Quantum Complexity of CFT states dual to bulk cosmological singularities based on JHEP 1806 (2018) $016{ }^{1}$

Shubho Roy
(Indian Inst. of Technology (IIT), Hyderabad)

Gauge/Gravity Duality 2018 @ Julius-Maximilians-Universität, Würzburg

$$
\text { July 31, } 2018
$$

[^0]
Introduction

- Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state
(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 " $E R=E P R$ ")

Introduction

- Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state
(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 " $E R=E P R$ ")

- Eternal AdS BH \leftrightarrow thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)

Introduction

- Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state
(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 " $E R=E P R$ ")

- Eternal AdS BH \leftrightarrow thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)
- Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)

Introduction

- Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state
(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 " $E R=E P R$ ")

- Eternal AdS BH \leftrightarrow thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)
- Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)
- Computational Complexity of CFT state \leftrightarrow Spatial volumes in the bulk (Susskind '14)

$$
C(t) \sim \frac{\operatorname{Vol} \cdot\left(\Sigma_{t}\right)}{G_{N} I}
$$

Introduction

- Central dogma of Holography

Bulk geometry represents an encoding of the entanglement structure of boundary state
(Ryu-Takayanagi' 06, Raamsdonk'10, Maldacena-Susskind '13 " $E R=E P R$ ")

- Eternal AdS BH \leftrightarrow thermofield double state of 2 CFT's (Maldacena '01, Hartman-Maldacena'13)
- Dynamics of bulk geometry from entanglement structure of boundary state (Myers et. al. '13)
- Computational Complexity of CFT state \leftrightarrow Spatial volumes in the bulk (Susskind '14)

$$
C(t) \sim \frac{V o l .\left(\Sigma_{t}\right)}{G_{N} I}
$$

- EAdS-BH: At late times,

$$
C \sim " E R B \text { volume" } ; \frac{d C}{d t} \sim T S
$$

Outline

Outline

- Computational/Quantum Complexity

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)

Outline

- Computational/Quantum Complexity
- Complexity-Volume (CV) and Complexity-Action conjectures (CA)
- Cosmological Singularities in the bulk ala Barbon and Rabinovici (1509.0929)
- CV vs CA results: Universal features of singularities

Computational Complexity

Computational Complexity

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"

Computational Complexity

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)

Computational Complexity

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum } \# S O \text { 's needed from } O \text { to } A
$$

Computational Complexity

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum } \# \text { SO's needed from } O \text { to } A
$$

- Classically $C_{\max } \sim S_{\max } \sim N$, but,

Computational Complexity

- Information theory/ Computer Sc.: Quantifies "difficulty of performing a task"
- Ingredients: System, Set of States, Reference state (O), Simple operations (SO)
- Complexity of State A

$$
C_{A}=\text { Minimum \# SO's needed from } O \text { to } A
$$

- Classically $C_{\max } \sim S_{\max } \sim N$, but,
- Quant. mech., $C_{\max } \sim 2^{N} \times \mathbb{R}$! (Feynman)

Computational Complexity and Volumes: CV

Computational Complexity and Volumes: CV

- Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)

Computational Complexity and Volumes: CV

- Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}(\Sigma)}{G_{N} l}
$$

Computational Complexity and Volumes: CV

- Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}(\Sigma)}{G_{N} l}
$$

- However, Σ is a maximal surface, stays away from the BH singularity,

Computational Complexity and Volumes: CV

- Hard to define complexity in the continuum limit (Takayanagi et. al., Alishahiha, Myers et. al.)
- Susskind (1402.5674, 1403.5695,...,1411.0690)

$$
C=\frac{\operatorname{Vol}(\Sigma)}{G_{N} l}
$$

- However, Σ is a maximal surface, stays away from the BH singularity,
- no obvious association b/w BH singularities and Complexity?

Computational Complexity and WdW Action: CA

Computational Complexity and WdW Action: CA

- Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

Computational Complexity and WdW Action: CA

- Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)

Computational Complexity and WdW Action: CA

- Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- Eternal BH revisited: WdW patch has a contribution from the singularity!

Computational Complexity and WdW Action: CA

- Brown et. al. (1509.07876)

$$
C=\frac{I_{\text {bulk }}(W d W)}{\pi \hbar}
$$

- Complications due to null boundaries of the WdW patch, fixed by Lehner et. al. (1609.00207)
- Eternal BH revisited: WdW patch has a contribution from the singularity!
- Still CV and CA matches perfectly!

CV and CA

Figure: Eternal SAdS: CV and CA

Cosmological Singularities in the bulk ${ }^{2}$

${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])

Cosmological Singularities in the bulk ${ }^{2}$

- Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)

[^1]
Cosmological Singularities in the bulk ${ }^{2}$

- Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])

Cosmological Singularities in the bulk ${ }^{2}$

- Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
- Marginal: Coupling or CFT background metric gains time-dependence

$$
\begin{equation*}
d s_{C F T}^{2}=\frac{L^{2}}{z^{2}}\left(-d t^{2}+d z^{2}+h_{i j}\left(t, x_{i}\right) d x_{i} d x_{j}\right) \tag{1}
\end{equation*}
$$

(Kasner $h \sim t^{p}$, Topological Crunch $h \sim \Omega_{d-1} R \cos t / R$)

Cosmological Singularities in the bulk ${ }^{2}$

- Generically: Time-dependent deformations of CFTs (Deformed H becomes singular at finite time)
- Preserve UV-completeness: Only allow Marginal and Relevant deformations
- Marginal: Coupling or CFT background metric gains time-dependence

$$
\begin{equation*}
d s_{C F T}^{2}=\frac{L^{2}}{z^{2}}\left(-d t^{2}+d z^{2}+h_{i j}\left(t, x_{i}\right) d x_{i} d x_{j}\right) \tag{1}
\end{equation*}
$$

(Kasner $h \sim t^{p}$, Topological Crunch $h \sim \Omega_{d-1} R \cos t / R$)

- Relevant: Time dependent Mass scale, $M(t)$ ($\mathrm{dS} /$ Crunch) leads to a singular domain wall geometry in bulk.

[^2]
Complexity Estimates CV

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d-1} \frac{V_{x}|t|}{l}, N^{2} \sim \frac{l^{d-1}}{G_{N}} .
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d-1} \frac{V_{x}|t|}{l}, N^{2} \sim \frac{l^{d-1}}{G_{N}} .
$$

- Topological Crunch:

$$
C_{\infty} \sim \frac{N^{2} V_{d} \Lambda^{d-1}}{R}, C_{0} \sim N^{2} V_{d} \Lambda^{d}
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d-1} \frac{V_{x}|t|}{I}, N^{2} \sim \frac{l^{d-1}}{G_{N}}
$$

- Topological Crunch:

$$
C_{\infty} \sim \frac{N^{2} V_{d} \Lambda^{d-1}}{R}, C_{0} \sim N^{2} V_{d} \Lambda^{d}
$$

- dS/Crunch:

$$
C \sim N^{2} V\left(\Lambda^{d-1}-M(t)^{d-1}\right)+N^{2} I_{-} \Omega_{d-1} r(t)^{d-1}
$$

Complexity Estimates CV

- AdS-Kasner:

$$
C(t) \sim N^{2} \Lambda^{d-1} \frac{V_{x}|t|}{l}, N^{2} \sim \frac{l^{d-1}}{G_{N}}
$$

- Topological Crunch:

$$
C_{\infty} \sim \frac{N^{2} V_{d} \Lambda^{d-1}}{R}, C_{0} \sim N^{2} V_{d} \Lambda^{d}
$$

- dS/Crunch:

$$
C \sim N^{2} V\left(\Lambda^{d-1}-M(t)^{d-1}\right)+N^{2} I_{-} \Omega_{d-1} r(t)^{d-1}
$$

- Every case: Complexity decreases as we approach the singularity!

Complexity Estimates: CA

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
C_{\mathcal{V}} & \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right) \\
C_{\mathcal{A}} & \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
C_{\mathcal{V}} & \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right) \\
C_{\mathcal{A}} & \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t l}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{V} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} I^{d-3} \sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} l^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} I^{d-3}\left[\sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right)+. . \cos \left(\frac{t}{l}\right)\right]
\end{gathered}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t \mid}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t \mid}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{\mathcal{V}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{I}\right)+N^{2} \Lambda^{d-3} I^{d-3} \sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{I}\right)+N^{2} \Lambda^{d-3} I^{d-3}\left[\sin ^{2}\left(\frac{t}{I}\right) \sec \left(\frac{t}{I}\right)+. . \cos \left(\frac{t}{I}\right)\right]
\end{gathered}
$$

- dS/Crunch

$$
\begin{aligned}
C_{\mathcal{V}} & \sim\left(\frac{\pi}{2}-t\right)^{-d} \\
C_{\mathcal{A}} & \sim\left(\frac{\pi}{2}-t\right)^{-(d+2)}
\end{aligned}
$$

Complexity Estimates: CA

- Kasner

$$
\begin{aligned}
& C_{V} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t \mid}+O\left(\Lambda^{d-5}\right) \\
& C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} V_{x} \frac{|t|}{l}+N^{2} \Lambda^{d-3} \frac{V_{x}}{t \mid}+O\left(\Lambda^{d-5}\right)
\end{aligned}
$$

- Topological Crunch

$$
\begin{gathered}
C_{\mathcal{V}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} I^{d-3} \sin ^{2}\left(\frac{t}{l}\right) \sec \left(\frac{t}{l}\right) \\
C_{\mathcal{A}} \sim N^{2} \Lambda^{d-1} I^{d} \cos \left(\frac{t}{l}\right)+N^{2} \Lambda^{d-3} I^{d-3}\left[\sin ^{2}\left(\frac{t}{I}\right) \sec \left(\frac{t}{l}\right)+. . \cos \left(\frac{t}{l}\right)\right]
\end{gathered}
$$

- dS/Crunch

$$
\begin{gathered}
C_{\mathcal{V}} \sim\left(\frac{\pi}{2}-t\right)^{-d} \\
C_{\mathcal{A}} \sim\left(\frac{\pi}{2}-t\right)^{-(d+2)}
\end{gathered}
$$

- dS/Crunch: Subleading terms are also different

Complexity of Cosmological Crunches: Universal features

Complexity of Cosmological Crunches: Universal features

- Complexity Monotonically decreases, these spacelike crunch singularities lack bite!

Complexity of Cosmological Crunches: Universal

 features- Complexity Monotonically decreases, these spacelike crunch singularities lack bite!
- Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent

Complexity of Cosmological Crunches: Universal

 features- Complexity Monotonically decreases, these spacelike crunch singularities lack bite!
- Time rate of change of complexity contains a UV divergent time-dependent piece for CFT metric being time-dependent
- Coefficient of the rate of change determined by the subleading term (YGH term for $C \propto \mathcal{A}$)

Complexity of Singularities: Takeaway

${ }^{3}$ Special thanks to Jie Ren for initial collaboration

Complexity of Singularities: Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well

[^3]
Complexity of Singularities: Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes

[^4]
Complexity of Singularities: Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes
- Perhaps one can attempt a parallel with the classic BKL work regarding universality

[^5]
Complexity of Singularities: Takeaway

- Perhaps two distinct bulk geometric constructions are two different CFT measures as well
- Universal features for decrease of complexity, contrasts w/ local probes
- Perhaps one can attempt a parallel with the classic BKL work regarding universality
- Thanks! ${ }^{3}$

[^6]
[^0]: ${ }^{1}$ with E. Rabinovici (Racah Inst., Hebrew U.) \& S. Bolognesi (Pisa U. \& INFN, Pisa)

[^1]: ${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])

[^2]: ${ }^{2}$ Barbon and Rabinovici, (1509.0929 [hep-th])

[^3]: ${ }^{3}$ Special thanks to Jie Ren for initial collaboration

[^4]: ${ }^{3}$ Special thanks to Jie Ren for initial collaboration

[^5]: ${ }^{3}$ Special thanks to Jie Ren for initial collaboration

[^6]: ${ }^{3}$ Special thanks to Jie Ren for initial collaboration

