Quantum Complexity of CFT states dual to bulk cosmological singularities

based on JHEP 1806 (2018) 016 ¹

Shubho Roy

(Indian Inst. of Technology (IIT), Hyderabad)

Gauge/Gravity Duality 2018 @ Julius-Maximilians-Universität, Würzburg

July 31, 2018

INFN, Pisa)

¹with E. Rabinovici (Racah Inst., Hebrew U.) & S. Bolognesi (Pisa U. &

Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state

(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 "ER = EPR")

Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state

(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 "ER = EPR")

► Eternal AdS BH ↔ thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)

Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state

(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 "ER = EPR")

- ► Eternal AdS BH ↔ thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena '13)
- ► Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)

Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state

(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 "ER = EPR")

- ► Eternal AdS BH ↔ thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)
- ► Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)
- ► Computational Complexity of CFT state ↔ Spatial volumes in the bulk (Susskind '14)

$$C(t) \sim rac{Vol.(\Sigma_t)}{G_N I}$$

Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state

(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 "ER = EPR")

- ► Eternal AdS BH ↔ thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena '13)
- Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)
- ▶ Computational Complexity of CFT state ↔ Spatial volumes in the bulk (Susskind '14)

$$C(t) \sim \frac{Vol.(\Sigma_t)}{G_N I}$$

EAdS-BH: At late times,

$$C \sim$$
 "ERB volume"; $\frac{dC}{dt} \sim T S$.

Computational/Quantum Complexity

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of singularities

► Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"

- ► Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- ▶ Ingredients: System, Set of States, Reference state (O), Simple operations (SO)

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- ▶ Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

 $C_A = Minimum \# SO$'s needed from O to A

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- ▶ Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

 $C_A = Minimum \# SO$'s needed from O to A

▶ Classically $C_{max} \sim S_{max} \sim N$, but,

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- ▶ Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$C_A = Minimum \# SO's needed from O to A$$

- ▶ Classically $C_{max} \sim S_{max} \sim N$, but,
- ▶ Quant. mech., $C_{max} \sim 2^N \times \mathbb{R}!$ (Feynman)

► Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)

- ► Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- ► Susskind (1402.5674, 1403.5695,...,1411.0690)

$$C = \frac{\mathsf{Vol}(\Sigma)}{G_N I}$$

- ► Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- ► Susskind (1402.5674, 1403.5695,...,1411.0690)

$$C = \frac{\mathsf{Vol}(\Sigma)}{G_N I}$$

▶ However, Σ is a *maximal* surface, stays away from the BH singularity,

- ► Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- ► Susskind (1402.5674, 1403.5695,...,1411.0690)

$$C = \frac{\mathsf{Vol}(\Sigma)}{G_N I}$$

- ▶ However, Σ is a *maximal* surface, stays away from the BH singularity,
- no obvious association b/w BH singularities and Complexity?

► Brown et. al. (1509.07876)

$$C = \frac{I_{bulk} (WdW)}{\pi \hbar}$$

▶ Brown et. al. (1509.07876)

$$C = \frac{I_{bulk} (WdW)}{\pi \hbar}$$

► Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)

► Brown et. al. (1509.07876)

$$C = \frac{I_{bulk} (WdW)}{\pi \hbar}$$

- ► Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- ► Eternal BH revisited: WdW patch has a contribution from the singularity!

► Brown et. al. (1509.07876)

$$C = \frac{I_{bulk} (WdW)}{\pi \hbar}$$

- ► Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- ► Eternal BH revisited: WdW patch has a contribution from the singularity!
- Still CV and CA matches perfectly!

CV and CA

Figure: Eternal SAdS: CV and CA

²Barbon and Rabinovici, (1509.0929 [hep-th]) □ → ← □ → ← □ → ← □ → □ → へ ○

▶ Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)

²Barbon and Rabinovici, (1509.0929 [hep-th])

- Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness : Only allow Marginal and Relevant deformations

- ► Generically: Time-dependent deformations of CFTs (Deformed *H* becomes singular at finite time)
- Preserve UV-completeness : Only allow Marginal and Relevant deformations
- Marginal: Coupling or CFT background metric gains time-dependence

$$ds_{CFT}^2 = \frac{L^2}{z^2} \left(-dt^2 + dz^2 + h_{ij}(t, x_i) \, dx_i \, dx_j \right). \tag{1}$$

(Kasner $h \sim t^p$, Topological Crunch $h \sim \Omega_{d-1}R\cos t/R$)

- ► Generically: Time-dependent deformations of CFTs (Deformed *H* becomes singular at finite time)
- Preserve UV-completeness : Only allow Marginal and Relevant deformations
- Marginal: Coupling or CFT background metric gains time-dependence

$$ds_{CFT}^2 = \frac{L^2}{z^2} \left(-dt^2 + dz^2 + h_{ij}(t, x_i) dx_i dx_j \right).$$
 (1)

(Kasner $h \sim t^p$, Topological Crunch $h \sim \Omega_{d-1}R\cos t/R$)

▶ Relevant: Time dependent Mass scale, M(t) (dS/Crunch) leads to a singular domain wall geometry in bulk.

Complexity Estimates CV

Complexity Estimates CV

AdS-Kasner:

$$C(t) \sim N^2 \Lambda^{d-1} \frac{V_{\scriptscriptstyle X}|t|}{I}, \ N^2 \sim \frac{I^{d-1}}{G_N}.$$

Complexity Estimates CV

AdS-Kasner:

$$C(t) \sim N^2 \Lambda^{d-1} \frac{V_{\scriptscriptstyle X}|t|}{I}, \ N^2 \sim \frac{I^{d-1}}{G_N}.$$

► Topological Crunch:

$$C_{\infty} \sim rac{N^2 V_d \Lambda^{d-1}}{R}, \ C_0 \sim N^2 V_d \Lambda^d$$

AdS-Kasner:

$$C(t) \sim N^2 \Lambda^{d-1} \frac{V_{\scriptscriptstyle X}|t|}{I}, \ N^2 \sim \frac{I^{d-1}}{G_N}.$$

► Topological Crunch:

$$C_{\infty} \sim \frac{N^2 V_d \Lambda^{d-1}}{R}, \ C_0 \sim N^2 V_d \Lambda^d$$

dS/Crunch:

$$C \sim N^2 V \left(\Lambda^{d-1} - M(t)^{d-1} \right) + N^2 I_- \Omega_{d-1} r(t)^{d-1}$$

AdS-Kasner:

$$C(t) \sim N^2 \Lambda^{d-1} \frac{V_{\scriptscriptstyle X}|t|}{I}, \ N^2 \sim \frac{I^{d-1}}{G_N}.$$

Topological Crunch:

$$C_{\infty} \sim \frac{N^2 V_d \Lambda^{d-1}}{R}, \ C_0 \sim N^2 V_d \Lambda^d$$

dS/Crunch:

$$C \sim N^2 V \left(\Lambda^{d-1} - M(t)^{d-1} \right) + N^2 I_- \Omega_{d-1} r(t)^{d-1}$$

Every case: Complexity decreases as we approach the singularity!

Kasner

$$C_{\mathcal{V}} \sim N^2 \Lambda^{d-1} V_{\mathcal{X}} \frac{|t|}{I} + N^2 \Lambda^{d-3} \frac{V_{\mathcal{X}}}{tI} + O\left(\Lambda^{d-5}\right)$$

$$C_{\mathcal{A}} \sim N^2 \Lambda^{d-1} V_{\mathcal{X}} \frac{|t|}{I} + N^2 \Lambda^{d-3} \frac{V_{\mathcal{X}}}{tI} + O\left(\Lambda^{d-5}\right)$$

Kasner

$$C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{I} + N^{2} \Lambda^{d-3} \frac{V_{x}}{tI} + O(\Lambda^{d-5})$$

$$C_{A} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{I} + N^{2} \Lambda^{d-3} \frac{V_{x}}{tI} + O(\Lambda^{d-5})$$

Topological Crunch

$$\begin{split} C_{\mathcal{V}} &\sim N^2 \Lambda^{d-1} I^d \cos \left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \sin^2 \left(\frac{t}{I}\right) \sec \left(\frac{t}{I}\right) \\ C_{\mathcal{A}} &\sim N^2 \Lambda^{d-1} I^d \cos \left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \left[\sin^2 \left(\frac{t}{I}\right) \sec \left(\frac{t}{I}\right) + ... \cos \left(\frac{t}{I}\right)\right] \end{split}$$

Kasner

$$C_{\mathcal{V}} \sim N^2 \Lambda^{d-1} V_x \frac{|t|}{l} + N^2 \Lambda^{d-3} \frac{V_x}{tl} + O\left(\Lambda^{d-5}\right)$$

$$C_{\mathcal{A}} \sim N^2 \Lambda^{d-1} V_x \frac{|t|}{l} + N^2 \Lambda^{d-3} \frac{V_x}{tl} + O\left(\Lambda^{d-5}\right)$$

Topological Crunch

$$C_{\mathcal{V}} \sim N^2 \Lambda^{d-1} I^d \cos\left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \sin^2\left(\frac{t}{I}\right) \sec\left(\frac{t}{I}\right)$$

$$C_{\mathcal{A}} \sim N^2 \Lambda^{d-1} I^d \cos\left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \left[\sin^2\left(\frac{t}{I}\right) \sec\left(\frac{t}{I}\right) + ... \cos\left(\frac{t}{I}\right)\right]$$

dS/Crunch

$$egin{split} \mathcal{C}_{\mathcal{V}} &\sim \left(rac{\pi}{2} - t
ight)^{-d} \ \mathcal{C}_{\mathcal{A}} &\sim \left(rac{\pi}{2} - t
ight)^{-(d+2)} \end{split}$$

Kasner

$$C_{\mathcal{V}} \sim N^2 \Lambda^{d-1} V_{\mathcal{X}} \frac{|t|}{I} + N^2 \Lambda^{d-3} \frac{V_{\mathcal{X}}}{tI} + O\left(\Lambda^{d-5}\right)$$

$$C_{\mathcal{A}} \sim N^2 \Lambda^{d-1} V_{\mathcal{X}} \frac{|t|}{I} + N^2 \Lambda^{d-3} \frac{V_{\mathcal{X}}}{tI} + O\left(\Lambda^{d-5}\right)$$

Topological Crunch

$$C_{\mathcal{V}} \sim N^2 \Lambda^{d-1} I^d \cos\left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \sin^2\left(\frac{t}{I}\right) \sec\left(\frac{t}{I}\right)$$

$$C_{\mathcal{A}} \sim N^2 \Lambda^{d-1} I^d \cos\left(\frac{t}{I}\right) + N^2 \Lambda^{d-3} I^{d-3} \left[\sin^2\left(\frac{t}{I}\right) \sec\left(\frac{t}{I}\right) + ... \cos\left(\frac{t}{I}\right)\right]$$

dS/Crunch

$$egin{aligned} \mathcal{C}_{\mathcal{V}} &\sim \left(rac{\pi}{2} - t
ight)^{-d} \ \mathcal{C}_{\mathcal{A}} &\sim \left(rac{\pi}{2} - t
ight)^{-(d+2)} \end{aligned}$$

dS/Crunch: Subleading terms are also different

Complexity Monotonically decreases, these spacelike crunch singularities lack bite!

- Complexity Monotonically decreases, these spacelike crunch singularities lack bite!
- ► Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent

- Complexity Monotonically decreases, these spacelike crunch singularities lack bite!
- ➤ Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent
- ▶ Coefficient of the rate of change determined by the subleading term (YGH term for $C \propto A$)

³Special thanks to Jie Ren for initial collaboration ← → ← ≥ → ← ≥ → へ ○ → へ ○

 Perhaps two distinct bulk geometric constructions are two different CFT measures as well

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes

³Special thanks to Jie Ren for initial collaboration (♂) (章) (章) (章) (章) (章)

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes
- Perhaps one can attempt a parallel with the classic BKL work regarding universality

³Special thanks to Jie Ren for initial collaboration (3) (2) (2) (2)

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes
- Perhaps one can attempt a parallel with the classic BKL work regarding universality
- ▶ Thanks! ³

³Special thanks to Jie Ren for initial collaboration () () () () () ()