n Ôn�1 = Ôn�1�Ô
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n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
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The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1

after the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0.
For the former, a new operator is added to the left side of the original circuit while for the
latter, a new operator is added to the right. The previous works such as Refs. [10–12, 17]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
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(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
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the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1

after the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0.
For the former, a new operator is added to the left side of the original circuit while for the
latter, a new operator is added to the right. The previous works such as Refs. [10–12, 17]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

– 6 –

Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
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The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
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approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
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n Ôn�1 = Ôn�1�Ô
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ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):
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the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
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assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
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R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:
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(l)
n , (3.3)
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where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
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0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ =

r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of
the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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n = exp[H↵(sn)�s] with ↵ =

r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of
the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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element may repent either an abstract object or a faithful representation, which will be
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We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô
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n , (3.3)
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where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).
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Fourth axiom for the complexity: smoothness

N ! 1

Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.
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n or only
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Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
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In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:
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Ambiguity • same curve but different length  
• The ambiguity will disappear  

if we consider symmetry of QFT
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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Properties of geometric structure

Axioms of 
Complexity

By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)
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Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F1 (Nonnegativity) F̃ (H↵) � 0 and F̃ (H↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H↵) = �F̃ (H↵)

F3 (Triangle inequality) F̃ (H↵,1) + F̃ (H↵,2) � F̃ (H↵,1 +H↵,2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F10 (Nonnegativity) F↵(c, ċ) � 0 and F↵(c, ċ) = 0 iff ċ = 0

F20 (Positive homogeneity) 8� 2 R+, we have F↵(c,�ċ) = �F↵(c, ċ)

F30 (Triangle inequality) F↵(c, ċ1) + F↵(c, ċ2) � F↵(c, ċ1 + ċ2)

Thus, here we introduce a standard notation for the Finsler metric ‘F↵(c, ċ)’ . See
Refs. [13, 14] for an introduction to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
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Properties of geometric structure

Axioms of 
Complexity

By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ =

r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of
the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1

after the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0.
For the former, a new operator is added to the left side of the original circuit while for the
latter, a new operator is added to the right. The previous works such as Refs. [10–12, 17]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

– 6 –

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
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It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Refs. [13, 14] for an introduction to the Finsler geometry and Minkowski norm .
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Properties of geometric structure

Axioms of 
Complexity

By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
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quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ =
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physical reason for that particular choice.
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ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:
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the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1
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For the former, a new operator is added to the left side of the original circuit while for the
latter, a new operator is added to the right. The previous works such as Refs. [10–12, 17]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
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Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.)
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F2 (Positive homogeneity) 8� 2 R+, F̃ (�H↵) = �F̃ (H↵)

F3 (Triangle inequality) F̃ (H↵,1) + F̃ (H↵,2) � F̃ (H↵,1 +H↵,2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F10 (Nonnegativity) F↵(c, ċ) � 0 and F↵(c, ċ) = 0 iff ċ = 0

F20 (Positive homogeneity) 8� 2 R+, we have F↵(c,�ċ) = �F↵(c, ċ)

F30 (Triangle inequality) F↵(c, ċ1) + F↵(c, ċ2) � F↵(c, ċ1 + ċ2)

Thus, here we introduce a standard notation for the Finsler metric ‘F↵(c, ċ)’ . See
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C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)
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know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
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By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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smooth function of H↵ 6= 0 and �s � 0, i.e.,
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G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
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ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ =

r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of
the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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to the Finsler geometry and Minkowski norm .
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Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
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Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F1 (Nonnegativity) F̃ (H↵) � 0 and F̃ (H↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H↵) = �F̃ (H↵)

F3 (Triangle inequality) F̃ (H↵,1) + F̃ (H↵,2) � F̃ (H↵,1 +H↵,2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F10 (Nonnegativity) F↵(c, ċ) � 0 and F↵(c, ċ) = 0 iff ċ = 0

F20 (Positive homogeneity) 8� 2 R+, we have F↵(c,�ċ) = �F↵(c, ċ)

F30 (Triangle inequality) F↵(c, ċ1) + F↵(c, ċ2) � F↵(c, ċ1 + ċ2)
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that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
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Riemannian and Finsler Geometry

Riemannian geometry

Cost (Length)

This work gives a theoretical foundation for circuit complexity in continuous system,
and also gives some possible and interesting connections to quantum mechanics, classi-
cal/quantum chaos, and quantum field theories in fundamental level. In this paper, we
have strictly clarified some interesting results only based our a few of basic assumptions.
These interesting results were expected to appear in a well defined complexity but they
were only proposed as some conjectures before and needed to refer to AdS/CFT correspon-
dence. As the computation methods given by us can be used in many physical interesting
situations, it is very interesting to see what new results we can obtain in the future in-
vestigations. Ref. [? ] shows that Einstein equation can be obtained from proposal that
modified complexity of a 2D CFT is given by classical on-shell Liouville action Scl

L [�]. This
paper has shown that the modified complexity in fact equals to partition function with
one-side boundary condition rather than classical on-shell action. Inspired by the result of
Ref. [? ], it is also very interesting to try if we could find a few of clues about quantum
gravity from the complexity.

A Some foundations of Finsler manifolds

This appendix will list a few of basic conceptions in the Finsler geometry. We will not
try to give the complete introduction on Finsler geometry, so only the conceptions used in
this paper will be involved. The readers can find more detains in some textbooks such as
Refs. [? ? ? ] and a physically friendly introduction in Ref. [? ].

1. Fundamentals

Suppose that M is an n-dimensional smooth manifold and TM is its tangent bundle.
Each element of TM is given by (xi, vi), where xi 2 M and vi 2 TxM . In this appendix,
x, y will be used to stand the points in M and u, v will be used to stand for the tangent
vectors at some points in M . For convenience, sometimes their indexes will be dropped if
without ambiguous. A Finsler metric of M is a function F : TM 7! [0,1) such that:
(1) F is smooth on TM \ {·, 0};
(2) F (x,�v) = �F (x, v) for arbitrary � > 0;
(3) The fundamental tensor (metric) gij(x, v) := (1/2)@2F 2(x, v)/@vi@vj is positive defi-
niteness when v 6= 0.
The manifold M with a Finsler metric F is called a Finsler manifold.

It needs to be noted that the metric tensor gij(x, v) is defined in the tangent bundle
TM rather than the manifold M , which is the essential difference between a general Finsler
manifold and Riemannian manifold. The Finsler metric F and the metric tensor gij has
following simple relationship,

dl =
q
gij(x)ẋiẋjds =

q
gij(x)vivjds = F (x, v)ds . (A.1)

dl =
q

gij(x)vivjds = F (x, ẋ)ds . (A.2)

F 2(x, v) = gij(x)v
ivj . (A.3)
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q

gij(x, v)vivjds = F (x, v)ds . (A.2)

dl =
q

gij(x)vivjds = F (x, ẋ)ds . (A.3)
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F 2(x, v) = gij(x)v
ivj . (A.4)

F 2(x, v) = gij(x, v)v
ivj . (A.5)

gij =
@2

@vi@vj
F 2

2
(A.6)

F (x, v) =
q
(v1)2 + (v2)2 +

p
(v1)4 + (v2)4 (A.7)

Assume that x = x(t) is a curve in M . Then its line element in Finsler manifold is
given similar to Riemannian manifold such that

ds :=
q
gij(x, ẋ)ẋiẋjdt = F (x, ẋ)dt . (A.8)

If the metric gij(x, v) is independent of v, then the Finsler manifold degenerates into Rie-
mannian manifold. To describe how far way the Finsler manifold deviates from Riemannian
manifold, we can introduce the Cartan’s tensor, which is a fully symmetric covariant tensor
fields and defined as3,

Aijk(x, v) =
1

2

@

@vk
gij(x, v) =

1

4

@3F 2(x, v)

@vi@vj@vk
. (A.9)

Thus, a Finsler manifold is a Riemannian manifold if and only if its Cartan tensor is zero.
The contraction of Cartan tensor and metric is the Cartan form,

⌘k(x, v) := gij(x, v)Aijk(x, v) (A.10)

Here gij(x, v) is the inverse of gij(x, v). Cartan tensor has two important properies

u = v ) Aijk(x, v)u
j = 0, ⌘k = 0 , Aijk = 0 . (A.11)

2. Coordinate transformations

Now consider a coordinate transformation xi ! x̃i = x̃i(x). This coordinate transformation
in M leads a transformation in tangent space such that ṽi = (@x̃i/@xj)vj . This property
leads to following transformation rules on tangent bundle T (TM),

@

@x̃i
=

@xj

@x̃i
@

@xj
+

@2xj

@x̃i@x̃k
ṽk

@

@vj
,

@

@ṽi
=

@xj

@x̃i
@

@vj
(A.12)

We see that the @/@vi obeys the tensor transformation rule but @/@xi does not!. To define
a covariant basis, let’s introduce the formal Christoffel symbols

�ijk(x, v) =
1

2
gil

✓
@gjl
@xk

+
@gkl
@xj

�
@gjk
@xl

◆
. (A.13)

The nonlinear connection coefficients are,

N i
j(x, v) = �ijkv

k �Ai
jl�

l
nmvnvm =

1

2

@Gi

@vj
. (A.14)

3
In some textbook, there is factor F so that the Cartan tensor is scale invariant under the transformation

v ! �v
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Thus, a Finsler manifold is a Riemannian manifold if and only if its Cartan tensor is zero.
The contraction of Cartan tensor and metric is the Cartan form,

⌘k(x, v) := gij(x, v)Aijk(x, v) (A.10)

Here gij(x, v) is the inverse of gij(x, v). Cartan tensor has two important properies

u = v ) Aijk(x, v)u
j = 0, ⌘k = 0 , Aijk = 0 . (A.11)

2. Coordinate transformations

Now consider a coordinate transformation xi ! x̃i = x̃i(x). This coordinate transformation
in M leads a transformation in tangent space such that ṽi = (@x̃i/@xj)vj . This property
leads to following transformation rules on tangent bundle T (TM),
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We see that the @/@vi obeys the tensor transformation rule but @/@xi does not!. To define
a covariant basis, let’s introduce the formal Christoffel symbols
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Metric tensor
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Assume that x = x(t) is a curve in M . Then its line element in Finsler manifold is
given similar to Riemannian manifold such that

ds :=
q

gij(x, ẋ)ẋiẋjdt = F (x, ẋ)dt . (A.8)

If the metric gij(x, v) is independent of v, then the Finsler manifold degenerates into Rie-
mannian manifold. To describe how far way the Finsler manifold deviates from Riemannian
manifold, we can introduce the Cartan’s tensor, which is a fully symmetric covariant tensor
fields and defined as3,
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Thus, a Finsler manifold is a Riemannian manifold if and only if its Cartan tensor is zero.
The contraction of Cartan tensor and metric is the Cartan form,

⌘k(x, v) := gij(x, v)Aijk(x, v) (A.10)

Here gij(x, v) is the inverse of gij(x, v). Cartan tensor has two important properies

u = v ) Aijk(x, v)u
j = 0, ⌘k = 0 , Aijk = 0 . (A.11)

2. Coordinate transformations

Now consider a coordinate transformation xi ! x̃i = x̃i(x). This coordinate transformation
in M leads a transformation in tangent space such that ṽi = (@x̃i/@xj)vj . This property
leads to following transformation rules on tangent bundle T (TM),
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We see that the @/@vi obeys the tensor transformation rule but @/@xi does not!. To define
a covariant basis, let’s introduce the formal Christoffel symbols
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F (x, v) =
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(v1)2 + (v2)2 +

p
(v1)4 + (v2)4 (A.7)

Assume that x = x(t) is a curve in M . Then its line element in Finsler manifold is
given similar to Riemannian manifold such that

ds :=
q
gij(x, ẋ)ẋiẋjdt = F (x, ẋ)dt . (A.8)

If the metric gij(x, v) is independent of v, then the Finsler manifold degenerates into Rie-
mannian manifold. To describe how far way the Finsler manifold deviates from Riemannian
manifold, we can introduce the Cartan’s tensor, which is a fully symmetric covariant tensor
fields and defined as3,

Aijk(x, v) =
1
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gij(x, v) =

1

4
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Thus, a Finsler manifold is a Riemannian manifold if and only if its Cartan tensor is zero.
The contraction of Cartan tensor and metric is the Cartan form,

⌘k(x, v) := gij(x, v)Aijk(x, v) (A.10)

Here gij(x, v) is the inverse of gij(x, v). Cartan tensor has two important properies

u = v ) Aijk(x, v)u
j = 0, ⌘k = 0 , Aijk = 0 . (A.11)

u = v ) Aijk(x, v)v
j = 0, ⌘k = 0 , Aijk = 0 . (A.12)

2. Coordinate transformations

Now consider a coordinate transformation xi ! x̃i = x̃i(x). This coordinate transformation
in M leads a transformation in tangent space such that ṽi = (@x̃i/@xj)vj . This property
leads to following transformation rules on tangent bundle T (TM),

@
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@xj
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We see that the @/@vi obeys the tensor transformation rule but @/@xi does not!. To define
a covariant basis, let’s introduce the formal Christoffel symbols
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In some textbook, there is factor F so that the Cartan tensor is scale invariant under the transformation
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds (3.5)

L↵[c] =

Z 1

0
F̃ (H↵(s))ds =

Z 1

0
F↵(c, ċ)ds =:

Z 1

0
dl↵ . (3.6)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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for Reimannian geometry
Aijk = 0

property:

Example

Finsler geometry is just Riemannian geometry without the quadratic restriction

Finsler metric
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Finsler Geometry: historical remarks

( F is positively homogeneous of degree 1 in dxn )

L =

Z
dl dl = F(x1, · · · , xn; dx1, · · · , dxn)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F1 (Nonnegativity) F̃ (H↵) � 0 and F̃ (H↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H↵) = �F̃ (H↵)

F3 (Triangle inequality) F̃ (H↵,1) + F̃ (H↵,2) � F̃ (H↵,1 +H↵,2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F10 (Nonnegativity) F↵(c, ċ) � 0 and F↵(c, ċ) = 0 iff ċ = 0

F20 (Positive homogeneity) 8� 2 R+, we have F↵(c,�ċ) = �F↵(c, ċ)

F30 (Triangle inequality) F↵(c, ċ1) + F↵(c, ċ2) � F↵(c, ċ1 + ċ2)

Thus, here we introduce a standard notation for the Finsler metric ‘F↵(c, ċ)’ . See
Refs. [13, 14] for an introduction to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We

– 10 –

F2 is necessary for reparametrization invariance 

The concept was first appeared In 1854
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Finsler Geometry: historical remarks

1854: Riemann, “Habilitation” address

“The study of metric which is the fourth root of a quartic 
differential form is quite time-consuming and does not throw 
new light to the problem.”

1918 : Palu Finsler’s thesis

( F is positively homogeneous of degree 1 in dxn )

On the hypotheses, which lie at the Foundations of Geometry
“Uber die Hypotheser welche der geometric zugrund liegen". 

L =

Z
dl

F2(x, dx) = gij(x, ẋ)dx
idxj

F2(x, dx) = gij(x)dx
idxj

dl = F(x1, · · · , xn; dx1, · · · , dxn)

F 2(x, v) = gij(x)v
ivj . (A.4)

F 2(x, v) = gij(x, v)v
ivj . (A.5)

gij =
@2

@vi@vj
F 2

2
(A.6)

F (x, v) =
q
(v1)2 + (v2)2 +

p
(v1)4 + (v2)4 (A.7)

Assume that x = x(t) is a curve in M . Then its line element in Finsler manifold is
given similar to Riemannian manifold such that

ds :=
q
gij(x, ẋ)ẋiẋjdt = F (x, ẋ)dt . (A.8)

If the metric gij(x, v) is independent of v, then the Finsler manifold degenerates into Rie-
mannian manifold. To describe how far way the Finsler manifold deviates from Riemannian
manifold, we can introduce the Cartan’s tensor, which is a fully symmetric covariant tensor
fields and defined as3,

Aijk(x, v) =
1

2

@

@vk
gij(x, v) =

1

4

@3F 2(x, v)

@vi@vj@vk
. (A.9)

Thus, a Finsler manifold is a Riemannian manifold if and only if its Cartan tensor is zero.
The contraction of Cartan tensor and metric is the Cartan form,

⌘k(x, v) := gij(x, v)Aijk(x, v) (A.10)

Here gij(x, v) is the inverse of gij(x, v). Cartan tensor has two important properies

u = v ) Aijk(x, v)u
j = 0, ⌘k = 0 , Aijk = 0 . (A.11)

2. Coordinate transformations

Now consider a coordinate transformation xi ! x̃i = x̃i(x). This coordinate transformation
in M leads a transformation in tangent space such that ṽi = (@x̃i/@xj)vj . This property
leads to following transformation rules on tangent bundle T (TM),

@
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@xj

@x̃i
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@xj
+

@2xj

@x̃i@x̃k
ṽk

@

@vj
,
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(A.12)

We see that the @/@vi obeys the tensor transformation rule but @/@xi does not!. To define
a covariant basis, let’s introduce the formal Christoffel symbols

�ijk(x, v) =
1

2
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@xk
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@gkl
@xj

�
@gjk
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The nonlinear connection coefficients are,

N i
j(x, v) = �ijkv

k �Ai
jl�

l
nmvnvm =

1

2

@Gi

@vj
. (A.14)

3
In some textbook, there is factor F so that the Cartan tensor is scale invariant under the transformation

v ! �v
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Proof of F1

Axioms of 
Complexity

Properties of 
Geometric 
Structure

By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,
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G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX
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0
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G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
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C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only
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n , as
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0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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In a more general context, geometrizing the complexity in continuous operators sets
amounts to giving positive homogeneous norms in some Lie algebras. Our paper deals
with only SU(n) group so we gives the norm for Lie algebra su(n). For more general Lie
algebra g, though we cannot determine the norm uniquely, it is natural that such a norm
is determined only by the properties of g, for example the structure constants, without any
other extra information. As in general relativity where the spacetime metric is determined
by matters distribution through Einstein’s equations, can we find any physical equation to
determine this norm?

Acknowledgments

The work of K.-Y. Kim and C. Niu was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT & Future Planning(NRF- 2017R1A2B4004810) and GIST Research Insti-
tute(GRI) grant funded by the GIST in 2018. C.Y. Zhang is supported by National Post-
doctoral Program for Innovative Talents BX201600005.

A Proof for the Finsler metrics of F↵(c, ċ, w↵)

In this appendix, we first show three properties F1-F3 of F̃ implied by the general ax-
ioms G1, G2 and the assumption (3.8). F1-F3 readily show that the Finsler geometry
F↵(c, ċ, w↵) emerges. For convenience, we will omit the index ↵ and the variable w↵ and
use F̃ (H) to stand for F̃↵(H↵, w↵).
F̃↵(H↵, w↵) ! F̃ (H)

F1: 8H 2 su(n), F̃ (H) � 0 and F̃ (H) = 0 , H = 0.
Proof:
1� If H = 0, exp(Hs) = Î so C(exp(Hs)) = 0 for 8s 2 [0, 1] by G1.
Thus, F̃ (H) = lims!0+ C(exp(Hs))/s = 0 by (3.8). ⇤
2� If H 6= 0, 9� > 0 such that exp(H�) 6= Î so by G1

0 < C(exp(H�)) = C((exp(H�/N))N )  NC(exp(H�/N)) = �
C[exp(H")]

"
= �F̃ (H) ,

where N 2 N+. By G2 we have the following inequality

C[(exp(H�/N))N ]  NC[exp(H�/N)] .

Thus,
0 < lim

N!1
C[(exp(H�/N))N ]  lim

N!1
NC[exp(H�/N)] . (A.1)

With " := �/N , Eq. (A.1) means

0 < lim
"!0+

�
C[exp(H")]

"
= �F̃ (H) , (A.2)

where F̃ is defined in (3.8). Thus, F̃ (H) > 0. ⇤
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By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.

– 9 –

G4

Acknowledgments

The work of K.-Y. Kim and C. Niu was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT & Future Planning(NRF- 2017R1A2B4004810) and GIST Research Insti-
tute(GRI) grant funded by the GIST in 2018. C.Y. Zhang is supported by National Post-
doctoral Program for Innovative Talents BX201600005.

A Proof for the Finsler metrics of F↵(c, ċ, w↵)

In this appendix, we first show three properties F1-F3 of F̃ implied by the general ax-
ioms G1, G2 and the assumption (3.8). F1-F3 readily show that the Finsler geometry
F↵(c, ċ, w↵) emerges. For convenience, we will omit the index ↵ and the variable w↵ and
use F̃ (H) to stand for F̃↵(H↵, w↵).

F1: 8H 2 su(n), F̃ (H) � 0 and F̃ (H) = 0 , H = 0.
Proof:
1� If H = 0, exp(Hs) = Î so C(exp(Hs)) = 0 for 8s 2 [0, 1] by G1. Thus, F̃ (H) =

lims!0+ C(exp(Hs))/s = 0 by (3.8). ⇤
2� If H 6= 0, 9� > 0 such that exp(H�) 6= Î so by G1

0 < C(exp(H�)) = C((exp(H�/N))N ) ,

where N 2 N+. By G2 we have the following inequality

C[(exp(H�/N))N ]  NC[exp(H�/N)] .

Thus,
0 < lim

N!1
C[(exp(H�/N))N ]  lim

N!1
NC[exp(H�/N)] . (A.1)

With " := �/N , Eq. (A.1) means

0 < lim
"!0+

�
C[exp(H")]

"
= �F̃ (H) , (A.2)

where F̃ is defined in (3.8). Thus, F̃ (H) > 0. ⇤

F2: 8� 2 R+, F̃ (�H) = �F̃ (H).
Proof: By (3.8), for an arbitrary generator H and infinitesimal parameter " > 0

C(exp(H")) = F̃ (H)"+O("2) . (A.3)

For an arbitrary � > 0,
C(exp(�H · ")) = C(exp(H · �")) , (A.4)

which implies F̃ (�H) = �F̃ (H) by Eq. (A.3). ⇤
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F2: 8� 2 R+, F̃ (�H) = �F̃ (H).
Proof: By (3.8), for an arbitrary generator H and infinitesimal parameter " > 0

C(exp(H")) = F̃ (H)"+O("2) . (A.3)

For an arbitrary � > 0,
C(exp(�H · ")) = C(exp(H · �")) , (A.4)

which implies F̃ (�H)" = �F̃ (H)" by Eq. (A.3). ⇤

F3: 8H1 6= 0 and 8H2 6= 0, F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

Proof:
By G2, for arbitrary generators H1 and H2

C(exp(H1")) + C(exp(H2")) � C(exp(H1") exp(H2")) ⇡ C(exp((H1 +H2)")) .

It yields, up to order O("2),

C(exp(H1")) + C(exp(H2")) � C(exp((H1 +H2)")) , (A.5)

which implies F̃ (H1) + F̃ (H2) � F̃ (H1 +H2) by Eq. (A.3). ⇤

By the relation between F↵ and F̃ in Eq. (3.10), we can also prove that F↵ satisfies the
following properties for 8Ô 2SU(n) and two arbitrary tangent vectors V,W at Ô:
F1’: F↵(Ô, V, w↵) � 0 and F↵(Ô, V, w↵) = 0 , V = 0 .
F2’: 8� 2 R+, we have F↵(Ô,�V,w↵) = �F↵(Ô, V, w↵) .
F3’: F↵(Ô, V, w↵) + F↵(Ô,W,w↵) � F↵(Ô, V +W,w↵).
These imply that F↵(c, ċ, w↵) is Finsler metric.

B General Finsler metric for SU(n): proof of Eq. (5.1)

Proof: We prove (5.1) by three steps. For convenience, we will omit the index ↵ and the
variable w↵ and use F̃ (H) to stand for F̃↵(H↵, w↵).

F̃ (H) := F̃↵(H↵, w↵) (B.1)

(1) Let us first show that F̃ (H) is only the function of eigenvalues of H and independent
of the permutations of the eigenvalues. Notice that H always can be diagonalized under
the transformation of representation by an SU(n) operator Û :

ÛHÛ�1 = diag(�1, �2, · · · , �n) , (B.2)

where �i are the eigenvalues of H. Thus

F̃ (H) = F̃ (ÛHÛ�1) = F̃ (diag(�1, �2, · · · , �n)) . (B.3)
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By the definition of realizable operators, it can be shown that Ô1Ô2 is realizable if Ô1 and
Ô2 are both realizable operators. Thus, O forms a monoid (semigroup with identity).

If we restrict physical processes to quantum mechanical processes, Eq. (2.1) implies
that realizable operators are all unitary rather than Hermitian. In other words, our target
is a property of the physical process rather than a direct observable. As quantum circuits
are quantum mechanical processes and Solovay-Kitaev theorem [22] says that all the unitary
operators can be approximated by some quantum circuits with any nonzero tolerance, we
can conclude that the realizable operators set is the set of unitary operators. As unitary
operators are invertible, the realizable operators set O forms a (finitely dimensional or
infinitely dimensional) unitary group.1

2.2 Definitions and axioms

Inspired by the complexity in quantum circuit, we propose that the complexity defined in
an arbitrary monoid O should satisfy the following three axioms. We denote a complexity
of an operator x̂ in an operators set O by C(x̂).

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 If 9N ✓ O and N can be decomposed into the Cartesian product of two sets, i.e.,

N = N1⇥N2, with the product satisfying (x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary
(x̂1, x̂2), (ŷ1, ŷ2) 2 N , then C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)), where Î1, Î2 are the
identities of N1 and N2.2

G1 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 8x̂, ŷ 2 O, C(x̂) + C(ŷ) � C(x̂ŷ).
G3 8(x̂1, x̂2) 2 N1 ⇥N2 ✓ O, C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2))

G1 and G2 are obvious. G3 can be understood from the schematic explantation in Fig. 1.
Intuitively, G3 means that the complexity of two independent tasks is the sum of their
complexities. Let us make a little more explanation on it in the following.

Suppose that we have two realizable operators sets O1 and O2 and their inputs sets
Sin,1 and Sin,2 respectively. As O1 and O2 are two realizable operators sets, the Cartesian
product O1,2 := O1 ⇥O2 := {(Ô1, Ô2)|8 Ô1 2 O1, 8 Ô2 2 O2} is also a realizable operators
set. The input set of O1,2 is naturally defined as Sin1,2 := Sin,1⇥Sin,2 = {(| 1i, | 2i)|8 | 1i 2
Sin,1, 8 | 2i 2 Sin,2}. The output of an operator Ô1,2 2 O1,2 is given as,

Ô1,2|�i := (Ô1| 1i, Ô2| 2i) . 8|�i := (| 1i, | 2i) 2 Sin1,2 . (2.5)
1Hermit operators, which correspond to observable quantities and are not unitary in general, cannot be

approximated by quantum circuits if the tolerance is small enough.
2The Cartesian product of two monoids does not correspond to the tensor product in a linear representa-

tion (i.e., a matrix representation). Instead, it corresponds to the direct sum. For example, if matrixes M1

and M2 are two representations of monoids O1 and O1, then the representation of their Cartesian product
O1 ⇥ O2 is M1 � M2 rather than M1 ⌦ M2. Thus, in a linear representation M for O, G3 says, for an
operator M = M1 �M1, C(M) = C(M1) + C(M2).
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.4)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H) � 0 and F̃↵(H,w↵) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H,w↵) = �F̃↵(H,w↵)

F3 (Triangle inequality) F̃↵(H1, w↵) + F̃↵(H2, w↵) � F̃↵(H1 +H2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 3. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î, ÔN = Ô and �Ô(↵)
n = exp[H↵(sn)�s] with

↵ = r or l and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point
of the same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form

G4 The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s), is a
smooth function of H↵ 6= 0 and �s � 0, i.e.,

C↵(�Ô(↵), w↵) = C↵(Î) + F̃↵(H↵, w↵)�s+O(�s2) ,

where F̃↵(H↵, w↵) := @�sC↵(�Ô(↵), w↵)|�s=0 and C(Î) = 0 by G1.

G4 C↵(�Ô(↵), w↵) = F̃↵(H↵, w↵)�s+O(�s2)

which is our forth axiom. Here the index ↵ = r, l means that the complexity only for
right generator Hr and left generator Hl, respectively. The quantity w↵ = {w(1)

↵ , w(2)
↵ , · · · }

stands for all other possible variables which is defined at the Lie algebra su(n) and can effect
the complexity. In the previous works by Neilsen’s [10–12] and by Refs. [17, 18, 23], the
quantity w↵ stands penalty or weight when we take the anisotropic or non-local interactions
into account.

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.5)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.6)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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F3: 8H1 6= 0 and 8H2 6= 0, F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

Proof:

By G2, for arbitrary generators H1 and H2

C(exp(H1")) + C(exp(H2")) � C(exp(H1") exp(H2")) ⇡ C(exp((H1 +H2)")) .

It yields, up to order O("2),

C(exp(H1")) + C(exp(H2")) � C(exp((H1 +H2)")) , (A.5)

which implies F̃ (H1) + F̃ (H2) � F̃ (H1 +H2) by Eq. (A.3). ⇤

By the relation between F↵ and F̃ in Eq. (3.10), we can also prove that F↵ satisfies the
following properties for 8Ô 2SU(n) and two arbitrary tangent vectors V,W at Ô:
F1’: F↵(Ô, V, w↵) � 0 and F↵(Ô, V, w↵) = 0 , V = 0 .
F2’: 8� 2 R+, we have F↵(Ô,�V,w↵) = �F↵(Ô, V, w↵) .
F3’: F↵(Ô, V, w↵) + F↵(Ô,W,w↵) � F↵(Ô, V +W,w↵).
These imply that F↵(c, ċ, w↵) is Finsler metric.

B General Finsler metric for SU(n): proof of Eq. (5.1)

Proof: We prove (5.1) by three steps. For convenience, we will omit the index ↵ and the
variable w↵ and use F̃ (H) to stand for F̃↵(H↵, w↵).

F̃ (H) := F̃↵(H↵, w↵) (B.1)

(1) Let us first show that F̃ (H) is only the function of eigenvalues of H and independent
of the permutations of the eigenvalues. Notice that H always can be diagonalized under
the transformation of representation by an SU(n) operator Û :

ÛHÛ�1 = diag(�1, �2, · · · , �n) , (B.2)

where �i are the eigenvalues of H. Thus

F̃ (H) = F̃ (ÛHÛ�1) = F̃ (diag(�1, �2, · · · , �n)) . (B.3)
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F2: 8� 2 R+, F̃ (�H) = �F̃ (H).
Proof: By (3.8), for an arbitrary generator H and infinitesimal parameter " > 0

C(exp(H")) = F̃ (H)"+O("2) . (A.3)
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C(exp(�H · ")) = C(exp(H · �")) , (A.4)

which implies F̃ (�H)" = �F̃ (H)" by Eq. (A.3). ⇤
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Proof:
By G2, for arbitrary generators H1 and H2

C(exp(H1")) + C(exp(H2")) � C(exp(H1") exp(H2")) ⇡ C(exp((H1 +H2)")) .

It yields, up to order O("2),

C(exp(H1")) + C(exp(H2")) � C(exp((H1 +H2)")) , (A.5)

which implies F̃ (H1) + F̃ (H2) � F̃ (H1 +H2) by Eq. (A.3). ⇤

By the relation between F↵ and F̃ in Eq. (3.10), we can also prove that F↵ satisfies the
following properties for 8Ô 2SU(n) and two arbitrary tangent vectors V,W at Ô:
F1’: F↵(Ô, V, w↵) � 0 and F↵(Ô, V, w↵) = 0 , V = 0 .
F2’: 8� 2 R+, we have F↵(Ô,�V,w↵) = �F↵(Ô, V, w↵) .
F3’: F↵(Ô, V, w↵) + F↵(Ô,W,w↵) � F↵(Ô, V +W,w↵).
These imply that F↵(c, ċ, w↵) is Finsler metric.

B General Finsler metric for SU(n): proof of Eq. (5.1)

Proof: We prove (5.1) by three steps. For convenience, we will omit the index ↵ and the
variable w↵ and use F̃ (H) to stand for F̃↵(H↵, w↵).

F̃ (H) := F̃↵(H↵, w↵) (B.1)

(1) Let us first show that F̃ (H) is only the function of eigenvalues of H and independent
of the permutations of the eigenvalues. Notice that H always can be diagonalized under
the transformation of representation by an SU(n) operator Û :

ÛHÛ�1 = diag(�1, �2, · · · , �n) , (B.2)

where �i are the eigenvalues of H. Thus

F̃ (H) = F̃ (ÛHÛ�1) = F̃ (diag(�1, �2, · · · , �n)) . (B.3)
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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F̃ (H↵)?
So far, it is any function.  
Let us find constrains of F̃ (H↵)

What geometry?
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

– 10 –

F̃ (H↵)?
So far, it is any function.  
Let us find constrains of F̃ (H↵)
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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Constraints on Finsler metric

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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Left/right symmetry

Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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Constraints on Finsler metric

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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Unitary symmetry

Time-reversal symmetry

Thus, we see that Eq. (4.14) implies that

C↵(su(n); Ô) = C↵(su(n); ˜̂O), 8Ô 2 SU(n), (4.16)

which means the complexity of SU(n) group will be invariant under the unitary transfor-
mation.

It is the difference between Eq. (4.12) and Eq. (4.15) that leads the difference between
qubit systems and SU(n) regarding the invariance under unitary transformations. Because
Eq. (4.16) is valid also for any infinitesimal operator, it implies Eq. (4.6). This is another
derivation of Eq. (4.6). We have presented two arguments to support the idea that the com-
plexity of SU(n) group should be invariant under unitary transformations. In appendix C,
we will give the third one.

To understand the validity of the unitary invariance of the complexity, one useful
question is the following: what will happen if we restrict our operators set to some subgroup
of SU(n)? Let G to be a connected real subgroup and its Lie algebra to be g. In this case, we
can still obtain the following equation under a general unitary transformation G̃ = x̂Gx̂�1

and g̃ = x̂gx̂�1,
C↵(g; Ô) = C↵(eg; ˜̂O), 8x̂ 2 SU(n), 8Ô 2 G . (4.17)

If g is an ideal of su(n), eg = g for all x̂ 2SU(n). However, because the su(n) is simple and
it does not have other ideals except for the trivial {0}. Thus, if we restrict the operators
set to any real subgroup of SU(n), the complexity may not be invariant under a unitary
transformation. For qubit systems such as a quantum circuit, the gates set is discrete, which
can form only a subgroup of SU(n). As SU(n) group does not have non-trivial normal
subgroup, the complexity for qubit systems is not invariant under the general unitary
transformation.

4.3 Reversibility of F̃ from the CPT symmetry

Please check all contents of this subsection. I’ve made many changes and additions. In
this subsection we consider the effect of the CPT symmetry of the quantum field theory on
the Finsler structure, cost, and complexity. Let us denote the CPT partner of �(~x, t) by
�̄(~x, t). i.e. �̄(~x, t) := C � P � T [�(~x, t)] = C[�(�~x,�t)]. By using Eq. (4.3), we have

�̄(~x, t) = C � P � T [c(t)†�(~x, 0)c(t)]
= c(�t)†C[�(�~x, 0)]c(�t)

= c(�t)†�̄(~x, 0)c(�t) ,

(4.18)

where we use the fact that c(t) does not have charge and spatial variable ~x. Thus, the
evolution of the CPT parter is given by c̄(t) := c(�t). Given the CPT symmetry of the
theory, it is natural to assume that the costs of c(t) and c̄(t) are the same, i.e.,

Lr[c(t)] = Lr[c(�t)] . (4.19)

L↵[c(t)] = L↵[c(�t)] . (4.20)
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Figure 5. Equivalences between i) the unitary-invariance of QFT, ii) the Independence on left/right
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where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.8) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
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where Eq. (3.8) is used. It means that the left generator and the right generator give the
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complexity will be independent of our choice. In other words, we have a unique definition of
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the complexity, in our opinion, there must be some gauge freedom in the definition of the
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Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
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[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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Thus, we see that Eq. (4.14) implies that

C↵(su(n); Ô) = C↵(su(n); ˜̂O), 8Ô 2 SU(n), (4.16)
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plexity of SU(n) group should be invariant under unitary transformations. In appendix C,
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question is the following: what will happen if we restrict our operators set to some subgroup
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and g̃ = x̂gx̂�1,
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If g is an ideal of su(n), eg = g for all x̂ 2SU(n). However, because the su(n) is simple and
it does not have other ideals except for the trivial {0}. Thus, if we restrict the operators
set to any real subgroup of SU(n), the complexity may not be invariant under a unitary
transformation. For qubit systems such as a quantum circuit, the gates set is discrete, which
can form only a subgroup of SU(n). As SU(n) group does not have non-trivial normal
subgroup, the complexity for qubit systems is not invariant under the general unitary
transformation.

4.3 Reversibility of F̃ from the CPT symmetry

Please check all contents of this subsection. I’ve made many changes and additions. In
this subsection we consider the effect of the CPT symmetry of the quantum field theory on
the Finsler structure, cost, and complexity. Let us denote the CPT partner of �(~x, t) by
�̄(~x, t). i.e. �̄(~x, t) := C � P � T [�(~x, t)] = C[�(�~x,�t)]. By using Eq. (4.3), we have

�̄(~x, t) = C � P � T [c(t)†�(~x, 0)c(t)]
= c(�t)†C[�(�~x, 0)]c(�t)

= c(�t)†�̄(~x, 0)c(�t) ,

(4.18)

where we use the fact that c(t) does not have charge and spatial variable ~x. Thus, the
evolution of the CPT parter is given by c̄(t) := c(�t). Given the CPT symmetry of the
theory, it is natural to assume that the costs of c(t) and c̄(t) are the same, i.e.,

Lr[c(t)] = Lr[c(�t)] . (4.19)

L↵[c(t)] = L↵[c(�t)] . (4.20)
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where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.8) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.12)

where Eq. (3.8) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6

– 12 –

where
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Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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the complexity, in our opinion, there must be some gauge freedom in the definition of the
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Thus, we see that Eq. (4.14) implies that

C↵(su(n); Ô) = C↵(su(n); ˜̂O), 8Ô 2 SU(n), (4.16)

which means the complexity of SU(n) group will be invariant under the unitary transfor-
mation.

It is the difference between Eq. (4.12) and Eq. (4.15) that leads the difference between
qubit systems and SU(n) regarding the invariance under unitary transformations. Because
Eq. (4.16) is valid also for any infinitesimal operator, it implies Eq. (4.6). This is another
derivation of Eq. (4.6). We have presented two arguments to support the idea that the com-
plexity of SU(n) group should be invariant under unitary transformations. In appendix C,
we will give the third one.

To understand the validity of the unitary invariance of the complexity, one useful
question is the following: what will happen if we restrict our operators set to some subgroup
of SU(n)? Let G to be a connected real subgroup and its Lie algebra to be g. In this case, we
can still obtain the following equation under a general unitary transformation G̃ = x̂Gx̂�1

and g̃ = x̂gx̂�1,
C↵(g; Ô) = C↵(eg; ˜̂O), 8x̂ 2 SU(n), 8Ô 2 G . (4.17)

If g is an ideal of su(n), eg = g for all x̂ 2SU(n). However, because the su(n) is simple and
it does not have other ideals except for the trivial {0}. Thus, if we restrict the operators
set to any real subgroup of SU(n), the complexity may not be invariant under a unitary
transformation. For qubit systems such as a quantum circuit, the gates set is discrete, which
can form only a subgroup of SU(n). As SU(n) group does not have non-trivial normal
subgroup, the complexity for qubit systems is not invariant under the general unitary
transformation.

4.3 Reversibility of F̃ from the CPT symmetry

Please check all contents of this subsection. I’ve made many changes and additions. In
this subsection we consider the effect of the CPT symmetry of the quantum field theory on
the Finsler structure, cost, and complexity. Let us denote the CPT partner of �(~x, t) by
�̄(~x, t). i.e. �̄(~x, t) := C � P � T [�(~x, t)] = C[�(�~x,�t)]. By using Eq. (4.3), we have

�̄(~x, t) = C � P � T [c(t)†�(~x, 0)c(t)]
= c(�t)†C[�(�~x, 0)]c(�t)

= c(�t)†�̄(~x, 0)c(�t) ,

(4.18)

where we use the fact that c(t) does not have charge and spatial variable ~x. Thus, the
evolution of the CPT parter is given by c̄(t) := c(�t). Given the CPT symmetry of the
theory, it is natural to assume that the costs of c(t) and c̄(t) are the same, i.e.,

Lr[c(t)] = Lr[c(�t)] . (4.19)

L↵[c(t)] = L↵[c(�t)] . (4.20)
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Similarly to the unitary symmetry case in subsection 4.1, as a way to understand the
general structure of F̃ , we consider a special curve, the time evolution given by an arbitrary
constant generator H. Because the generators of c̄(s) are given by H̄ = �H, Eq. (4.20)
reads, by the definition of the cost Eq. (3.5),

Z 1

0
F̃ (H)dt =

Z 1

0
F̃ (�H)dt . (4.21)

which implies
F̃ (H) = F̃ (�H) . (4.22)

Path-reversal symmetry If we combine the result of the CTP symmetry and the unitary
symmetry, Eq. (4.22) and Eq. (4.9) respectively, one can prove the “path-reversal symmetry”
for an arbitrary curve:

L↵[c] = L↵[c
�1], 8c(s) . (4.23)

Note that in general c�1(s) := [c(s)]�1 is not the curve generated by �H↵(s) when the
curve c(s) is generated by H↵(s). For example, for the right-invariant case, we can show

F̃ (Hr(c
�1)) = F̃ (�c�1Hr(c)c) = F̃ (Hr(c)) , (4.24)

which gives Eq. (4.23). Here, we used Hr(c�1) = ċ�1c = �c�1(ċc�1)c = �c�1Hr(c)c in
the first equality and Eqs. (4.22) and (4.9) in the second equality. In fact, the reverse also
holds, i.e. Eq. (4.23) implies Eqs. (4.22) and (4.9). First, by considering the special case
c = eHs with a constant H, Eqs. (4.22) can be derived from Eq. (4.23). Then, we end up
with Lr[c] = Ll[c], which implies Eq. (4.9) by the same logic in subsection 4.1.

Thus, we have the following equivalence between the path-reversal symmetry and the
adjoint-invariance with the reversibility of the Finsler metric:

8c(s), L↵[c] = L↵[c
�1] ,

(
F̃ (H) = F̃ (ÛHÛ †), 8H, 8Û 2 SU(n);
F̃ (H) = F̃ (�H), 8H .

(4.25)

The path-reversal symmetry also can be understood by “left world”-“right world” symmetry.
[Some explanation]. This may server as another supporting evidence for Eqs. (4.22) and
(4.9).
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Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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Proof

Figure 5. Equivalences between i) the unitary-invariance of QFT, ii) the Independence on left/right
generators of the Finsler metric, and iii) the adjoint invariance of the complexity

Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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†) , 8U 2 SU(n) , (4.9)
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What geometry?

Cost (Length)

Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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So far, it is any function.  
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Any Finsler metric

More



 45

What geometry?
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Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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F̃ (H↵)?
So far, it is any function.  
Let us find constrains of F̃ (H↵)

What geometry? Finsler geometry

Finsler metric

Any Finsler metric

More

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Figure 5. Equivalences between i) the unitary-invariance of QFT, ii) the Independence on left/right
generators of the Finsler metric, and iii) the adjoint invariance of the complexity

Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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What geometry?

Cost (Length)

Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

which is our forth axiom4. Note that G4 makes our theory essentially different from the
previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does not
only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds . (3.4)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.5)
4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.
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Complexity

Geodesic in some geometry? 

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.5) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.6)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.
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F̃ (H↵)?
So far, it is any function.  
Let us find constrains of F̃ (H↵)

What geometry? Finsler geometry

Finsler metric

Any Finsler metric

More

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ . See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.7) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.8)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel
feature of our work compared to others. From here, we do not rely on properties of discrete
systems or circuit models, which may be incompatible with QFT so may mislead us. We
will directly deal with QFT and its symmetry properties and see what kind of constraints
we can impose on F̃ (H↵).

Note that such symmetry considerations are not necessary if we use “complexity” as
a purely mathematical tool, for example, to study the “NP-completeness” and to analyze
how complex an algorithm or a quantum circuit is. However, when we use the complexity
to study real physical processes and try to treat the complexity as a basic physical vari-
able hiding in physical phenomena, symmetries relevant to physical phenomena will be a
necessary requirement.

In subsection 4.1, by requiring unitary invariance for complexity we find

[Independence on left/right generators] F̃ (Hl) = F̃ (Hr) , (4.1)

It means that the complexity does not depend on our choice of Hr or Hl. Recall that for a
given curve, we have two ways of construction either by F̃r or F̃l. It was an inherent ambi-
guity of our set-up but it can be disappeared by imposing unitary invariance. Therefore we
call this property ‘Independence on left/right generators’ of F̃ . To support our result (4.1)
we will present two more methods justifying (4.1) in the subsections 4.2 and appendix C.
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Figure 5. Equivalences between i) the unitary-invariance of QFT, ii) the Independence on left/right
generators of the Finsler metric, and iii) the adjoint invariance of the complexity

Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6
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Note that the constraint (4.1) also implies that F̃ is bi-invariant, meaning both right and
left invariant.

In subsection 4.3, by requiring the CPT symmetry6, we obtain

[reversibility] F̃ (H) = F̃ (�H) . (4.2)

We call this property ‘reversibility’ of F̃ following the mathematical literature, for example,
[15].

4.1 Independence of F̃ on left/right generators from unitary invariance

Please check all contents of this subsection. I’ve made many changes and additions. In this
subsection we consider the effect of the unitary invariance of the quantum field theory on
the Finsler structure, cost, and complexity. Let us consider an arbitrary quantum field �

with a Hilbert space H and a vacuum |⌦i, which are collectively denoted by {�,H, |⌦i}.
Its unitary partner is �̃(~x, t) := Û�(~x, t)Û †, H̃ := {Û | i| 8| i 2 H} and |⌦̃i := Û |⌦i,
which are denoted by {�̃, H̃, |⌦̃i}.

In the Heisenberg picture, the dynamic of the quantum field � is governed by a time
evolution operator c(t):

�(~x, t) = c(t)†�(~x, 0)c(t) . (4.3)

The time evolutions of its unitary partner �̃ is

�̃(~x, t) = Ûc(t)†Û †Û�(~x, 0)Û †Ûc(t)Û †

= c̃(t)†�̃(~x, 0)c̃(t) ,
(4.4)

where
c̃(t) := Ûc(t)Û † , (4.5)

so the evolution of the unitary partner �̃ is given by c̃(t). On the other hand, we cannot
distinguish {�,H, |⌦i} and its unitary partner {�̃, H̃, |⌦̃i} in the sense that any physical
experiment will be invariant under the transformation {�,H, |⌦i} ! {�̃, H̃, |⌦̃i}. We will
call this invariance “unitary-invariance”. Thus, it is natural to expect that the cost cannot
distinguish them too, i.e.

L↵[c] = L↵[Ûc(t)Û †] , 8Û 2 SU(n) . (4.6)

To extract a constraint on F̃ imposed by Eq. (4.6), it is enough to consider a special
curve generated by an arbitrary constant generator H↵

c(t) := exp(H↵t) , (4.7)

with t 2 [0, 1]. By the definition of the cost, Eq. (3.5), we have
Z 1

0
F̃ (H↵)dt =

Z 1

0
F̃ (ÛH↵Û

†)dt , (4.8)

6
The CPT symmetry is a theorem for local relativistic quantum field theories in Minkowski space-time.

Here, C means ‘charge conjugation’, P ‘parity transformation’ (‘space inversion’), and T ‘time reversal’.

This theorem states that the local Lorentz quantum field theories are invariant under the combined trans-

formations of C, P, and T.
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How much can we fix F̃ (H)?
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F̃ (H) = �Tr
⇣p

HH†
⌘

Finsler metric of SU(n) operator



 48

Finsler metric of SU(n) operator

Diagonal, order of the eigenvalues does not matter

Eigenvalues are all imaginary

F̃↵(H↵, w↵) = F̃↵(ÛHÛ�1, w↵) (B.4)
= F̃↵(diag(�1, �2, · · · , �n), w↵) (B.5)

=
nX

j=1

f↵(�j) (B.6)

=
nX

j=1

f↵(iIm�j) (B.7)

=
nX

j=1

f↵(i|�j |) (B.8)

= �↵

nX

j=1

|�j | (B.9)

= �↵Tr
⇣p

HH†
⌘
, (B.10)

F̃↵(H↵) = F̃↵(ÛHÛ�1) (B.11)
= F̃↵(diag(�1, �2, · · · , �n)) (B.12)

=
nX

j=1

f↵(�j) (B.13)

=
nX

j=1

f↵(iIm�j) (B.14)

=
nX

j=1

f↵(i|�j |) (B.15)

= �↵

nX

j=1

|�j | (B.16)

= �↵Tr
⇣p

HH†
⌘

(B.17)

F̃ (H) = F̃ (ÛHÛ�1) (B.18)
= F̃ (diag(�1, �2, · · · , �n)) (B.19)

=
nX

j=1

f(�j) (B.20)

=
nX

j=1

f(iIm�j) (B.21)

=
nX

j=1

f(i|�j |) (B.22)

= �
nX

j=1

|�j | (B.23)

= �Tr
⇣p

HH†
⌘

(B.24)
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where we use the fact that c(t) does not have charge and spatial variable ~x. Thus, the
evolution of the CPT parter is given by c̄(t) := c(�t). Given the CPT symmetry of the
theory, it is natural to assume that the costs of c̄(t) and c(t) are the same, i.e.,

L↵[c, w↵] = L↵[c̄, w↵] . (4.27)

Because the generators of c̄(s) are given by H̄↵(t) = (dc̄/dt)c̄�1 = �(dc/dt)c�1 = �H↵,
Eq. (4.27) implies that

Z 1

0
F̃↵(H↵, w↵)dt =

Z 1

0
F̃↵(�H↵, w↵)dt (4.28)

Z 1

0
F̃↵(H↵, w↵)dt =

Z 1

0
F̃↵(H̄↵, w↵)dt (4.29)

for an arbitrary constant generator H↵. This implies that
F̃↵(H↵, w↵) = F̃↵(�H↵, w↵).
F̃↵(H↵) = F̃↵(�H↵).

Next, if we combine Eq. (4.29) and the self-adjoint invariance Eq. (4.3) one can prove
the “path-reversal symmetry” for an arbitrary curve:

L↵[c, w↵] = L↵[c
�1, w↵], 8c(s) . (4.30)

Note that in general c�1(s) := [c(s)]�1 is not the curve generated by �H↵(s) if the curve
c(s) is generated by H↵(s). In fact, the reverse also holds. Thus, we have the following
equivalence between the path-reversal symmetry and the self-adjoint invariance with the
CPT symmetry:

8c(s), L↵[c, w↵] = L↵[c
�1, w↵] ,

(
F̃↵(H↵, w↵) = F̃↵(ÛH↵Û

†, w↵);

F̃↵(H↵, w↵) = F̃↵(�H↵, w↵) .
(4.31)

5 Complexity of SU(n) operators

5.1 Finsler metric of SU(n) operators

From here we will drop the indexes r, l based on Eq. (4.11). Indeed, by using Eqs. (4.20),
F̃ (H) = F̃ (�H), and G3 we can uniquely determine the Finsler metric in the operator
space of any SU(n) groups:

F↵(c(s), ċ(s), w↵) = F̃↵(H(s), w↵) = �Tr
q
H(s)H(s)† , (5.1)

where H(s) = Hr(s) or Hl(s) for the curve c(s) and � is arbitrary constant. (see appendix B
for a proof.) We see that left and right Finsler metric are the same and the dependence on
w↵ disappears. From now we will omit the indexes r, l.
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Adjoint symmetry

2.2 Definitions and axioms

[Need to add brief explanation on the definition of the circuit complexity ADN compu-
tational complexity because all our axioms are based on them. Please omit my "kind of
distance" argument, if you don’t want to mention "distance" concept at this stage.]

Intuitively speaking, the complexity of an operator is a minimal ‘cost’ to build an
operator from the identity. Or it is a kind of minimal ‘distance’ between a given operator
and the identity. Based on this intuitive concept of the complexity of operators and inspired
by the complexity in quantum circuit, we propose that the complexity defined in an arbitrary
monoid O should satisfy the following three axioms. We denote a complexity of an operator
x̂ in an operators set O by C(x̂).

G1 [Nonnegativity ] 8x̂ 2 O, C(x̂) � 0 and the equality holds iff x̂ is the identity.

G2 [Series decomposition rule (triangle inequality)] 8x̂, ŷ 2 O, C(x̂ŷ)  C(x̂) + C(ŷ).

G3 [Parallel decomposition rule] 8(x̂1, x̂2) 2 O1 ⇥O2 ✓ O,
C
�
(x̂1, x̂2)

�
= C

�
(x̂1, Î2)

�
+ C

�
(Î1, x̂2)

�
.

Here, in G3, we consider the case that there is a sub-monoid N ✓ O which can be de-
composed into the Cartesian product of two monoids, i.e., N = O1 ⇥ O2. Î1 and Î2
are the identities of O1 and O2. The Cartesian product of two monoids implies that
(x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary (x̂1, x̂2), (ŷ1, ŷ2) 2 N .

The axiom G1 is obvious by definition. We call the axiom G2 “series decomposition
rule” because the decomposition of the operator Ô = x̂ŷ to x̂ and ŷ is similar to the
decomposition of a big circuit into a series of small circuits. Reversely, the ‘product’ of
two operators corresponds to a serial connection of two circuits. The axiom G2 answers
a basic question: what is the relationship between the complexities of two operators and
the complexity of their products? Because the complexity is a kind of distance, we require
a “triangle inequality”, which is G2. For this reason G2 is also usually called “triangle
inequality”. 2

In contrast to G2 (series decomposition rule), we call the axiom G3 “parallel decompo-
sition rule”. This concept of this axiom is proposed in this paper for the first time. It comes
from the following fundamental question: if an operator (task) Ô contains two totally inde-
pendent sub-operators (sub-tasks) x̂1 and x̂2, what should be the relationship between the
total complexity and the complexities of two sub-operators (sub-tasks)? Here, the totally
independent means that: (a) Ô needs two inputs and gives out two outputs corresponding
to x̂1 and x̂2, and (b) the inputs for x̂1 (or x̂2) will never effect the outputs of x̂2 (or x1).
See Fig. 2 for this explanation.

Mathematically, the construction of a bigger operator Ô by x̂1 and x̂2 under two re-
quirements (a) and (b) corresponds to the Cartesian product denoted by Ô = (x̂1, x̂2). Note
that the Cartesian product of two monoids does not correspond to the tensor product in

2
Maybe omit the following blue part: The reason about why axiom G2 should be hold has been explained

clearly in the Nielson’ works [10–12]. We will show that it is because of G2 we can obtain a kind of “triangle

inequality” (see F3 in the Sec. 3). Thus, the axiom G2 is also usually called “triangle inequality”.
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Reversibility

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F1 (Nonnegativity) F̃ (H↵) � 0 and F̃ (H↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H↵) = �F̃ (H↵)

F3 (Triangle inequality) F̃ (H↵,1) + F̃ (H↵,2) � F̃ (H↵,1 +H↵,2)

only by using G1, G2 and G4! (see appendix A for a proof.)

F10 (Nonnegativity) F↵(c, ċ) � 0 and F↵(c, ċ) = 0 iff ċ = 0

F20 (Positive homogeneity) 8� 2 R+, we have F↵(c,�ċ) = �F↵(c, ċ)

F30 (Triangle inequality) F↵(c, ċ1) + F↵(c, ċ2) � F↵(c, ċ1 + ċ2)

Thus, here we introduce a standard notation for the Finsler metric ‘F↵(c, ċ)’ . See
Refs. [13, 14] for an introduction to the Finsler geometry and Minkowski norm .

F↵(c, ċ) := F̃ (H↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.7)

Fr(c, ċ) = F̃ (Hr) Fl(c, ċ) = F̃ (Hl) (3.8)

Strictly speaking, F̃ is a Minkowski norm defined in the tangent space at the identity. By
Eq. (3.8) we assigned the Minkowski norm F̃ to every points on the base manifold via
arbitrary curves. Therefore, in our paper, we will simply call F̃ the Finsler metric. Note
that Fr(c, ċ) is right-invariant, because F̃ is invariant under the right-translation c ! cx̂

for 8x̂ 2 SU(n). Similarly Fl(c, ċ) is left-invariant.
Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal

length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.9)

4 Symmetries of the complexity inherited from QFT symmetries

In the previous section, we have shown that the complexity can be computed by the Finsler
metric F̃ (H↵). We want to emphasize again that in our work the Finsler structure is not
assumed, but it has been derived based on G1, G2 and G4. This is the very novel feature
of our work compared to other related works.

However, apart from the defining properties of the Finsler metric F1-F3, we don’t
know anything on F̃ (H↵) so far. In this section, we will show there are constraints on
F̃ (H↵) if we take into account some symmetries of QFT. This is another important novel

– 10 –

Proof 

F̃ (H) = �Tr
⇣p

HH†
⌘
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Finsler metric of SU(n) operator: Riemannian or Finsler?

5 Complexity of SU(n) operators

5.1 Finsler metric of SU(n) operators

From here we will drop the indexes r, l based on Eq. (4.9). Indeed, by using Eqs. (4.18),
F̃ (H) = F̃ (�H), and G3 we can uniquely determine the Finsler metric in the operator
space of any SU(n) groups:

F↵(c(s), ċ(s), w↵) = F̃↵(H(s), w↵) = �Tr
q
H(s)H(s)† , (5.1)

where H(s) = Hr(s) or Hl(s) for the curve c(s) and � is arbitrary constant. (see appendix B
for a proof.) We see that left and right Finsler metric are the same and the dependence on
w↵ disappears. From now we will omit the indexes r, l.

Let us find the explicit Finsler metric F̃ for SU(n) group. Suppose that {Ta} is a basis
of su(n) in its fundamental representation with the following property.

TaTb =
1

2n
�abÎ+

1

2

n2�1X

c=1

(ifab
c + dab

c)Tc , (5.2)

where fab
c is the structure constants antisymmetric in all indices, while dab

c, which is
nonzero only when n > 2, is symmetric in all indices and traceless. An arbitrary generator
H(s) can be expanded as

H(s) = iHa(s)Ta, Ha(s) 2 R ,

so Eq. (5.1) reads

F (c, ċ) =
1p
2n

Tr
q
Ha(s)Hb(s)[�abÎ+ ndab

cTc] , (5.3)

with
Ha(s) = 2Tr[H(s)T a] = 2Tr[ċ(s)c�1(s)T a] . (5.4)

and
T a := Tb�

ab . (5.5)

Here, without loss the generality, we have set � = 1.
For n = 2, dabc = 0 so Eq. (5.3) is simplified to

F (c, ċ) =
1

2
Tr

q
Ha(s)Hb(s)�abÎ =

q
Ha(s)Hb(s)�ab

=
q

Tr[ċ(s)c�1(s)T a]Tr[ċ(s)c�1(s)T b]�ab ,

(5.6)

where Eq. (5.4) is used. It contains only quadratic terms of ċ so it gives a Riemannian
geometry. For n > 2

F (c, ċ) =
2p
2n

Tr
q

Tr[H(s)T a]Tr[H(s)T b][�abÎ+ ndab
cTc]

=
2p
2n

Tr
q

Tr(ċc�1T a)Tr(ċc�1T b)[�abÎ+ ndab
cTc] .

(5.7)

As Î and Tc are n⇥ n matrixes, the line element in Eq. (5.7) is not the quadratic form of ċ
so it is not Riemannian.
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2p
2n

Tr
q

Tr[H(s)T a]Tr[H(s)T b][�abÎ+ ndab
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and
T a := Tb�

ab . (5.5)

Here, without loss the generality, we have set � = 1.
For n = 2, dabc = 0 so Eq. (5.3) is simplified to

F (c, ċ) =
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n=2:

which gives Eq. (4.25). Here, we used Hr(c�1) = ċ�1c = �c�1(ċc�1)c = �c�1Hr(c)c in the
first equality and Eqs. (4.24) and (4.11) in the second equality. In fact, the reverse also
holds, i.e. Eq. (4.25) implies Eqs. (4.24) and (4.11). First, by considering the special case
c = eHs with a constant H, Eqs. (4.24) can be derived from Eq. (4.25). Then, we end up
with Lr[c] = Ll[c], which implies Eq. (4.11) by the same logic in subsection 4.1.

Thus, we have the following equivalence between the path-reversal symmetry and the
adjoint-invariance with the reversibility of the Finsler metric:

8c(s), L↵[c] = L↵[c
�1] ,

(
F̃ (H) = F̃ (ÛHÛ †), 8H, 8Û 2 SU(n);
F̃ (H) = F̃ (�H), 8H .

(4.27)

The path-reversal symmetry also can be understood by “left world”-“right world” symmetry.
[Some explanation]. This may server as another supporting evidence for Eqs. (4.24) and
(4.11).

5 Complexity of SU(n) operators

5.1 Finsler metric of SU(n) operators

From here we will drop the indexes r, l based on Eq. (4.12). We have found two constraints
Eq. (4.24) and Eq. (4.11) by symmetry consideration. These constraints (plus G3) turn
out to be strong enough to determine the Finsler metric in the operator space of any SU(n)
groups as follows

F (c(s), ċ(s)) = F̃ (H(s)) = �Tr
q
H(s)H(s)† , (5.1)

where H(s) = Hr(s) or Hl(s) for the curve c(s) and � is arbitrary constant. (see appendix B
for a proof.)

Let us find the explicit Finsler metric F̃ for SU(n) group. Suppose that {Ta} is a basis
of su(n) in its fundamental representation with the following property.

TaTb =
1

2n
�abÎ+

1

2

n2�1X

c=1

(ifab
c + dab

c)Tc , (5.2)

where fab
c is the structure constants antisymmetric in all indices, while dab

c, which is
nonzero only when n > 2, is symmetric in all indices and traceless. An arbitrary generator
H(s) can be expanded as

H(s) = iHa(s)Ta, Ha(s) 2 R ,

so Eq. (5.1) reads

F (c, ċ) =
1p
2n

Tr
q
Ha(s)Hb(s)[�abÎ+ ndab

cTc] , (5.3)

with
Ha(s) = 2Tr[H(s)T a] = 2Tr[ċ(s)c�1(s)T a] . (5.4)
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Riemannian

Finsler(Non-Riemannian)n>2

Finsler geometry is just Riemannian geometry without the quadratic restriction
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Complexity of SU(n) operator

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

L[c] =

Z 1

0
F̃ (H(s))ds =

Z 1

0
Tr

q
H(s)H†(s)ds (3.10)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
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Note that
Fr(c, ċ, wr) is right-invariant, because F̃ is invariant under the right-translation c ! cÛ
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Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal
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4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.
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4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.

– 8 –

Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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c(1) = Ô = e
H̄

c(0) = I



5.2 Geodesics and complexity of SU(n) operators

Even though we have the precise Finsler metric, to compute the complexity, we still have
to find a geodesic path as shown in (3.6). This minimization procedure is greatly simplified
thanks to bi-invariance, (4.17). It has been shown that the curve c(s) is a geodesic if and
only if there is a constant generator H(s) = H̄ such that [24, 25]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.8)

With the condition Ô = c(1) = exp(H̄), we can solve H̄ formally H̄ = ln Ô. The logarithm
of a unitary operator always exists but may not be unique (theorem 1.27 in Ref. [26]).
Because H̄ is constant, from Eqs. (3.4) ,

L[c] = F̃ (H̄) = Tr
p
H̄H̄† . (5.9)

Finally, the complexity of Ô in Eq. (3.6) is given by

C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} , (5.10)

The minimization ‘min’ in (3.6) in the sense of ‘geodesic’ is already taken care of in (5.8).
Here ‘min’ means the minimal value due to multi-valuedness of ln Ô.

For example, let us consider the SU(2) group in its fundamental representation. For
any operator Ô 2SU(2), there is a unit vector ~n and a real number ✓ such that,

Ô = exp(i✓~n · ~�) = Î cos ✓ + i(~n · ~�) sin ✓ , (5.11)

where ~� := (�x,�y,�z) stands for three Pauli matrixes. Because ln Ô = i✓m~n · ~� with

✓m = arccos[Tr(Ô)/2] + 2m⇡ , (5.12)

for 8m 2 N, the complexity of Ô is given by

C(Ô) = 2 arccos[Tr(Ô)/2] , (5.13)

where H̄H̄† = ✓2mÎ is used.

6 Properties of complexity in SU(n) group

6.1 Complexity of principle

The fact that the process of complexity is generated by a constant generator allows an
interesting interpretation of the Schrödinger’s equation. In a quantum system with a time-
independent Hamilton H, the time evolution of the quantum state | (t)i is given by a time
evolution operator Û(t), i.e. | (t)i = Û(t)| (0)i, where Û(t) satisfies the Schrödinger’s
equation,

d
dt

Û(t) = �i~�1HÛ(t), Û(0) = Î . (6.1)
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Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

L[c] =

Z 1

0
F̃ (H(s))ds =

Z 1

0
Tr

q
H(s)H†(s)ds (3.10)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H↵, w↵) � 0 and F̃↵(H↵, w↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H↵, w↵) = �F̃↵(H↵, w↵)

F3 (Triangle inequality) F̃↵(H↵,1, w↵) + F̃↵(H↵,2, w↵) � F̃↵(H↵,1 +H↵,2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w↵) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.11)

Note that
Fr(c, ċ, wr) is right-invariant, because F̃ is invariant under the right-translation c ! cÛ

for 8Û 2 SU(n). Similarly Fl(c, ċ, wl) is left-invariant.
c ! Ûc

Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal
length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô, w↵) := min{L↵[c, w↵]| 8c(s), c(0) = Î, c(1) = Ô} . (3.12)

C(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.13)

4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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[Latifi and Razavi 2011, 
Latifi and Toomanian 2013]

For a bi-invariant Finsler geometry 
c(s) is a geodesic iff there is a constant generator H 

c(1) = Ô = e
H̄

c(0) = I

Integral is trivial since H is constant

This ‘min’ means minimal ‘geodesics’
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Bi-invariance

Left/right symmetry

bi-invariance: left and right invariance

UV = gngn�1 · · · g2g1WV
U = gngn�1 · · · g2g1W

V U = (V gngn�1 · · · g2g1V †)VW

V U = (g̃ng̃n�1 · · · g̃2g̃1)VW

g̃i = V giV
†

right-invariant:  invariant under left-invariant :  invariant under 
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n or
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only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w↵) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.10)

Note that
Fr(c, ċ, wr) is right-invariant, because F̃ is invariant under the right-translation c ! cÛ

for 8Û 2 SU(n). Similarly Fl(c, ċ, wl) is left-invariant.
c ! Ûc

Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal
length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô, w↵) := min{L↵[c, w↵]| 8c(s), c(0) = Î, c(1) = Ô} . (3.11)

4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.
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4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.

– 8 –

F̃ (Hr = ċc
�1) = F̃ (Hl = c

�1
ċ)

Why bi-invariant is 
possible? 

For this construction
Right-invariance is natural because
Left-invariance looks not possible because
However, left-invariance is also possible because
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5.2 Geodesics and complexity of SU(n) operators

Even though we have the precise Finsler metric, to compute the complexity, we still have
to find a geodesic path as shown in (3.6). This minimization procedure is greatly simplified
thanks to bi-invariance, (4.17). It has been shown that the curve c(s) is a geodesic if and
only if there is a constant generator H(s) = H̄ such that [24, 25]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.8)

With the condition Ô = c(1) = exp(H̄), we can solve H̄ formally H̄ = ln Ô. The logarithm
of a unitary operator always exists but may not be unique (theorem 1.27 in Ref. [26]).
Because H̄ is constant, from Eqs. (3.4) ,

L[c] = F̃ (H̄) = Tr
p
H̄H̄† . (5.9)
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C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} , (5.10)
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cTc] .

(5.7)
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any operator Ô 2SU(2), there is a unit vector ~n and a real number ✓ such that,
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C(Ô) = 2 arccos[Tr(Ô)/2] , (5.13)
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Complexity of SU(n) operator

Let us define the cost (L↵[c, w↵]) of a particular proess c, constructed by only �Ô(r)
n or

only �Ô(l)
n , as

L↵[c, w↵] :=
NX

i=1

C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

L[c] =

Z 1

0
F̃ (H(s))ds =

Z 1

0
Tr

q
H(s)H†(s)ds (3.10)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H↵, w↵) � 0 and F̃↵(H↵, w↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H↵, w↵) = �F̃↵(H↵, w↵)

F3 (Triangle inequality) F̃↵(H↵,1, w↵) + F̃↵(H↵,2, w↵) � F̃↵(H↵,1 +H↵,2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
to the Finsler geometry and Minkowski norm.

F↵(c, ċ, w↵) := F̃↵(H↵, w↵) , with Hr = ċc�1 & Hl = c�1ċ . (3.11)

Note that
Fr(c, ċ, wr) is right-invariant, because F̃ is invariant under the right-translation c ! cÛ

for 8Û 2 SU(n). Similarly Fl(c, ċ, wl) is left-invariant.
c ! Ûc

Finally, the left or right complexity of an operator (C↵(Ô)) is identified with the minimal
length (or minimal cost) of the curves connecting Î and Ô:

C↵(Ô, w↵) := min{L↵[c, w↵]| 8c(s), c(0) = Î, c(1) = Ô} . (3.12)

C(Ô) := min{L↵[c]| 8c(s), c(0) = Î, c(1) = Ô} . (3.13)

4 Symmetries of the complexity inherited from QFT symmetries

In general, the left complexity and right complexity are different. Furthermore, because
we can construct the operator in some parts by left generators and other parts by right
generators we can obtain infinitely many different complexities. We will show that this
ambiguity is disappeared if we take the basic symmetries of quantum field theory into
account. As shown in many physics problems, symmetries play important roles also in
complexity.

4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will
simply call F̃↵ the Finsler metric, if there is no confusion.
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C↵(�Ô(↵)
i )

N!1����!
Z 1

0
F̃↵(H↵(s), w↵)ds . (3.8)

L↵[c, w↵] =

Z 1

0
F̃↵(H↵(s), w↵)ds . (3.9)

L[c] =

Z 1

0
F̃ (H(s))ds =

Z 1

0
Tr

q
H(s)H†(s)ds (3.10)

Geometrically, it is the length of the particular curve and F̃↵ looks like a “Finsler metric”.
Indeed, we can prove that F̃↵ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃↵(H↵, w↵) � 0 and F̃↵(H↵, w↵) = 0 iff H↵ = 0

F2 (Positive homogeneity) 8� 2 R+, F̃↵(�H↵, w↵) = �F̃↵(H↵, w↵)

F3 (Triangle inequality) F̃↵(H↵,1, w↵) + F̃↵(H↵,2, w↵) � F̃↵(H↵,1 +H↵,2, w↵)

only by using G1, G2 and G4! (see appendix A for a proof.) Thus, here we introduce a
standard notation for the Finsler metric ‘F↵(c, ċ)’ and4 See Refs. [13, 14] for an introduction
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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Ô = c(1) =
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c(s) = eH̄s (3.15)
4Mathematically, F̃↵ is a Minkowski norm defined at the tangent space of identity. In our paper, we will

simply call F̃↵ the Finsler metric, if there is no confusion.
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to the Finsler geometry and Minkowski norm.
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c! Ûc
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5.2 Geodesics and complexity of SU(n) operators

Even though we have the precise Finsler metric, to compute the complexity, we still have to
find a geodesic path as shown in (3.13). This minimization procedure is greatly simplified
thanks to bi-invariance, (4.19). It has been shown that the curve c(s) is a geodesic if and
only if there is a constant generator H(s) = H̄ such that [24, 25]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.8)

With the condition Ô = c(1) = exp(H̄), we can solve H̄ formally H̄ = ln Ô. The logarithm
of a unitary operator always exists but may not be unique (theorem 1.27 in Ref. [26]).
Because H̄ is constant, from Eqs. (3.10) ,

L[c] = F̃ (H̄) = Tr
p
H̄H̄† . (5.9)

Finally, the complexity of Ô in Eq. (3.13) is given by

C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} , (5.10)

The minimization ‘min’ in (3.13) in the sense of ‘geodesic’ is already taken care of in (5.8).
Here ‘min’ means the minimal value due to multi-valuedness of ln Ô.

For example, let us consider the SU(2) group in its fundamental representation. For
any operator Ô 2SU(2), there is a unit vector ~n and a real number ✓ such that,

Ô = exp(i✓~n · ~�) = Î cos ✓ + i(~n · ~�) sin ✓ , (5.11)

where ~� := (�x,�y,�z) stands for three Pauli matrixes. Because H̄ = ln Ô = i✓m~n · ~� with

✓m = arccos[Tr(Ô)/2] + 2m⇡ , (5.12)

for 8m 2 N, the complexity of Ô is given by

C(Ô) = C
� ˆ
ei✓~n·~�� = 2✓0 = 2arccos[Tr(Ô)/2] , (5.13)

where H̄H̄† = ✓2mÎ is used.

C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} = 2✓0 = 2arccos[Tr(Ô)/2] , (5.14)

6 Properties of complexity in SU(n) group

6.1 Complexity of principle

The fact that the process of complexity is generated by a constant generator allows an
interesting interpretation of the Schrödinger’s equation. In a quantum system with a time-
independent Hamilton H, the time evolution of the quantum state | (t)i is given by a time
evolution operator Û(t), i.e. | (t)i = Û(t)| (0)i, where Û(t) satisfies the Schrödinger’s
equation,

d
dt

Û(t) = �i~�1HÛ(t), Û(0) = Î . (6.1)
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C(Ô) = 2arccos[Tr(Ô)/2]

Proof
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.1)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.2)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.

The axioms G1-G3 are suitable for arbitrary monoid. As SU(n) group is a manifold,
it is natural to expect that the complexity on it is a smooth function. In fact, it turns out
to be enough to assume a weaker form
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Figure 2. A curve c(s) connects the identity and a particular operator Ô with the endpoints
c(0) = Î and c(1) = Ô. This curve can be approximated by a discrete form. Every endpoint is also
an operator, which is labeled by Ôn

element may repent either an abstract object or a faithful representation, which will be
understood by context.

We have shown that the realizable operators are unitary operators, so the question now
becomes how to define the complexity for unitary operators. As the unitary operators Û and
ei✓Û (with ✓ 2 (0, 2⇡)) produce equivalent quantum states, the complexity of Û and ei✓Û

should be the same. Thus it is enough to study the complexity for special unitary groups
and we start with SU(n) groups. For a given operator Ô 2 SU(n), as SU(n) is connected,
there is a curve c(s) connecting Ô and identity Î, where the curve may be parameterized
by s with c(0) = Î and c(1) = Ô. See Fig. 2. The tangent of the curve, ċ(s), is assumed to
be given by a right generator Hr(s) or a left generator Hl(s):

c(s) =
 �P e

R s
0 ds̃Hr(s̃) . ċ(s) = c(s)Hl(s) or c(s) =

�!P e
R s
0 ds̃Hl(s̃) . (3.1)

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (3.2)

This curve can be approximated by discrete forms:

Ôn = c(sn) = �Ô(r)
n Ôn�1 = Ôn�1�Ô

(l)
n , (3.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and �Ô(↵)
n = exp[H↵(sn)�s] with ↵ = r or l

and �s = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the
same curve can be different, i.e., Hl(s) 6= Hr(s).

The possibility of two different generators can be understood by a quantum circuit
approximation to an operator, say Ô. As shown in Fig. 3, if a quantum circuit �0 is given,
the operator Ô can be constructed in two ways: i) by adding a new quantum circuit �1 after
the output of �0 or ii) by adding a new quantum circuit �2 before the input of �0. For the
former, a new operator is added to the left side of the original circuit while for the latter,
a new operator is added to the right. The previous works such as Refs. [10–12, 17, 23]
assumed that the new operators/circuits could appear only after the output side of original
operators/circuits. This is one mathematically allowed choice but there is no a priori or a
physical reason for that particular choice.
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5.2 Geodesics and complexity of SU(n) operators

Even though we have the precise Finsler metric, to compute the complexity, we still have
to find a geodesic path as shown in (3.6). This minimization procedure is greatly simplified
thanks to bi-invariance, (4.17). It has been shown that the curve c(s) is a geodesic if and
only if there is a constant generator H(s) = H̄ such that [24, 25]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.8)

With the condition Ô = c(1) = exp(H̄), we can solve H̄ formally H̄ = ln Ô. The logarithm
of a unitary operator always exists but may not be unique (theorem 1.27 in Ref. [26]).
Because H̄ is constant, from Eqs. (3.4) ,

L[c] = F̃ (H̄) = Tr
p
H̄H̄† . (5.9)

Finally, the complexity of Ô in Eq. (3.6) is given by

C(Ô) = min{Tr
p
H̄H̄† | 8 H̄ = ln Ô} , (5.10)

The minimization ‘min’ in (3.6) in the sense of ‘geodesic’ is already taken care of in (5.8).
Here ‘min’ means the minimal value due to multi-valuedness of ln Ô.

For example, let us consider the SU(2) group in its fundamental representation. For
any operator Ô 2SU(2), there is a unit vector ~n and a real number ✓ such that,

Ô = exp(i✓~n · ~�) = Î cos ✓ + i(~n · ~�) sin ✓ , (5.11)

where ~� := (�x,�y,�z) stands for three Pauli matrixes. Because ln Ô = i✓m~n · ~� with

✓m = arccos[Tr(Ô)/2] + 2m⇡ , (5.12)

for 8m 2 N, the complexity of Ô is given by

C(Ô) = 2 arccos[Tr(Ô)/2] , (5.13)

where H̄H̄† = ✓2mÎ is used.

6 Properties of complexity in SU(n) group

6.1 Complexity of principle

The fact that the process of complexity is generated by a constant generator allows an
interesting interpretation of the Schrödinger’s equation. In a quantum system with a time-
independent Hamilton H, the time evolution of the quantum state | (t)i is given by a time
evolution operator Û(t), i.e. | (t)i = Û(t)| (0)i, where Û(t) satisfies the Schrödinger’s
equation,

d
dt

Û(t) = �i~�1HÛ(t), Û(0) = Î . (6.1)
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It can be shown that if we consider only the isotropic local interactions, the right-invariant
metric in Refs. [12, 17] becomes bi-invariant, too.

Thanks to the bi-invariance of the Finsler metric the process of complexity is gener-
ated by a constant generator. This observation leads us to make a novel interpretation
for the Schrödinger’s equation: the quantum state evolves by the process of minimizing
“computational cost,” which we call “complexity of principle.”

As an application of the complexity of the SU(n) operator, the complexity between two
states described by density matrices ⇢1 and ⇢2 may be defined naturally as

C(⇢1, ⇢2) := min{C(Ô) | ⇢2 = Ô⇢1Ô
†, 8Ô 2 SU(n)} . (8.1)

C(⇢1, ⇢2) := {C(Ô) | ⇢2 = Ô⇢1Ô
†, 8Ô 2 SU(n)} . (8.2)

For two pure states ⇢i = | iih i| (i=1,2), one can always find a group of basic vectors {|eni}
such that | 1i = (1, 0, 0, · · · , 0) and | 2i = (a1, a2, 0, · · · , 0) (here a1 2 R and a21+|a2|2 = 1).
Then we can see that the problem is reduced into a 2-dimensional case. Their complexity
is given by an SU(2) operator Ô with Ô11 = Ô22 = a1 and Ô21 = �Ô⇤

12 = a2. Based on
Eq. (5.13), we have

C(⇢1, ⇢2) = C(Ô) = 2 arccos a1 = 2DFS(| 1i, | 2i) = 2 arccosFi(| 1i, | 2i).

C(⇢1, ⇢2) = 2 arccosFi(| 1i, | 2i).

Here DFS is Fubini-Study (FS) distance [28, 29] and Fi is fidelity [30, 31]. Thus, Eq. (8.2)
includes the complexity defined by Ref. [28] as a special case. In our forthcoming paper [27]
our proposal turns out to be general enough to include other recent developments for the
complexity in QFT: cMERA tensor network [32–35] and path-integral method [36, 37]. Fur-
thermore, our proposal also correctly reproduces the holographic complexity for thermofield
double state (TFD).

In a more general context, geometrizing the complexity in continuous operators sets
amounts to giving positive homogeneous norms in some Lie algebras. Our paper deals
with only SU(n) group so we gives the norm for Lie algebra su(n). For more general Lie
algebra g, though we cannot determine the norm uniquely, it is natural that such a norm
is determined only by the properties of g, for example the structure constants, without any
other extra information. As in general relativity where the spacetime metric is determined
by matters distribution through Einstein’s equations, can we find any physical equation to
determine this norm?
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Complexity of operator

Future work

Smoothness axiom

Figure 4. Schematic diagram for two different generators in quantum circuits. To obtain the some
target operator Ô from the quantum circuit �0, we have two different ways to add new circuits.

G4 [Smoothness ] The complexity of any infinitesimal operator in SU(n), �Ô(↵) = exp(H↵�s),
is a smooth function of only H↵ 6= 0 and �s � 0, i.e.,

C(�Ô(↵)) = C(Î) + F̃ (H↵)�s+O(�s2) , (3.3)

where F̃ (H↵) := @�sC(�Ô(↵))|�s=0 and C(Î) = 0 by G1.

C(�Ô(↵)) = F̃ (H↵)�s+O(�s2) , (3.4)

which is our forth axiom4. Note that G4 makes our theory essentially different from
the previous works by Neilsen’s [10–12] and by Refs. [17, 18], where the complexity does
not only depend on the operators but also depends on the way to choose a penalty to take
into account the anisotropic interactions of qubit in inner space or non-local interactions
in complicated lattice systems. This paper focuses on the complexity in local Lorentz field
theories, which have only isotropic and local interactions5.

Let us define the cost (L↵[c]) of a particular proess c, constructed by only �Ô(r)
n or only

�Ô(l)
n , as

L↵[c] :=
NX

i=1

C(�Ô(↵)
i )

N!1����!
Z 1

0
F̃ (H↵(s))ds (3.5)

L↵[c] =

Z 1

0
F̃ (H↵(s))ds =

Z 1

0
F↵(c, ċ)ds =:

Z 1

0
dl↵ . (3.6)

Geometrically, it is the length of the particular curve and F̃ looks like a “Finsler metric”.
Indeed, we can prove that F̃ satisfies three defining properties of the Finsler metric:

F1 (Nonnegativity) F̃ (H) � 0 and F̃ (H) = 0 iff H = 0

F2 (Positive homogeneity) 8� 2 R+, F̃ (�H) = �F̃ (H)

F3 (Triangle inequality) F̃ (H1) + F̃ (H2) � F̃ (H1 +H2)

4
Indeed, Eq. (3.3) is valid for arbitrary Hamiltonian independent of any curve so the subindex ↵ is not

necessary. However, we keep the subindex for notational consistency. In other words, we assume that the

added infinitesimal complexity is the same for two cases in Fig. 4. This condition will be relaxed in [? ].
5
In our upcoming work [? ], we relax the requirements in G4 so that we can include a penalty.

– 9 –

3 general axioms + 2 symmetries of QFT

• Comparison with holographic results and other field theory methods

• Complexity of states, for example,
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