

More on Turbulent Strings in AdS

Takaaki Ishii

Utrecht University

1504.02190, and to appear w/ Keiju Murata, Kentaroh Yoshida

31 Jul 2018@Gauge/Gravity Duality 2018, Wurzburg

Contents

- 1. Holographic quark potential
- 2. Turbulent strings in Poincare AdS
- 3. Turbulent strings in global AdS
- 4. Conclusions

Holographic qq potential

Probe open string in AdS

$$S = -\frac{1}{2\pi\alpha'} \int d^2\sigma \sqrt{-\det\gamma_{ab}}$$

Put this in e.g. Poincare AdS

$$ds^{2} = \frac{1}{z^{2}} \left(-dt^{2} + dz^{2} + dx^{2} \right)$$

This configuration is stable against linear perturbations.

Turbulent strings

We perturb the $q\bar{q}$ -string **nonlinearly**.

- Quench by moving the endpoints.
- Time evolution of small perturbations.

Formalism

Use worldsheet light-cone coord

$$ds^2 = 2\gamma_{uv} du dv$$

and solve the string EOMs

$$T_{,uv} = \frac{1}{Z} (T_{,u}Z_{,v} + T_{,v}Z_{,u})$$
$$Z_{,uv} = \frac{1}{Z} (T_{,u}T_{,v} + Z_{,u}Z_{,v} - \boldsymbol{X}_{,u} \cdot \boldsymbol{X}_{,v})$$
$$\boldsymbol{X}_{,uv} = \frac{1}{Z} (\boldsymbol{X}_{,u}Z_{,v} + \boldsymbol{X}_{,v}Z_{,u})$$

Boundary perturbation in $0 < t < \Delta t$ with amplitude ϵ

Cusp formation

The waves on the string become sharper.

Cusp pairs are created.

There is a nonzero minimal ϵ for the cusp formation.

Energy cascade

The case of cusp formation: direct energy cascade results in the power-law energy spectrum.

Questions

String theory in AdS is integrable, and turbulence/cusp formation might not happen?

c.f.) chaotic strings in non-integrable background [TI-Murata-Yoshida]

Segmented strings [Gubser et al, Vegh] utilizes AdS string's integrability.

What do our turbulent strings mean?

Nonlinear waves on an AdS string

[Mikhailov]

Analytic wave solution has been found in the case of AdS2 embedding \subset global AdS5.

This solution does not look turbulent.

Pictures taken from hep-th/0305169

Holographic qq potential in global AdS

$$ds^{2} = -\left(\frac{1+\chi^{2}}{1-\chi^{2}}\right) + \frac{4}{(1-\chi^{2})^{2}}d\chi^{2}$$

Small separation ($\psi_b=0$) reduces to the string in Poincare AdS.

Antipodal string ($\psi_b = \pi/2$) has AdS2 induced metric.

Δt=2, ε=0.08

Δt=2, ε=0.08

Δt=2, ε=0.08

Δt=2, ε=0.08

 $\psi_b = \pi/2$ (antipodal)

$\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

 $\psi_b = \pi/2$ (antipodal)

Cusps or no cusps

1

0.5

Cusp formation

Antipodal: No cusps

Cusp formation time scale

 $t_{\rm cusp} \sim \epsilon^{-1} (\psi_b - \pi/2)^{-1}$

 $\Delta t=2, \epsilon=0.01$ *log-log plot

 $\Delta t=2, \epsilon=0.01$ *log-log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Δt=2, ε=0.1 *log plot

Energy spectrum in global AdS

Conclusions

Open string in AdS exhibit turbulent behavior in Poincare/global AdS due to nonlinearity.

This results in cusp formation and energy cascades.

The cusp formation is suppressed in the antipodal string embedding in global AdS.

Outlook

Analytic aspects of the turbulent strings