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What is Complexity?

(Computational) complexity ‘

(from computer science) quantifying the difficulty of carrying out a task.

(Circuit) complexity |

Minimal number of gates for the transformation from the reference to target state

1Y) = UlYR) = gngn-1--"9291|¥R)

ex) Toffoli gate

Xl ® Yl a> ! |a>

b) ? b)
Xo ® H— Y»

c) & |c @ ab)
X3 ° @ Wi
Z, & W, Hadamard gate

—1)4
a) H 2= 10) + - 1)




What is Complexity?

Complexity of quantum states |

For given states |¥1) = Ul1yr) ~minimal number of gates the reference to target state

Complexity is kind of distance |

Fubini-Study distance: ~ dap = arccos |(B|A)] (close) 0 ~ /2 (far)

0000000000) » |0000000001)

“Complexity distance?”

Complexity of operator (unitary transformation) |

For a given operator U = g,g,—1---9291 ~ minimum number of gates

I > U

This talk focuses on the complexity of operator
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- [Susskind: 1402.5674
Wh)’ CIUC’m'Um fleld Theor)’? Stanford and Susskind: 1406.2678]'

Fig. from [Koiji, Norihiro, Sotaro: 1707.03840]

1. Einstein-Rosen bridge increases even after thermalization

2. The field theory meaning of this? complexity?
3. Physics inside black hole?

Conjecture: complexity

Entanglement is not enough!

exp K




Holographic conjecture

CV (complexity-volume) | CA (complexity-action) |
[Susskind: 1402.5674 [Brown, Roberts, Susskind Swingle and Zhao:
Stanford and Susskind: 1406.2678] 1509.07876, 1512.04993]

o -
~ -
e -
~ -
~ -
-~ -
~ -
-

————
- .
- o
- o~
- -~
- -~
- S
- ~
o ~

_ V()
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- Equation of motion - B?undor.y terms
- Free scale: ambiguity - Singularity

Fig. from [Jefferson, Myers: 1707.08570]



Comparisons for duality [Yang, Niy, Zhang, KK: 1710.00600]

See also [Carmi, Chapman Marrochio,

CV (TFD) | CA (TFD) | Myers, and Sugishita: 1709.10184]
25
2,
_15
S 2 :
S © For holographic
conjectures:
0> The reference state
0 | | | | is not clear
0 0.5 1 1.5 2 25

(tL+R) h | Jys tR/AtC
Circuit complexity

Complexity in QFT
(discrete quantum circuit)

9

exp K




Why Axiomatic? l

Axiomatic complexity in quantum field theory

|

Instead of quantum circuits gauge/gravity duality

|



Continuous case: Nielsen’s idea

A’fgeoniletric pproach to quantum circuit lower bounds

Michael A. NiClSCnl’

I'School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
(Dated: February 1, 2008)

Quantum Computation as

Michael A. Nielsen,* Mark R. Dowling, Mile Gu, Andrew C. Doherty
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Mark R. Dowling! and Michael A. .\'ivlsvn"E
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(Dated: February 1, 2008)
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Continuous case: Nielsen’s idea

A geométrié' pproach to quantum circuit lower bounds

Michael A. N ielsenl'

I'School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
(Dated: February 1, 2008)

Quantum Computation

Michael A. Nielsen,* Mark R. Dowling, Mile Gu, Andrew C. Doherty

Theggeometryjof quantum computation

Mark R. Dowling! and Michael A. .\'i(‘lsvn"';

'School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
(Dated: February 1, 2008)

Susskind and collaborators

® introduced Nielsen’s idea introduced to hep-th in 2014

® have been developing the theory of complexity in QFT
based on intuitions from circuit complexity

A
N

[Susskind and Zhao: 1408.2823]



Why Axiomatic? l

Axiomatic complexity in quantum field theory

| |

Instead of quantum circuits gauge/gravity duality

, /‘ extract some general axioms for complexity \
s from properties of computational (circuit) complexity
® take into account properties of QFT,

\ some of which may not be compatible with circuit complexity




Final result |

Complexity of SU(n) operator |

e,
4 general axioms + 2 symmetries of QFT
\ { { @(O) = min{Trv HH' | VH = In O})



Outline I

o General axioms
~ Finsler geometry from general axioms
~ Constrain the geometry by QFT symmetry

~ Complexity for SU(n) operator



Three axioms for the complexity I

/ G1 |Nonnegativity] V& € O, C(z) > 0 and the equality holds iff & is the identity. \
G2 |Series decomposition rule (triangle inequality)| Vz,y € O, C(zy) < C(z) + C(g).
G3 |Parallel decomposition rule| V(z1,22) € O1 x O C O,

\ C((21,22)) = C((21,1n)) + C((I1,22)). /

G2 | G3 |
4 X I
............................... # gates of I— 8
* | |
AN h
i} $
o D S0 TS 5
E # gates of # gates of E
D O :
] ‘ '
-------------------------------- i XI :
A A Lt il
T Y : % L J

——————————————————————————————————————————



Fourth axiom for the complexity: smoothness




Fourth axiom for the complexity: smoothness

= eXp[Ha(Sn>55] Sn = n/N

N — o0



Fourth axiom for the complexity: smoothness

¢(1) =0 Right-way | : Left-way
On =0 :
O, = 500500 ...500500 0, =300 .50 500
— 5000, 4 § = 0,_160W

n=123---,N (5OA,,(10‘) = exp|Ha(5,)08] Spn =n/N
N % 00
i(s) = Ho(s)els)  © &(s) = e(s)Hi(s)
c(s) = %61‘5 d3H, (3) c(s) = ?efos d5H,(3)




Fourth axiom for the complexity: smoothness

¢(1) =0 Right-way | : Left-way
On =0 :
O, = 500500 ...500500 0, =300 .50 500
— 5000, 4 § = 0,_160W

C(S) — %efos dgHr(g) C(S) — B@fos dng(g)

e\ zero by G1



Fourth axiom for the complexity: smoothness

¢(1) =0 Right-way | : Left-way
On =0 E
O, = 500500 ...500500 0, =300 .50 500
=600, _, = On-160Y

n=1,23--,N 605 = exp[Ha(sn)ds]  Sn=n/N

o) = Hrls)els)  &(s) = cls) Hils)
c(s) = %efos dsH,(3) c(s) = ﬁef; d5H,(5)

o0
%\ | zero by G1
\ } Ambiguity | ® same curve but different length H, or H;
R /’! ® The ambiguity will disappear
I[".,::ff/

if we consider symmetry of QFT



What geometry?

~ N 1
o0 Cost (Length) | Lo[d] = ZC((SOZ(O‘)) Noeo, / [(Hy(s))ds
~ ‘\\ ) . A
\ / ( Complexity | Co(0) := min{La[c]| Ve(s), ¢(0) =1, ¢(1) = O}
| /, ‘ Geodesic in some geometry?
jt‘"

What geometry?



What geometry?

R N 1
o0 Cost (Leng’rh)| La|c] := ZC((;OAZ@) N—oo, / F(Ha(s))ds
TN i=1 0
%\\‘
\ /( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
//, . Geodesic in some geometry?

What geometry?

'

F(H,)?



What geometry?

R N 1
o0 Cost (Leng’rh)| La|c] := ZC((;OAZ@) N—oo, / F(Ha(s))ds
TN i=1 0
%\\‘
\ /( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
//, . Geodesic in some geometry?

What geometry?

'

F(H,)?

So far, it is any function.
Let us find constrains of F'(H,,)



Outline I

- General axioms
o Finsler geometry from general axioms
~ Constrain the geometry by QFT symmetry

~ Complexity for SU(n) operator



Properties of geometric structure |

G1 Vz € O, C(z) > 0 and the equality holds iff Z is the identity.
S.G2 VR, €O, C(&)+C(H) = C(2]).
L G4 C(5Q<a>) — F(H,)ds + O(85%)

Axioms of
Complexity

/7 \\

/:' . 50 = exp(Hyds)

v
'\ .. ~ - N . \
' F1 (Nonnegativity) F(H,) > 0 and F(H,) =0iff H, =0

F2 (Positive homogeneity) VA € RT, F(AH,) = A\F(H,)
AF3 (Triangle inequality) F(Hy1) + F(Hao) > F(Hq1 + Hy o)




Properties of geometric structure |

Axioms of
Complexity

G1 Vz € O, C(z) > 0 and the equality holds iff Z is the identity.
S.G2 VR, €O, C(&)+C(H) = C(2]).
L2 G4 C(60®) = F(Ha)ds + O(5s?)
e \ .
(i L 50@ = exp(Hy0s)

F2 (Positive homogeneity) VA € RT, F(AH,) = A\F(H,)
AF3 (Triangle inequality) F(Hy1) + F(Hao) > F(Hq1 + Hy o)

D Ho—ee' ds) = Ho(s)els)
W Ho=c'é is)=c(s)Hs)

F1’ (Nonnegativity) Fy(c,¢) > 0 and Fy(c,é¢) =0iff ¢ =0 \
F2' (Positive homogeneity) VA € RT, we have F,(c, \¢) = AF,(c, ¢)
F3' (Triangle inequality) Fu(c, é1) + Fol(c, éa) > Fa(e, é1 + é3)




Properties of geometric structure |

Axioms of
Complexity

Properties of
Finsler geometry

G1 Vz € O, C(z) > 0 and the equality holds iff Z is the identity.
S.G2 VR, €O, C(&)+C(H) = C(2]).
L G4 C(5Q<a>) — F(H,)ds + O(85%)
s \\ *
[i . 60 = exp(H,0s)

F2 (Positive homogeneity) VA € RT, F(AH,) = A\F(H,)
AF3 (Triangle inequality) F(Hy1) + F(Hao) > F(Hq1 + Hy o)

{ O Hy=céct s) = He(s)e(s)
W Hi=c'¢  (s)=c(s)His)

F1’ (Nonnegativity) Fy(c,¢) > 0 and Fy(c,é¢) =0iff ¢ =0 \
F2' (Positive homogeneity) VA € RT, we have F,(c, \¢) = AF,(c, ¢)

F3' (Triangle inequality) Fu(c, é1) + Fol(c, éa) > Fa(e, é1 + é3)




Properties of geometric structure |

G1 Vz € O, C(z) > 0 and the equality holds iff Z is the identity.
S.G2 VR, €O, C(&)+C(H) = C(2]).
L G4 C(5Q<a>) — F(H,)ds + O(85%)

Axioms of
Complexity

/7 \\

/:' . 50 = exp(Hyds)

v
'\ .. ~ - N . \
' F1 (Nonnegativity) F(H,) > 0 and F(H,) =0iff H, =0

F2 (Positive homogeneity) VA € RT, F(AH,) = A\F(H,)
AF3 (Triangle inequality) F(Hy1) + F(Hao) > F(Hq1 + Hy o)

Hy=¢ct &s) = Hp(s)e(s)

Finsler metric | F.(c,¢) = F(H, :
— (¢, ¢) (Ha) o H —cle &(s) = c(s)Hy(s)

Properties of F1’ (Nonnegativity) Fy(c,¢) > 0 and Fy(c,é¢) =0iff ¢ =0 \
Finsler geometry F2' (Positive homogeneity) VA € RT, we have F,(c, A\¢) = AF,(c, ¢)
F3' (Triangle inequality) Fu(c, é1) + Fol(c, éa) > Fa(e, é1 + é3)




Riemannian and Finsler Geometry

Finsler me’rric)
/

1 1 1 .
Cost (Length)|  Lald = / F(H,(5))ds = / Fi(c, ¢)ds / di,, o0
0 0 0
Riemannian geometry | dl = \/gij(:c):bi:icjds _ \/gij(:c)vivjds — F(z,v)ds N/
164
Finsler geometry | dl = \/gij(xa 1)itiIds = \/gz'j(xv v)v'vids = F(z,v)ds
82 F2
Metric tensor 9ii = 5 ignd 9
1 0 1 03 F?(x,v) Ak =0
AW CEEED Aiji(w,v) = iﬁgij(x’ v) = 4 OviOvI vk for Reimannian geometry

property: A;i,(xz,v)v! =0

Example | F(z,v) = \/(,01)2 + (v2)2 + _.\/(Ul,)_4 + (?)2)4

Finsler geometry is just Riemannian geometry without the quadratic restriction



Finsler Geometry: historical remarks

The concept was first appeared In 1854

L:/dl dl = F(zt, - 2™ dzt, - da™)

( F is positively homogeneous of degree 1 in dxn)

——
-
"
-

‘i F1’ (Nonnegativity) Fy(c,¢) > 0 and Fy(c,é¢) =0iff ¢ =0 \
"= »F2' (Positive homogeneity) VA € RT, we have F,(c, \¢) = AF,(c, ¢)

F3' (Triangle inequality) F,(c,é1) + Fol(c, éa) > Fu(e, é1 + &)

F2 is necessary for reparametrization invariance



Finsler Geometry: historical remarks

L:/dl dl = F(zt, - 2™ dxt, -+, da™)

( F is positively homogeneous of degree 1 in dxn)

1854: Riemann, “Habilitation” address

“Uber die Hypotheser welche der geometric zugrund liegen".
On the hypotheses, which lie at the Foundations of Geometry

“The study of metric which is the fourth root of a quartic ~-._
differential form is quite time-consuming and does not throw
new light to the problem.” v

F(a.v) = /(012 + (2)2 + /()T + (22!

F(z,dx) = g;j(x)dx"da’
1918 : Palu Finsler’s thesis

F(z,dx) = gij(x, )dx"da’




' Proof of F1 |

G1 Vi € O, C(z) > 0 and the equality holds iff & is the identity.
G2 Vi, € O, C(&)+C(g) > C(&D).
G4 C(60'Y)) = F(H,)ds + O(6s)

\

|
|

50 = exp(Hads)

Axioms of
Complexity

. /Fl (Nonnegativity) F(H) > 0 and F(H) =0 iff H =0 \
Properties of
Geometric F2 (Positive homogeneity) VA € RT, F(AH) = AF(H)
SILEUE \F3 (Triangle inequality) F'(H,) + F(Hs) > F(H; + Hy) /
Proof of Fl -
ﬁH:() F(H)Tlim8_>0+C(exp(Hs))/S:\0
G4 G1
If H 40

0 < C(exp(HN)) = C((exp(HN/N))Y) < NC(exp(HA/N)) = A (He) = \F(H)

GI



v Proof of F2 |

G1 Vi € O, C(z) > 0 and the equality holds iff & is the identity.
G2 Vi, € O, C(&)+C(g) > C(&D).
G4 C(60'Y)) = F(H,)ds + O(6s)

\

\
\

Axioms of
Complexity

50 = exp(Hads)

. /Fl (Nonnegativity) F(H) > 0 and F(H) =0 iff H =0 \
Properties of
Geometric F2 (Positive homogeneity) VA € R, F(AH) = AF(H)
STUETIE \FS (Triangle inequality) F(Hy) + F(Hy) > F(Hy + H») /
Proof of F1 - ~
C(exp(AH -€)) = C(exp(H - Ae))
G4

F(M\H)e = \F(H)e

—




v Proof of F3 |

G1 Vi € O, C(z) > 0 and the equality holds iff & is the identity.
G2 Vi, € O, C(&)+C(g) > C(&D).
G4 C(60'Y)) = F(H,)ds + O(6s)

\

|
|
|

50 = exp(Hads)

Axioms of
Complexity

. /Fl (Nonnegativity) F(H) > 0 and F(H) =0 iff H =0 \
Properties of
Geometric F2 (Positive homogeneity) VA € R, F(AH) = AF(H)
STUETIE \F3 (Triangle inequality) F(Hy) + F(Hy) > F(Hy + H») /
Proof of F1

-

C(exp(Hi€)) + C(exp(Hz¢)) > C(exp(Hie) exp(Hae)) =~ C(exp((H1 + H2)e))




What geometry?

R N 1
o0 Cost (Leng’rh)| La|c] := ZC((;OAZ@) N—oo, / F(Ha(s))ds
TN i=1 0
%\\‘
\ /( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
//, . Geodesic in some geometry?

What geometry?

'

F(H,)?

So far, it is any function.
Let us find constrains of F'(H,,)



What geometry?

: N 1
o0 | Cost (Leng’rh)| Lolc] := ZC((SOZ(O‘)) N=oo, / F(Hq(s))ds
(N i—1 0
\ ! ( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
/ ‘ Geodesic in some geometry?
What geometry? » Finsler geometry
N
F H ? > Finsler metric
) °
So far, it is any function. » Any Finsler metric

Let us find constrains of F'(H,)



What geometry?

: N 1
o0 | Cost (Leng’rh)| Lolc] := ZC((SOZ(O‘)) N=oo, / F(Hq(s))ds
(N i—1 0
\ ! ( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
/ ‘ Geodesic in some geometry?
What geometry? » Finsler geometry
N
F H ? > Finsler metric
) °
So far, it is any function. » Any Finsler metric

Let us find constrains of F'(H,)

More



Outline I

- General axioms
~ Finsler geometry from general axioms
o Constrain the geometry by QFT symmetry

~ Complexity for SU(n) operator



Constraints on Finsler metric I

Adjoint symmetry F(H,) = F(UH,U")

Left /right symmetry F(H)) = F(H,)
\

Uniqueness of cost(length) : |
Left /right ambiguity disappear!

Reversibility | F(H) = F(—H)




Constraints on Finsler metric I

r - N
Adjoint symmetry F(H,) = F(UHU" ~  Unitary symmetry vU € SU(n)

Lolc] = Lo[Uc(t)UT]

Left /right symmetry F(H)) = F(H,)

] i vr) = clt)l )
niqueness of cost(length) : A e e
Left /right ambiguity disappear! ) Ulr) = (Ue)U)U[Pr)

Reversibility | F(H) = F(—H) ~ Time-reversal symmetry | [La[c(t)] = La[c(_t)])




Constraints on Finsler metric I

r - “
Adjoint symmetry F(H,) = F(UHU" ~  Unitary symmetry vU € SU(n)

) ) Lolc] = Lo[Uc(t)UT]
Left /right symmetry F(H)) = F(H,) e

~ - PR ¥r) = c(t)[¥r)
nigueness or cost(length) : 2 23 N
Left /right ambiguity disappear! ) Ulr) = (Uc(t)UT)me
Reversibility | F(H) = F(—H) ~ Time-reversal symmetry | [La[c(t)] = La[c(_t)])
Proof .
Lold = La[Uc(t)UT] Lolc(t)] = Lale(—t)]
l\c —epotj l\\c _eXthj
1 A 1 o B
/0 F(H,)dt /O FOH, Ut / (H)dtifo F(—H)dt

(P = FOHDT) ) (Fun =F-n) )

—cforHl¢U—c_1forH

() =Fum) )




What geometry?

: N 1
o0 Cost (Length) | L[] := 3 c(50() ==, / F(H.,(s))ds
\ / ( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
/ ‘ Geodesic in some geometry?
What geometry? » Finsler geometry
N
F H ? » Finsler metric
&)
So far, it is any function. » Any Finsler metric

~

Let us find constrains of F'(H,,)

7\

More



What geometry?

: N 1
o0 Cost (Length) | L[] := 3 c(50() ==, / F(H.,(s))ds
\ / ( Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}
/ ‘ Geodesic in some geometry?
What geometry? » Finsler geometry
N
F H ? » Finsler metric
&)
So far, it is any function. » Any Finsler metric

~

Let us find constrains of F'(H,,)

AN B(H,) = F(0H,01
More g F'(H;) = F(H;)
F(H) = F(—H)




What geometry?

N 1
Cost (Length) | L[ =3 c(50{*) 2=, / F(H,(s))ds
i=1 0

Complexity | C,(O) := min{Lq[d]| Ve(s), c(0) =1, ¢(1) = O}

Geodesic in some geometry?

What geometry? >

Finsler geometry

'

F H(x P Fister meri

So far, it is any function.

~

Let us find constrains of F'(H,,)

7\

» Any Finsler metric

F(Ha) = F(UHLU")
More g F'(H;) = F(H;)
F(H) = F(-H)

How much can we fix F(H)?




Finsler metric of SU(n) operator

F(H) = \Tr ( HHT)



Finsler metric of SU(n) operator

Proof
F(H) = F(ﬁHﬁ_l) Adjoint symmetry
= ['(diag(v1,72, -+ ,7n)) Diagonal, order of the eigenvalues does not matter
n
_ f(v5) G3 |Parallel decomposition rule| Y(Z1,Z2) € O1 x Oy C O,
j=1 C((.Cf?l,ifjg)) = C((Zﬁl,ﬂg)) +C((H1,£2)>
n
— Z f(iImy;) Eigenvalues are all imaginary
j=1
— Zf(z]%]) F(H) = F(—H) Reversibility
j=1
= A A F2 (Positive homogeneity) VA € Rt, F(AH,) = \F'(H,
J
j=1



Finsler metric of SU(n) operator: Riemannian or Finsler?

F(e(s), é(s)) = F(H(s)) = NTry/H(s)H(s)'

n?—1
CTTG a _ 1 T 1 cpoC c
H(S) = H (S)Ta, H (S) - R TaTb — %5abﬂ+ 5 ; (Zfab + dab )TC
\4
: 1 a b m &
Fle,é) = mTr\/H () HO ()6l + 1T,

n=2: F(c¢) = %Tr\/Ha(s)Hb(s)éabf[ = \/Ha(s)Hb(s)éab Riemannian

n>2  Finsler(Non-Riemannian)

Finsler geometry is just Riemannian geometry without the quadratic restriction



Outline I

- General axioms
~ Finsler geometry from general axioms
~ Constrain the geometry by QFT symmetry

o Complexity for SU(n) operator



Complexity of SU(n) operator




Complexity of SU(n) operator

c(s) = Pelo B5H-(3) & \ .

For a bi-invariant Finsler geometry
c(s) is a geodesic iff there is a constant generator H c(0) =1

[Latifi and Razavi 2011,
Latifi and Toomanian 201 3]

C(O) = min{TrvVHH' | VH = In O} )
\
\

This ‘min’ means minimal ‘geodesics)

Integral is trivial since H is cons’rcm’r)




Bi-invariance l

Left /right symmetry |

~ ~

F(H, =¢c V) =F(H, =c ¢

right-invariant: invariant under left-invariant : invariant under
c—cU c— Uc

bi-invariance: left and right invariance

Why bi-invariant is
possible?

For this construction U = ¢g,,g,—1 - goq1 W

Right-invariance is natural because UV = g,9,-1---gog1 WV

Left-invariance looks not possible because VU = (Vg,g,_1 - -ggglvT)VW
However, left-invariance is also possible because V[ = (gngn_l .. .§2§1)VW

Gi = Vg V1



Complexity of SU(n) operator

(C(O) = min{TevVHAT | VA =1 O} )

Example: SU(2) |

L] = /0 " F(H(s))ds = /0 1 Tr\/H(s)HT(s)dﬁ

C(O) = 2arccos[Tr(0) /2]

Proof

C(O) = min{TrvVHH' | VH =1n 0} = 26, = 2 arccos[Tr(0)/2)]



Summary and outlook I

Complexity of operator |

Smoothness axiom ’é
<— s 1= ~ RN
c(s) = Pelo ) )
Lold = [ F(Hu(s)ds = [ Fale.)ds (/)
’ ° Y

U 2

3 general axioms + 2 symmetries of QFT

@(’)) = min{TrVHH | VH = h@})

Future work |

® Complexity of states, for example,

C(p1,p2) = {C(O) | p2 = Op10', YO € SU(n)}

® Comparison with holographic results and other field theory methods



Thank you



