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in theories with a critical point 

It is interesting to see which universality class the theory belongs 
to.


static critical exponent (thermodynamic quantities)


dynamic critical exponent (transport properties, relaxation times and 
the response to time-dependent perturbations)


understanding the evolution of a system near the critical point


A very interesting example can be QCD theory and heavy ion 
collision

Motivation

Figure 1: The expected phase diagram of QCD. The line ending in a star is the first-order
chiral transition and its critical endpoint, which we focus on. Below is the nuclear matter
transition. At lower right are color superconducting phases, color-flavor locked and otherwise.

T -axis, the order of the transition depends on the number of massless quarks. For two

massless quarks, the transition on the T -axis is second order and in the universality class of

the O(4) model; this transition is expected to be the end of a line of second-order transitions

extending into the T -µ plane and meeting the first-order line rising from the µ-axis at a

tricritical point. For three massless quarks, on the other hand, the transition on the T -axis

is expected to be first-order.

In the real world, quarks are massive and chiral symmetry is not an exact symmetry of

QCD. On the T -axis, the transition is known from lattice studies not to be a sharp transition

but instead a crossover. It is widely expected that at su�ciently large chemical potential µ

the first-order line returns; it then terminates at a critical endpoint at some (Tc, µc). This is

displayed in figure 1.

The critical endpoint is an object of substantial interest and speculation. It is di�cult to

explore it theoretically, as the theory is strongly coupled and lattice calculations are di�cult

at finite µ. A number of models have been constructed to analyze its properties. It is

expected to lie in the universality class of the 3D Ising model, like the standard liquid/gas

transition of fluids. It is anticipated that depending on its location on the phase diagram,

future heavy ion experiments such as those at RHIC, LHC or FAIR may produce a quark-

gluon plasma lying close to the critical point at freeze-out, which could lead to information
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• out of equilibrium 
• strongly coupled 
• non-zero chemical potential and temperature

Hohenberg, Halperin; 1977



Outline:

Out-of-equilibrium systems in holography 

Background dual to field theory at non-zero temperature and 
chemical potential 

Behavior of  the equilibration time 

Phase structure and critical exponent 

Conclusion
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Holographic Out-of-Equilibrium Systems:

There are two methods to produce an out-of-equilibriums system: 

injecting energy by turning on a source 

starting from out-of-equilibrium initial states 

In the gauge/gravity framework these correspond to: 

deforming the boundary field theory by a time-dependent 
coupling  

bulk configuration on the initial time-slice
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1 Introduction

Consider quantum mechanics with a Hamiltonian which depends on some external

parameter λ,

Hλ = H0 + λ δH . (1.1)

The dynamics of the system induced by variations in λ is well-understood, e.g., , see [1].

In particular, consider beginning with λ = 0 and preparing the system in an energy

eigenstate of the Hamiltonian H0. If the new coupling is turned on adiabatically, the

system continues in an eigenstate with a time-dependent energy which simply traces
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the changes in λ(t). In contrast, if the coupling is abruptly turned on, e.g., λ = λ0 θ(t),

the system would evolve forward in a complicated linear superposition of eigenstates

of the new Hamiltonian. While the description of adiabatically evolving couplings

is easily adapted to quantum field theory (QFT) [2], the description of the latter

‘quantum quenches’ is less well understood in the context. However, it has become the

subject of a vigorous research program motivated by the recent advances in cold atom

experiments [3–5].

Gauge/gravity duality [6] provides a remarkable framework for the study of certain

strongly coupled gauge theories. Although the most applications of this correspondence

have been directed at analyzing the static properties of the boundary theories, there

is no conceptual obstacle in applying this holographic framework to time dependant

problems and in particular, to the study of quantum quenches [7]. In fact, early

attention was given to the related question of describing ‘thermalization’ within this

holographic framework [8] and motivated by connections with the strongly coupled

quark-gluon plasma, there has been a renewed interest in this subject [9–12]. However,

given the complexities of the bulk description of rapid changes in the boundary theory,

numerical relativity is increasingly being applied to study these ‘far from equilibrium’

situations [13–19].

In this paper we begin a study of quenches in the strongly couple N = 2∗ gauge

theory [20–22] applying the techniques of numerical relativity. Recall that N = 2∗

gauge theory is obtained as a deformation of the N = 4 super-Yang-Mills (SYM),

where a N = 2 hypermultiplet acquires a mass m. For technical reasons, we will limit

our present investigation to ‘thermal quenches,’ where the initial state is a thermal

state, i.e., the N = 2∗ theory is prepared in a microcanonical ensemble, and we work

to leading order in in a high temperature expansion with m ≪ T .1 As explained

in [25], in such a thermal state, we can split the masses of the bosonic and the fermionic

components of the massive hypermultiplet. Hence we investigate two separate classes

of thermal quenches with

LSYM + λ∆(t) O∆ , (1.2)

where we may have either the bosonic mass operator O2 or the fermionic mass operator

O3 (with dimensions ∆ = 2 and 3, respectively). Of course, the couplings which vary

in time are then simply the corresponding masses, i.e., λ2 = m2
b and λ3 = mf . In

1Thermodynamics of N = 2∗ plasma was discussed in [23–26].
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II. THE CHARGED BLACK HOLE BACKGROUND

Heavy ion experiments done at LHC, RHIC and future colliders are good samples of producing mediums, called
quark-gluon plasma, that are strongly coupled and out of equilibrium [2]. Comparing experimental observations and
hydrodynamic simulations suggests that viscosity normalized by entropy density is very small for this plasma and
therefore indicates that the plasma is strongly coupled. Another outcome of this comparison is the fact that the
plasma thermalizes very fast, by which we mean hydrodynamic equations can describe the dynamic of the system
very soon after the collision. Before hydrodynamic equations can be applied, the plasma is out of equilibrium and this
is the stage we are trying to model and study in this paper. Due to the collision of heavy nuclei in theses experiments
the net baryon number is nonzero which means a nonzero chemical potential, although it’s very small. Thus in the
QCD phase space the plasma is situated in the crossover region, near the temperature axis.

As explained before in order to study such system we use gauge/gravity duality. Since we are interested in studying
the e↵ect of field theory parameters such as chemical potential on equilibration in out-of-equilibrium systems we will
consider the background with a U(1) gauge field. Due to the presence of a gauge field in the bulk the chemical
potential is nonzero.

The background metric that we study is a solution to the following action

S =
1

16⇡

Z
d5x

p
�g

✓
R�

4

3
(r�)2 � V (�)� e�

4↵
3 �Fµ⌫F

µ⌫

◆
, (1)

where R, Fµ⌫ and � are the Ricci scalar, gauge field strength and the scalar field, respectively. V (�) is the scalar
potential which one can find its details in [9]. ↵ determines the coupling constant between the gauge and scalar field
on the gravity side. If ↵ = 0 we recover the known Einstein-Maxwell-scalar theory. If ↵ = 1 the last term in the action
gives the dilaton-Maxwell coupling that appears in the low energy string action in Einstein’s frame. The metric of
the solution to this action is

ds2 = �N(z)f(z)dv2 �
2

z2

r
N(z)

1 + b2z2
dvdz +

1 + b2z2

z2
g(z)d~x2,

f(z) =
1 + b2z2

z2
�2�

�m
z2

1 + b2z2
�1�� , (2)

where z is the radial coordinate and

N(z) = ��� , g(z) = �� , �(z) = 1�
b2z2

1 + b2z2
, � =

↵2

2 + ↵2
. (3)

Note that m is the mass of the black hole. The relation between the charge of the black hole, q, and its mass is

q =

r
6m

2 + ↵2
b. (4)

This solution is asymptotically AdS5 and its boundary is located at z = 0. The field theory lives on (t, ~x) where t is v
at the boundary. We have set the AdS radius to one. The full solution to the above action involves nontrivial scalar
and gauge field which, for more information, the reader can consult [9]. The chemical potential in the field theory,
due to the gauge field in the bulk, becomes [9]

µ =
b
p
3m

p
2 (↵2 + 2)

⇣
b2 + 1

z
2
h

⌘ , (5)

in AdS radius unit. zh is the horizon radius, the largest root of the equation f(zh) = 0. The Hawking temperature
of the black hole is

T =
b�(zh)

3�
2 �1

4⇡
p

1� �(zh)
(2(3� � 1)� 3(2� � 2)�(zh)) . (6)

This background parametrized by three parameters m, q, b, where two of them are independent, corresponds to the
field theory at fixed temperature and chemical potential. Since we are interested in studying the thermalization
process in field theory we need to consider the background to be of Vaidya type. This type of the background can be
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. (3)

Note that m is the mass of the black hole. The relation between the charge of the black hole, q, and its mass is

q =

r
6m

2 + ↵2
b. (4)

This solution is asymptotically AdS5 and its boundary is located at z = 0. The field theory lives on (t, ~x) where t is v
at the boundary. We have set the AdS radius to one. The full solution to the above action involves nontrivial scalar
and gauge field which, for more information, the reader can consult [9]. The chemical potential in the field theory,
due to the gauge field in the bulk, becomes [9]

µ =
b
p
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p
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b2 + 1

z
2
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⌘ , (5)

in AdS radius unit. zh is the horizon radius, the largest root of the equation f(zh) = 0. The Hawking temperature
of the black hole is

T =
b�(zh)

3�
2 �1

4⇡
p

1� �(zh)
(2(3� � 1)� 3(2� � 2)�(zh)) . (6)

This background parametrized by three parameters m, q, b, where two of them are independent, corresponds to the
field theory at fixed temperature and chemical potential. Since we are interested in studying the thermalization
process in field theory we need to consider the background to be of Vaidya type. This type of the background can be
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Heavy ion experiments done at LHC, RHIC and future colliders are good samples of producing mediums, called
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This solution is asymptotically AdS5 and its boundary is located at z = 0. The field theory lives on (t, ~x) where t is v
at the boundary. We have set the AdS radius to one. The full solution to the above action involves nontrivial scalar
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Phase Structure of the Background
If we set      and make some field redefinitions we obtain the 1-R 
charged black hole solution.


dual to strongly-coupled SYM plasma in flat 3+1 dimensions


conformal


phase diagram is 1-dimensional and a function of a single 
dimension-less ratio 


The phase diagram has the form of a semi-infinite line, ending 
on a critical point.


At the critical point the heat capacity     and charge 
susceptibility     diverge.
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FIG. 5: Left: This figure shows the dependence of bzh on µ
T . For each value of µ

T there exists two distinct values of bzh. The

black dot shows the critical point at ( ⇡
2
p

2
,
p
2). Right: This figure shows the rescaled equilibration times, teqs =

teq

c
p

���BH

and

teq
c��

for top and bottom plot, respectively, with respect to µ
T for the fixed final temperature, T = 0.37. The magenta dashed

line corresponds to the critical point which is at ( µ
T )⇤ = 1.1107.

µ

T
, the parameter in field theory dual. From the relations (5) and (6) one can see that

bzh =
1±

q
1� 8µ2

⇡2T 2

2µ
⇡T

, (16)

where

zh =

s
b2 +

p
b4 + 4m

2m
. (17)

It’s clear that each value of µ

T
corresponds to two distinct values of bzh which parametrizes stable and unstable branches

of solutions as shown in figure 5, left. This conclusion indicates the existence of phase transition in field theory. One
branch of the plot corresponds to thermodynamically stable configurations and the other branch, unstable. This can
be checked using the Jacobian, J = @(s,⇢)

@(T,µ) where s and ⇢ are entropy and charge density, respectively

s /
T 3(1 + b2z2

h
)2

(2 + b2z2
h
)3

(18)

⇢ /
µ

T
(2 + b2z2

h
)
q

1 + b2z2
h
. (19)

If the Jacobbian is positive for a set of parameters then the systems corresponding to those are thermodynamically
stable [8]. The upper(lower) sign in (16) correspond to thermodynamically unstable(stable) configurations. The
maximum of µ

T
happens at

m = (
3q4

4
)

1
3 (20)

where µ

T
= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 5, left.
The question we asked in the beginning of this section can be addressed by checking the behavior of the response in

the field theory to the time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent
scalar field in the bulk or Vaidya background which produces time-dependent temperature and chemical potential in
field theory. We will show that the response in field theory, although a one-point function, knows about the critical
point. Following the same calculation done in the previous sections we have plotted the rescaled equilibration time
with respect to µ

T
for two di↵erent cases of injecting energy in figure 5, right. The magenta dashed line in this

graph shows the critical point where µ

T
gets its maximum value. The stable(unstable) branches are presented by

blue(red) points. A very interesting observation is that for each value of µ

T
the rescaled equilibration time for the
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branch of the plot corresponds to thermodynamically stable configurations and the other branch, unstable. This can
be checked using the Jacobian, J = @(s,⇢)

@(T,µ) where s and ⇢ are entropy and charge density, respectively
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If the Jacobbian is positive for a set of parameters then the systems corresponding to those are thermodynamically
stable [8]. The upper(lower) sign in (16) correspond to thermodynamically unstable(stable) configurations. The
maximum of µ
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where µ

T
= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 5, left.
The question we asked in the beginning of this section can be addressed by checking the behavior of the response in

the field theory to the time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent
scalar field in the bulk or Vaidya background which produces time-dependent temperature and chemical potential in
field theory. We will show that the response in field theory, although a one-point function, knows about the critical
point. Following the same calculation done in the previous sections we have plotted the rescaled equilibration time
with respect to µ

T
for two di↵erent cases of injecting energy in figure 5, right. The magenta dashed line in this

graph shows the critical point where µ

T
gets its maximum value. The stable(unstable) branches are presented by

blue(red) points. A very interesting observation is that for each value of µ

T
the rescaled equilibration time for the
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where �BH specified at what speed the background changes.
In order to explain what the parameter ↵ represents in the field theory we look at the solution to the scalar field �
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It is known that, according to gauge/gravity duality that the equation of motion of the scalar field in the bulk with
appropriate boundary conditions corresponds to �-function of the coupling in field theory [10]. Therefore, regarding
the above solution for �, ↵ in the coupling between scalar field and gauge field in the bulk, represents di↵erent
coupling flow directions to the UV fixed point.

III. DYNAMICAL PROBE AND EQUILIBRATION TIME

As was mentioned before we would like to study the process of equilibration and its response to the parameters
introduced in the physical system. The origin of this desire comes from the fact that the quark-gluon plasma produced
in heavy ion collisions is out of equilibrium at the very early stages of its evolution. We try to model a system which
in some sense can give us some information about the equilibration and how it is a↵ected by parameters relevant to
quark-gluon plasma.

A. Set-Up

We consider a probe scalar field in the background, introduced in the previous section, which has its own dynamics
and evolves in time. According to the gauge/gravity duality, the near boundary expansion of the scalar field in
the bulk gives the source and expectation value of the corresponding scalar operator in the field theory where the
expectation value is calculated on an arbitrary state. Since we are interested in the equilibration process, we study
the response of a dynamical scalar operator on an equilibrium or out-of-equilibrium state corresponding to charged
static or Vaidya black hole background in the gravity dual. The non-trivial response of the scalar operator can be
resulted from various time-dependent initial conditions or a time-dependent source.

A scalar field is added to the background in the probe limit and to study its dynamic we solve the corresponding
Klein-Gordon equation. We have assumed the mass of the scalar field is m2 = �3, corresponding to an operator with
mass dimension � = 3 in field theory. It needs to be emphasized that this scalar field �(v, z) should not be confused
with the scalar field �(z) in the background. The near boundary expansion of the scalar field can be derived in the
form
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where �s(v) and �r(v) are the source and response in field theory, respectively, obtained from the asymptotic expansion
of the scalar field in the bulk. The derivatives of these functions are taken with respect to v. We have chosen the
time-dependent source in field theory to be

�s(v) =
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where �� describes the speed at which the energy is injected into the field theory. In order to solve the Klein-Gordon
equation for the scalar field in the bulk we have to impose appropriate boundary and initial conditions[16]. It is more
practical to use the following notation for the scalar field
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Therefore the appropriate boundary conditions imposed on the scalar field are

�̃r(v, 0) = 0, @z�̃r(v, 0) = 0. (12)

To set the proper initial conditions we have to distinguish between zero and nonzero sources. For the case where the
source is not zero the initial condition is

�̃r(v0, z) = 0, (13)

where v0 is the initial time. We choose v0 = �20. When the source is zero we choose the initial condition to be

�̃r(v0, z) = z4. (14)

We can generally have di↵erent initial conditions as long as they satisfy the near boundary expansion of the scalar
field. Solving the equation of motion of the scalar field we will be able to obtain �̃r(t = v|z=0). This in fact is the
response function on the boundary. In the field theory the expectation value of the scalar operator dual to the bulk
scalar field is proportional to hO(t)i ⇡ @2

z
�̃r(t, z)z=0. Since �̃r(t) evolves with time in the non-equilibrium situation

we define a function as

✏(t) =
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hO(t)i � hO(t = 1)i

hO(t = 1)i

����, (15)

and teq is defined as the the time ✏(teq) < 5⇥ 10�3 and ✏(t) stays below this value afterwards.
We conclude this section with two important comments. First, we expect various initial conditions do not alter

thermalization time substantially and keeps the general behavior unchanged. It can be checked by numerical results.
Also the results of the papers [11, 12] approve our expectation. Second, when the scalar source is zero and we are
dealing with nonzero initial conditions the final equilibrium scalar response is zero and hence the definition of ✏(t) in
equation (15) reduces to ✏(t) = |hO(t)i|.

B. Numerical Results

In order to study the e↵ect of di↵erent physical parameters on the equilibration time, we start with the assumption
that the temperature is fixed and the chemical potential varies. Also the coupling flow directions to the UV fixed
point changes with the value of ↵. We choose the temperature to be T = 0.37 and plot the equilibration time with
respect to µ

T
for di↵erent values of ↵, figure 1. Note that in this figure we start from the initial out-of-equilibrium

states with the initial condition set as in equation (14). As it can be realized from the figure for small values of µ, the
equilibration time is independent of ↵ as all di↵erent curves coincide. For the range of µ we considered in this paper
it seems that the equilibration time is a decreasing function in µ for small values of ↵. As ↵ reaches the values larger

near boundary expansion of the external probe scalar field:
Ali-Akbari, Charmchi, 
Ebrahim, Shahkarami; 
2016-17



What are we trying to obtain?
equilibration time


is the time where               and      stays below this value 
afterwards.

5

FIG. 1: equilibration of scalar field with initial condition set as z4 for di↵erent values of ↵

Therefore the appropriate boundary conditions imposed on the scalar field are

�̃r(v, 0) = 0, @z�̃r(v, 0) = 0. (12)

To set the proper initial conditions we have to distinguish between zero and nonzero sources. For the case where the
source is not zero the initial condition is

�̃r(v0, z) = 0, (13)

where v0 is the initial time. We choose v0 = �20. When the source is zero we choose the initial condition to be

�̃r(v0, z) = z4. (14)

We can generally have di↵erent initial conditions as long as they satisfy the near boundary expansion of the scalar
field. Solving the equation of motion of the scalar field we will be able to obtain �̃r(t = v|z=0). This in fact is the
response function on the boundary. In the field theory the expectation value of the scalar operator dual to the bulk
scalar field is proportional to hO(t)i ⇡ @2

z
�̃r(t, z)z=0. Since �̃r(t) evolves with time in the non-equilibrium situation

we define a function as

✏(t) =

����
hO(t)i � hO(t = 1)i

hO(t = 1)i

����, (15)

and teq is defined as the the time ✏(teq) < 5⇥ 10�3 and ✏(t) stays below this value afterwards.
We conclude this section with two important comments. First, we expect various initial conditions do not alter

thermalization time substantially and keeps the general behavior unchanged. It can be checked by numerical results.
Also the results of the papers [11, 12] approve our expectation. Second, when the scalar source is zero and we are
dealing with nonzero initial conditions the final equilibrium scalar response is zero and hence the definition of ✏(t) in
equation (15) reduces to ✏(t) = |hO(t)i|.

B. Numerical Results

In order to study the e↵ect of di↵erent physical parameters on the equilibration time, we start with the assumption
that the temperature is fixed and the chemical potential varies. Also the coupling flow directions to the UV fixed
point changes with the value of ↵. We choose the temperature to be T = 0.37 and plot the equilibration time with
respect to µ

T
for di↵erent values of ↵, figure 1. Note that in this figure we start from the initial out-of-equilibrium

states with the initial condition set as in equation (14). As it can be realized from the figure for small values of µ, the
equilibration time is independent of ↵ as all di↵erent curves coincide. For the range of µ we considered in this paper
it seems that the equilibration time is a decreasing function in µ for small values of ↵. As ↵ reaches the values larger

5

FIG. 1: equilibration of scalar field with initial condition set as z4 for di↵erent values of ↵

Therefore the appropriate boundary conditions imposed on the scalar field are

�̃r(v, 0) = 0, @z�̃r(v, 0) = 0. (12)

To set the proper initial conditions we have to distinguish between zero and nonzero sources. For the case where the
source is not zero the initial condition is

�̃r(v0, z) = 0, (13)

where v0 is the initial time. We choose v0 = �20. When the source is zero we choose the initial condition to be

�̃r(v0, z) = z4. (14)

We can generally have di↵erent initial conditions as long as they satisfy the near boundary expansion of the scalar
field. Solving the equation of motion of the scalar field we will be able to obtain �̃r(t = v|z=0). This in fact is the
response function on the boundary. In the field theory the expectation value of the scalar operator dual to the bulk
scalar field is proportional to hO(t)i ⇡ @2

z
�̃r(t, z)z=0. Since �̃r(t) evolves with time in the non-equilibrium situation

we define a function as

✏(t) =

����
hO(t)i � hO(t = 1)i

hO(t = 1)i

����, (15)

and teq is defined as the the time ✏(teq) < 5⇥ 10�3 and ✏(t) stays below this value afterwards.
We conclude this section with two important comments. First, we expect various initial conditions do not alter

thermalization time substantially and keeps the general behavior unchanged. It can be checked by numerical results.
Also the results of the papers [11, 12] approve our expectation. Second, when the scalar source is zero and we are
dealing with nonzero initial conditions the final equilibrium scalar response is zero and hence the definition of ✏(t) in
equation (15) reduces to ✏(t) = |hO(t)i|.

B. Numerical Results

In order to study the e↵ect of di↵erent physical parameters on the equilibration time, we start with the assumption
that the temperature is fixed and the chemical potential varies. Also the coupling flow directions to the UV fixed
point changes with the value of ↵. We choose the temperature to be T = 0.37 and plot the equilibration time with
respect to µ

T
for di↵erent values of ↵, figure 1. Note that in this figure we start from the initial out-of-equilibrium

states with the initial condition set as in equation (14). As it can be realized from the figure for small values of µ, the
equilibration time is independent of ↵ as all di↵erent curves coincide. For the range of µ we considered in this paper
it seems that the equilibration time is a decreasing function in µ for small values of ↵. As ↵ reaches the values larger

5

FIG. 1: equilibration of scalar field with initial condition set as z4 for di↵erent values of ↵

Therefore the appropriate boundary conditions imposed on the scalar field are

�̃r(v, 0) = 0, @z�̃r(v, 0) = 0. (12)

To set the proper initial conditions we have to distinguish between zero and nonzero sources. For the case where the
source is not zero the initial condition is

�̃r(v0, z) = 0, (13)

where v0 is the initial time. We choose v0 = �20. When the source is zero we choose the initial condition to be

�̃r(v0, z) = z4. (14)

We can generally have di↵erent initial conditions as long as they satisfy the near boundary expansion of the scalar
field. Solving the equation of motion of the scalar field we will be able to obtain �̃r(t = v|z=0). This in fact is the
response function on the boundary. In the field theory the expectation value of the scalar operator dual to the bulk
scalar field is proportional to hO(t)i ⇡ @2

z
�̃r(t, z)z=0. Since �̃r(t) evolves with time in the non-equilibrium situation

we define a function as

✏(t) =

����
hO(t)i � hO(t = 1)i

hO(t = 1)i

����, (15)

and teq is defined as the the time ✏(teq) < 5⇥ 10�3 and ✏(t) stays below this value afterwards.
We conclude this section with two important comments. First, we expect various initial conditions do not alter

thermalization time substantially and keeps the general behavior unchanged. It can be checked by numerical results.
Also the results of the papers [11, 12] approve our expectation. Second, when the scalar source is zero and we are
dealing with nonzero initial conditions the final equilibrium scalar response is zero and hence the definition of ✏(t) in
equation (15) reduces to ✏(t) = |hO(t)i|.

B. Numerical Results

In order to study the e↵ect of di↵erent physical parameters on the equilibration time, we start with the assumption
that the temperature is fixed and the chemical potential varies. Also the coupling flow directions to the UV fixed
point changes with the value of ↵. We choose the temperature to be T = 0.37 and plot the equilibration time with
respect to µ

T
for di↵erent values of ↵, figure 1. Note that in this figure we start from the initial out-of-equilibrium

states with the initial condition set as in equation (14). As it can be realized from the figure for small values of µ, the
equilibration time is independent of ↵ as all di↵erent curves coincide. For the range of µ we considered in this paper
it seems that the equilibration time is a decreasing function in µ for small values of ↵. As ↵ reaches the values larger

8

stable

unstable

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

12

14

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

2

4

6

8

10

12

14

μ

T

b
z h

top: βϕ=0.2, βBH=0.2, c=6
bottom: βϕ=5, c=1

stable
unstable

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.8

2.0

2.2

2.4

2.6

2.8

3.0

μ

T

FIG. 5: Left: This figure shows the dependence of bzh on µ
T . For each value of µ

T there exists two distinct values of bzh. The

black dot shows the critical point at ( ⇡
2
p

2
,
p
2). Right: This figure shows the rescaled equilibration times, teqs =

teq

c
p

���BH

and

teq
c��

for top and bottom plot, respectively, with respect to µ
T for the fixed final temperature, T = 0.37. The magenta dashed

line corresponds to the critical point which is at ( µ
T )⇤ = 1.1107.

µ

T
, the parameter in field theory dual. From the relations (5) and (6) one can see that

bzh =
1±

q
1� 8µ2

⇡2T 2

2µ
⇡T

, (16)

where

zh =

s
b2 +

p
b4 + 4m

2m
. (17)

It’s clear that each value of µ

T
corresponds to two distinct values of bzh which parametrizes stable and unstable branches

of solutions as shown in figure 5, left. This conclusion indicates the existence of phase transition in field theory. One
branch of the plot corresponds to thermodynamically stable configurations and the other branch, unstable. This can
be checked using the Jacobian, J = @(s,⇢)

@(T,µ) where s and ⇢ are entropy and charge density, respectively

s /
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h
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(2 + b2z2
h
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(18)

⇢ /
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h
)
q
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If the Jacobbian is positive for a set of parameters then the systems corresponding to those are thermodynamically
stable [8]. The upper(lower) sign in (16) correspond to thermodynamically unstable(stable) configurations. The
maximum of µ

T
happens at

m = (
3q4

4
)

1
3 (20)

where µ

T
= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 5, left.
The question we asked in the beginning of this section can be addressed by checking the behavior of the response in

the field theory to the time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent
scalar field in the bulk or Vaidya background which produces time-dependent temperature and chemical potential in
field theory. We will show that the response in field theory, although a one-point function, knows about the critical
point. Following the same calculation done in the previous sections we have plotted the rescaled equilibration time
with respect to µ

T
for two di↵erent cases of injecting energy in figure 5, right. The magenta dashed line in this

graph shows the critical point where µ

T
gets its maximum value. The stable(unstable) branches are presented by

blue(red) points. A very interesting observation is that for each value of µ

T
the rescaled equilibration time for the
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FIG. 1: time evolution of the expectation value of the scalar operator in field theory with initial condition (left) set as z4 and
in the presence of a source (right) for µ

T = 1.26908 and ↵ = 1.5.

Therefore the appropriate boundary conditions imposed on the scalar field are

�̃r(v, 0) = 0, @z�̃r(v, 0) = 0. (12)

To set the proper initial conditions we have to distinguish between zero and nonzero sources. For the case where the
source is not zero, the initial condition is

�̃r(v0, z) = 0, (13)

where v0 is the initial time. We choose v0 = �20. When the source is zero we choose the initial condition to be

�̃r(v0, z) = z4. (14)

We can generally have di↵erent initial conditions as long as they satisfy the near boundary expansion of the scalar
field. Solving the equation of motion of the scalar field we will be able to obtain �̃r(t = v|z=0). This in fact is the
response function on the boundary. In the field theory the expectation value of the scalar operator dual to the bulk
scalar field is proportional to hO(t)i ⇡ @2

z
�̃r(t, z)z=0. Since �̃r(t) evolves with time in the non-equilibrium situation

we define a function as

✏(t) =

����
hO(t)i � hO(t = 1)i

hO(t = 1)i

����, (15)

and teq is defined as the the time ✏(teq) < 5⇥ 10�3 and ✏(t) stays below this value afterwards.
We conclude this section with two important comments. First, we expect various initial conditions do not alter

thermalization time substantially and keep the general behavior unchanged. It can be checked by numerical results.
Also the results of the papers [11, 12] approve our expectation. Second, when the scalar source is zero and we are
dealing with nonzero initial conditions the final equilibrium scalar response is zero and hence the definition of ✏(t) in
equation (15) reduces to ✏(t) = |hO(t)i|. In order to see this more clearly we have plotted the time evolution of the
scalar operator in field theory in figure 1. As one can see in the right plot the expectation value of the scalar operator
reaches a nonzero constant value after a while.

B. Numerical Results

In order to study the e↵ect of di↵erent physical parameters on the equilibration time, we start with the assumption
that the temperature is fixed and the chemical potential varies. Also the coupling flow directions to the UV fixed
point changes with the value of ↵. We choose the temperature to be T = 0.37 and plot the equilibration time with
respect to µ

T
for di↵erent values of ↵, figure 2. One should note that all relevant parameters are measured in units

of AdS radius equal to one. It should be emphasized that in this figure we start from the initial out-of-equilibrium
states with the initial condition set as in equation (14). It can be realized from the figure for small values of µ, the
equilibration time is independent of ↵ as all di↵erent curves coincide. For the range of µ we considered in this paper
it seems that the equilibration time is a decreasing function in µ for small values of ↵. As ↵ reaches the values larger
than one, a minimum occurs in the curves and the behavior of the equilibration time reverses. The equilibration time
increases afterwards quite rapidly as µ raises. These results confirms the results obtained in [9] for di↵erent ↵s. It
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with respect to µ
T . Left: The scalar source has �� = 0.2. The green curve is the function, ( ⇡
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4.2 ).

stable(unstable) branch is smaller(larger). It can be shown that for other cases of energy injection with di↵erent
values of �� or �BH the same conclusion can be made. Therefore one can conclude if we are having the information
only about the temperature and chemical potential in a strongly coupled gauge theory, the rescaled equilibration time
calculated using the bulk gravity dual can distinguish between stable and unstable branches.

If we look more closely to the plot near the critical point in figure 5, right, we see that at the critical point, the
magenta dashed line, the slop of the figure approaches infinity though the rescaled equilibration time is finite there.
This suggests that the slope of the plot for the points near the critical point can be fitted with a function of the form
( ⇡

2
p
2
�

µ

T
)�✓ where ✓ is a positive number. In order to check we have plotted the slope in figure 6 in the approximation

where we have defined the slope as

dteqs
d µ

T

(i) =
teqs(i+ 1)� teqs(i)

µ

T
(i+ 1)� µ

T
(i)

, (21)

where i represents the ith point in the corresponding data points and teqs is the rescaled equilibration time, vertical
axes in figure 5, right. In figure 6 we have used the data points of figure 5, right, in the stable branches. The figure
6, left(right), corresponds to the slope obtained from the top(bottom) plot in 5, right. Interestingly, as shown in the
figures 6, the slope data points can be fitted with the function

dteqs
d µ

T

= (
⇡

2
p
2
�

µ

T
)✓, (22)

shown with the green curves in the figures. It seems that the value of ✓ depends on the quench being slow or fast.
For the fast quench given by �� = 0.2 we obtain ✓ = 1

2 , figure 6, left, and for slow quench �� = 5 we get ✓ around
1
4 , figure 6. If we compare our result here with the literature we can see the value ✓ = 1

2 is in fact what is called the
dynamical critical exponent obtained from the behavior of scalar quasi-normal modes near the critical point in [8].
It is very appealing that we obtain the same result in the response of the system to a time-dependent scalar field in
the probe limit. Therefore one can conclude that the response in field theory to a time-dependent source in the fast
quench limit, where the source corresponds to a scalar field in the probe limit in the gravity dual, gives the dynamical
critical exponent in field theory.
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the response of the system to a time-dependent scalar field in the probe limit. Therefore one can conclude that the
response in field theory to a time-dependent source in the fast quench limit, where the source corresponds to a scalar
field in the probe limit in the gravity dual, gives the dynamical critical exponent in field theory. In order to clarify
more on the result we have obtained, we should point out that � µ

T
is between 10�2 and 10�6 and the value of ✓ for

each subset of data points is reported in table I. For each subset in this table the number of data points are chosen
between 20 to 50.
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2). Right: This figure shows the rescaled equilibration times, teqs =

teq

c
p

���BH

and

teq
c��

for top and bottom plot, respectively, with respect to µ
T for the fixed final temperature, T = 0.37. The magenta dashed

line corresponds to the critical point which is at ( µ
T )⇤ = 1.1107.

where µ

T
= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 6, left. The question we asked
in the beginning of this section can be addressed by checking the behavior of the response in the field theory to the
time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent scalar field in the bulk
or Vaidya background which produces time-dependent temperature and chemical potential in field theory. We will
show that the response in field theory, although a one-point function, knows about the critical point. Following the
same calculation done in the previous sections we have plotted the rescaled equilibration time with respect to µ

T
for

two di↵erent cases of injecting energy in figure 6, right. The magenta dashed line in this graph shows the critical
point where µ

T
gets its maximum value. The stable(unstable) branches are presented by blue(red) points. A very

interesting observation is that for each value of µ

T
the rescaled equilibration time for the stable(unstable) branch is

smaller(larger). It can be shown that for other cases of energy injection with di↵erent values of �� or �BH the same
conclusion can be made. Therefore one can conclude if we are having the information only about the temperature
and chemical potential in a strongly coupled gauge theory, the rescaled equilibration time calculated using the bulk
gravity dual can distinguish between stable and unstable branches. But we should note that in the unstable case we
have fixed the system by hand in order to obtain the equilibration time and in reality an unstable solution can give
rise to di↵erent physics.

If we look more closely to the plot near the critical point in figure 6, right, we see that at the critical point, the
magenta dashed line, the slope of the figure approaches infinity though the rescaled equilibration time is finite there.
This suggests that the slope of the plot for the points near the critical point can be fitted with a function of the form
( ⇡

2
p
2
�

µ

T
)�✓ where ✓ is a positive number. In order to check we have plotted the slope in figure 7 in the approximation

where we have defined the slope as

dteqs
d µ

T

(i) =
teqs(i+ 1)� teqs(i)

µ

T
(i+ 1)� µ

T
(i)

, (21)

where i represents the ith point in the corresponding data points and teqs is the rescaled equilibration time, vertical
axes in figure 6, right. In figure 7 we have used the data points of figure 6, right, in the stable branches. The figure
7, left(right), corresponds to the slope obtained from the top(bottom) plot in 6, right. Interestingly, as shown in the
figures 7, the slope data points can be fitted with the function

dteqs
d µ

T

= (
⇡

2
p
2
�

µ

T
)�✓, (22)

shown with the green curves in the figures. It seems that the value of ✓ depends on the quench being slow or fast. For
the fast quench given by �� = 0.2 we obtain ✓ = 0.489682 which is very close to 0.5, figure 7, left, and for slow quench
�� = 5 we get ✓ = 0.33901, figure 7. If we compare our result here with the literature we can see the value ✓ = 0.5
is in fact what is called the dynamical critical exponent obtained from the behavior of scalar quasi-normal modes
near the critical point in [8]. It is very appealing that we obtain the same result (with very good approximation) in
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T )⇤ = 1.1107.

where µ

T
= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 6, left. The question we asked
in the beginning of this section can be addressed by checking the behavior of the response in the field theory to the
time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent scalar field in the bulk
or Vaidya background which produces time-dependent temperature and chemical potential in field theory. We will
show that the response in field theory, although a one-point function, knows about the critical point. Following the
same calculation done in the previous sections we have plotted the rescaled equilibration time with respect to µ

T
for

two di↵erent cases of injecting energy in figure 6, right. The magenta dashed line in this graph shows the critical
point where µ

T
gets its maximum value. The stable(unstable) branches are presented by blue(red) points. A very

interesting observation is that for each value of µ

T
the rescaled equilibration time for the stable(unstable) branch is

smaller(larger). It can be shown that for other cases of energy injection with di↵erent values of �� or �BH the same
conclusion can be made. Therefore one can conclude if we are having the information only about the temperature
and chemical potential in a strongly coupled gauge theory, the rescaled equilibration time calculated using the bulk
gravity dual can distinguish between stable and unstable branches. But we should note that in the unstable case we
have fixed the system by hand in order to obtain the equilibration time and in reality an unstable solution can give
rise to di↵erent physics.

If we look more closely to the plot near the critical point in figure 6, right, we see that at the critical point, the
magenta dashed line, the slope of the figure approaches infinity though the rescaled equilibration time is finite there.
This suggests that the slope of the plot for the points near the critical point can be fitted with a function of the form
( ⇡

2
p
2
�

µ

T
)�✓ where ✓ is a positive number. In order to check we have plotted the slope in figure 7 in the approximation

where we have defined the slope as

dteqs
d µ

T

(i) =
teqs(i+ 1)� teqs(i)

µ

T
(i+ 1)� µ

T
(i)

, (21)

where i represents the ith point in the corresponding data points and teqs is the rescaled equilibration time, vertical
axes in figure 6, right. In figure 7 we have used the data points of figure 6, right, in the stable branches. The figure
7, left(right), corresponds to the slope obtained from the top(bottom) plot in 6, right. Interestingly, as shown in the
figures 7, the slope data points can be fitted with the function

dteqs
d µ

T

= (
⇡

2
p
2
�

µ

T
)�✓, (22)

shown with the green curves in the figures. It seems that the value of ✓ depends on the quench being slow or fast. For
the fast quench given by �� = 0.2 we obtain ✓ = 0.489682 which is very close to 0.5, figure 7, left, and for slow quench
�� = 5 we get ✓ = 0.33901, figure 7. If we compare our result here with the literature we can see the value ✓ = 0.5
is in fact what is called the dynamical critical exponent obtained from the behavior of scalar quasi-normal modes
near the critical point in [8]. It is very appealing that we obtain the same result (with very good approximation) in
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where µ
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= 1.1107. This is in fact the critical point -as the behavior of thermodynamic quantities near this point

implies- where these two branches merge and is shown as the black point in figure 6, left. The question we asked
in the beginning of this section can be addressed by checking the behavior of the response in the field theory to the
time-dependent source. As discussed earlier in the paper, this is introduced by time-dependent scalar field in the bulk
or Vaidya background which produces time-dependent temperature and chemical potential in field theory. We will
show that the response in field theory, although a one-point function, knows about the critical point. Following the
same calculation done in the previous sections we have plotted the rescaled equilibration time with respect to µ

T
for

two di↵erent cases of injecting energy in figure 6, right. The magenta dashed line in this graph shows the critical
point where µ

T
gets its maximum value. The stable(unstable) branches are presented by blue(red) points. A very

interesting observation is that for each value of µ

T
the rescaled equilibration time for the stable(unstable) branch is

smaller(larger). It can be shown that for other cases of energy injection with di↵erent values of �� or �BH the same
conclusion can be made. Therefore one can conclude if we are having the information only about the temperature
and chemical potential in a strongly coupled gauge theory, the rescaled equilibration time calculated using the bulk
gravity dual can distinguish between stable and unstable branches. But we should note that in the unstable case we
have fixed the system by hand in order to obtain the equilibration time and in reality an unstable solution can give
rise to di↵erent physics.

If we look more closely to the plot near the critical point in figure 6, right, we see that at the critical point, the
magenta dashed line, the slope of the figure approaches infinity though the rescaled equilibration time is finite there.
This suggests that the slope of the plot for the points near the critical point can be fitted with a function of the form
( ⇡
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)�✓ where ✓ is a positive number. In order to check we have plotted the slope in figure 7 in the approximation
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where i represents the ith point in the corresponding data points and teqs is the rescaled equilibration time, vertical
axes in figure 6, right. In figure 7 we have used the data points of figure 6, right, in the stable branches. The figure
7, left(right), corresponds to the slope obtained from the top(bottom) plot in 6, right. Interestingly, as shown in the
figures 7, the slope data points can be fitted with the function

dteqs
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shown with the green curves in the figures. It seems that the value of ✓ depends on the quench being slow or fast. For
the fast quench given by �� = 0.2 we obtain ✓ = 0.489682 which is very close to 0.5, figure 7, left, and for slow quench
�� = 5 we get ✓ = 0.33901, figure 7. If we compare our result here with the literature we can see the value ✓ = 0.5
is in fact what is called the dynamical critical exponent obtained from the behavior of scalar quasi-normal modes
near the critical point in [8]. It is very appealing that we obtain the same result (with very good approximation) in
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the response of the system to a time-dependent scalar field in the probe limit. Therefore one can conclude that the
response in field theory to a time-dependent source in the fast quench limit, where the source corresponds to a scalar
field in the probe limit in the gravity dual, gives the dynamical critical exponent in field theory. In order to clarify
more on the result we have obtained, we should point out that � µ

T
is between 10�2 and 10�6 and the value of ✓ for

each subset of data points is reported in table I. For each subset in this table the number of data points are chosen
between 20 to 50.

TABLE I: data points of min <
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< max fitted with ( ⇡
2
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T )�✓

sets set1 set2 set3 set4 set5 set6 set7 set8

min 0.144 1.108 1.309 1.604 2.015 2.501 3.010 4.14

max 1.100 1.295 1.597 1.998 2.499 2.989 3.959 721.229

✓ -1.853 0.084 0.233 0.230 0.348 0.462 0.422 0.490
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the response of the system to a time-dependent scalar field in the probe limit. Therefore one can conclude that the
response in field theory to a time-dependent source in the fast quench limit, where the source corresponds to a scalar
field in the probe limit in the gravity dual, gives the dynamical critical exponent in field theory. In order to clarify
more on the result we have obtained, we should point out that � µ
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is between 10�2 and 10�6 and the value of ✓ for
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For each subset the number of  data points are chosen 
between 20 to 50.
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Even though the scalar source is non-zero 
(quantum quench) the dynamical critical exponent 
can be obtained from the equilibration time


For fast quenches the dynamical critical exponent 
matches the static one.


It would be very interesting to check this result 
for more realistic holographic theories (under 
investigation).

Remarks:

Thank you


