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(Holographic) entanglement entrop

pa=Trg |WH{W| Sgeg = Tr(-palogps)
» Entanglement Entropy of a state

» This quantity is non-local, because of nontrivial trace on th
subspace.

» In most cases, it is not easy to calculate this quantity.
- Yesterday'’s talks




(Holographic) entanglement entrop

» How can we study this quantity through the AdS/CFT corre
» Ryu and Takayanagi’s proposal.

1. Holographic derivation of entanglement entropy from AdS/CFT
(1573) Shinsei Ryu, Tadashi Takayanagi (Santa Barbara, KITP). Mar 2006. 5 pp.
Published in Phys.Rev.Lett. 96 (2006) 181602
NSF-KITP-06-11
DOI: 10.1103/PhysRevl ett.96.181602
e-Print: hep-th/0603001 | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service; AMS MathSciNet

Detailed record - Cited by 1573 records




(Holographic) entanglement entrop

» What is a dual quantity to this entropy? A regularized
» Their answer is Minimal surfac
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» It is much easier to calculate this quantities than to do same
thing by the field theory calculation.

» The first law of entanglement entropy = linearized Einstei
equation. Raamsdonk(2017)

» See Raamsdonk(2017) and Sin(2017) for nonlinear extensi




Motivation

» So we will follow entanglement entropy through Ryu-
Takayanagi’s proposal.

» How can we trust the proposal?

» One can see that It can be a reliable approach for two
dimensional field theories.

» In 2 dimensional CFT or FT, we have more results by a field
theory calculation than the other dimensions.

» We cian check Ryu-Takayanagi’s formula with the field theory
results.

» The proposal is good for the results in 2-dim.

» Although there are many plausible explanations supporting RT
formula, we are not sure how much it is right and when it is
reliable.




Motivation

» It is very difficult to compute the entanglement entrop
the strong coupling regime by field theory calculation.

» We hope to find something which can be compared to Ry
Takayanagi’s entanglement entropy.

» If the entanglement entropy can be measured in
experiments, then we may compare the RT formula to the
experimental data.




Motivation

» Can we measure the entanglement entropy?

» Experimentalists are developing methods to measure th
entanglement entropy or other related quantities.

» For instance, EE, Renyi entropy and mutual information
for a very simple system. However their system is so far

from the system for results of RT formula

nature
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Measuring entanglement entropy in a _
quantum many-body system -l

Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli &
Markus Greiner B4

Nature 528, 77-83 (03 December 2015) | Download Citation &
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Motivation

» Anyway experimentalists are developing the methods.
» Usually an entropy is not a direct observable.
» More important quantity is variations of entropy.

» If we measure entanglement entropy changes under some
external sources, those may be compared to the Ryu-
Takayangi’s calculations.

» So we will focus on a holographic entanglement entropy
response to an external source.

» It could be compared to result from some experiment ne
future.




Motivation

» Since one of the basic experiments to investigate
matters is measuring responses to an electric field,
we choose the electric field as a source.

» Therefore, we will examine the entanglement
entropy change by applying an electric field
through the gauge/gravity duality.

» We will consider constant electric field for
simplicity.

» Thus we will care DC currents.



» How does a system change by turning an external
electric field?

» The electric field induces two kinds of currents.

» Electric current J and Heat current Q
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» The coefficients are given by Kubo formula :
Green’s Function (Two point Functions)

» These two point functions are called
electric conductivity, thermoelectric conductivity and
thermal conductivity.




Background dual to a system in an exte
fields

» A non-dynamical electric and magnetic field in
gauge/gravity duality correspond to a local bulk
gauge field.

A, (x,r)~Abx) + Lo+
p X, p RIS
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» We focuson d = 3, i.e, 2+1 dimensional CFT, because
there have been a lot of works on this topic recently.




Background dual to a system in an exte
fields

» Dyonic BH

» Dyonic BH + gauge field
; weak electric field
(DCorAC)




DC electric field for simplicity

» As a simplest gravity dual : Axion Model
» to have finite DC conductivity
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» This bulk theory admits a black brane solution.

2
ds* = =U(r)dt* + r* (da® + dy*) + sz )
T o 9 2 M 2
11 U(T)—(""—%—?‘F%)
AZQ(___)dtﬂ XI:(,BI,,B’Q') ;
r, T
fsA:r — E t+ 'ﬂ':[.' . 5gt:[.' Tzhtm s ‘5.9?“1: — '—r2h T s 5?(:1: — ¢I(T)ﬁ

20
g W

=



! T 2 T lf],IIF T
I(T) 4htm( ) iﬁh;rm(gm)) + ! ;( ) =0, "l’;(‘r) — Bhyy (1) — —/3 qu%(r) =0
" UI(T) :[.'(T) qhim(r) .
=0 e T

)+ (T +2) ) = ) = 5 (T + 2 ) hat) = 0

JT = 1limy J(T) . Qm =T — i“’Jm = limy 50 Q(T)

J () V=gF*" = U(r) ay(r) + q he(r),

o = ) (22) - 4o




» Current and Heat current

J* = li-tﬂr—}rh J(T) ; QI — limr—}rh Q(’r)

» In-falling BC
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» Conductivities
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HEE in this background

d2
U(r)
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» Ryu-Takayanagi Formula (The Strip case)
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Strip case

» With a convenient coordinate z
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Strip case
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» Expand z
2(0) = 20(0) + Az1(0) + O (\?)

» Eom : Even and Odd
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Strip case
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» Zeroth order : we obtained analytic result in some
limits and numerical result.

» Analytic results in the small | limit

guip _ L [20 V2mT(=y)  mrnlQ) 72y —4-)T)
EE AGNL | € INEOE V2T (-her(T) V2D(=1)3
+ (3767 (377 —472)T'(3) — 5v291 T(3)") 1A

9216072 T(3)"

872 y1(271 — 4 —7)(mP D(—5) + 48T(3)°) 4

+ 3I‘(—i)7I‘(%)6 [ —I—O(lﬁ)




Strip case

» Zero temperature result
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Figure 2: The refined function Qgﬁp at 5 =0 (a), B =05 (b), § =0(c) and § = 1(d) : The lines
on the surfaces denote 7' = 0 (Solid), 0.2 (Shortdashed), 0.3 (Dotdashed), 0.4 (Longdashed) and these
lines are plotted in Fig. 3.

» This is consistent with Gushterov, O'Bannonb and Rodgers _
2017 getmp _ & TN
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Figure 4: Comparison of the numerical calculation(Dashed) and the analytic calculation(Solid) for
B = 0.5: (a) is for a fixed temperature T = 0.1 and (b) describes the difference A between two results.
And (c) and (d) show the case with a fixed charge density ¢ = 0.5. It can be seen that the absolute
value of the difference |A| in the case of the fixed temperature becomes larger than that in the case
where the charge density is fixed.




Strip case 15t order response to E ?
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» No linear response to the electric field!

» To see the effect of entanglement entropy from
electric field, we have to consider quadratic order
in the electric field.

» We don’t know the background.

» We cannot see the change under an electric field i
this case.




» Why can’t we see the linear response?

» This case is so symmetric case. The solution of first o
equation is an odd function!
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» To obtain the effect of the electric field, we may tr
kinds of situations
- finding the quadratic order background in the elect
field

- Or we can try an asymmetric case.
» Entanglement entropy with a wedge entangling region!

Corner contributions to holographic entanglement entropy
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» The area

0
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» Small angle limit
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» Small R = the solution can be expanded in terms
of polynomials of rho.
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» eoms
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» Regularized Area
1 Timax R 3 3
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» Linear term from the integrand and the integral
region
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» Finally we obtain the linear term in the electric fie
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» The linear response of the holographic entangleme
is
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Discussion and Future Direction

» Response of the entanglement entropy to an external electri
be written in terms of measurable quantity.

» The correction is proportional to the thermo-electric coefficie
measurable quantity(Wedge type HEE).

» Quadratic order in E

» Response to AC Electric field

» Response to the temperature gradient
» Spherical entangling surfaces : What happens to the F-theorem.
» Response to magnetic field (comparable to field theory calculatio

» One top-down model with momentum relaxation
- Mass deformed ABJM with m(x) Kwon and KKK : arXiv:1806
[hep-th] discussed by Gauntlett



http://arxiv.org/abs/arXiv:1806.06963

» Thank you very much !




