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Loop quantum gravity

Quantisation of classical gravity in connection variables

Diffeomorphism-invariant extension of lattice gauge theory

Main areas of progress

3+0 dimensions (topological), Λ = 0
[ Ponzano, Regge ’68; Turaev, Viro ’92; Rovelli ’93; Freidel, Louapre ’04; Barrett, Naish-Guzman ’08; . . . ]

State counting / surface entropy
[ Krasnov ’96; Rovelli ’96; Ashtekar, Baez, Corichi, Kransov ’97-; Engle, Noui, Perez ’07-; . . . ]

Symmetry reduced quantisation → quantum cosmology
[Bojowald ’01-; Ashtekar, Bojowald, Lewandowski ’03; Ashtekar, Pawlowski, Singh ’06; . . . ]
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LQG and Holography (other work)

3+0 dimensions (topological), Λ = 0

Partition function can be evaluated exactly

Various dual statistical models for different boundary states
[Costantino ’11; Dittrich, Hnybida ’13; Bonzom, Costantino, Livine ’15; Dittrich, Goeller, Livine, Riello ’17]

State counting

State counting à la black hole entropy for general surfaces

Augment discrete Ryu-Takayanagi formula for tensor networks by
[Hayden, Nezami, Qi, Thomas, Walter, Yang ’16] to geometric formula [Han, Hung ’16]
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Classical limit and singularities

Gravitational bulk singularities at least in classical limit

Field theory picture:

Non-perturbative string theory defined via AdS/CFT

Quantum gravity from field theory
[Hertog, Horowitz ’04, ’05; Das, Michelson, Narayan, Trivedi ’06; Turok, Craps, Hertog ’07; Barbón, Rabinovici

’11; Smolkin, Turok ’12;]

Gravity picture:

Quantum gravity resolves singularities!?

Holographic dual of (resolved) singularities

7



Classical limit and singularities

Gravitational bulk singularities at least in classical limit

Field theory picture:

Non-perturbative string theory defined via AdS/CFT

Quantum gravity from field theory
[Hertog, Horowitz ’04, ’05; Das, Michelson, Narayan, Trivedi ’06; Turok, Craps, Hertog ’07; Barbón, Rabinovici

’11; Smolkin, Turok ’12;]

Gravity picture:

Quantum gravity resolves singularities!?

Holographic dual of (resolved) singularities

7



Classical limit and singularities

Gravitational bulk singularities at least in classical limit

Field theory picture:

Non-perturbative string theory defined via AdS/CFT

Quantum gravity from field theory
[Hertog, Horowitz ’04, ’05; Das, Michelson, Narayan, Trivedi ’06; Turok, Craps, Hertog ’07; Barbón, Rabinovici

’11; Smolkin, Turok ’12;]

Gravity picture:

Quantum gravity resolves singularities!?

Holographic dual of (resolved) singularities

7



Outline

1 Introduction and related work

2 Strategy

3 Example: Kasner-AdS

4 Conclusion

8



Two-point correlators in Kasner
[Engelhardt, Horowitz ’14; Engelhardt, Horowitz, Hertog ’15]

z

t=0

t Boundary: ds2
4 (t) = −dt2 +

3∑
i=1

t2pi dx2
i , pi ∈ R

Bulk: ds2
5 =

1

z2

(
dz2 + ds2

4 (t)
)

Geodesic approximation: (heavy scalar operators)

〈O(x)O(−x)〉 ∼ exp(−∆Lren)

∆: conformal weight of O
Lren : renormalised geodesic length

Main result

Geodesic passing singularity ↔ finite distance pole in 2-point correlator
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Effective bouncing metric

Strategy: modify 4d part, no large curvatures from z-direction

ds2
5 =

1

z2

dz2 + ds2
4 (t)︸ ︷︷ ︸

modify



Quantum bounce interpolates between classical solutions
[Bojowald ’01-; Ashtekar, Bojowald, Lewandowski ’03; Ashtekar, Pawlowski, Singh ’06; . . . ]

Transitions between different Kasner solutions [Gupt, Singh ’12]
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Improved 2-point correlators

ds2
5 =

1

z2

dz2 + ds2
4 (t)︸ ︷︷ ︸

modify



Possible simplifications

QG scale is 4d, no Kasner transitions → analytic solution

QG scale is 5d, no Kasner transitions → numeric solution

5d scale + Kasner transitions not straight forward
(ansatz too narrow, 5d QG theory required)

All calculations give qualitatively similar results
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Signatures of the resolved singularity

Dual of the resolved singularity

Finite distance bump instead of pole

Subdominant large distance contribution

Discussion

So far: prototype calculation

Goal: find system where independent field theory computation possible
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Finite distance pole resolved!
15

λ = �

λ = �

← �* ≈ ���

��� ��� ��� ���
�(��)

��

���

���

�(�*)

< O(x)O(�x) >= (2z(t⇤))
�2�

z(t⇤)

t0

t⇤

t = 0

2x(t0) hO(x)O(�x)i = (z(t⇤))
�2�

t⇤ = t0

t⇤ = 0

Analytical result (above): no Kasner transition, 4d Planck scale [NB, Schäfer, Schliemann ’16]

Numerics: 5d Planck scale + Kasner transitions qualitatively similar [NB, Mele, Münch ’18]
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Conclusion

Holographic aspects of LQG actively investigated

3d gravity

Tensor networks

Singularity resolution

Starting point for collaboration / cross-influence

Other effective metric, e.g. black holes

Quantum gravity with(out) holographic dual?

�� ��Thank you for your attention!
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Asymptotic behaviour

Long distance behaviour

Complex geodesics:

〈O(x)O(−x)〉 x→∞−−−→∝ (Lbdy)−
2∆

1−p

6= (Lbdy)−2∆ due to Kasner background breaking conformal symmetry

Real singularity-free geodesic (p < 0):

〈O(x)O(−x)〉 x→∞−−−→∝ λ−2p∆ (Lbdy)−2∆

Subdominant to complex contribution
Vanishes as λ→ 0

16



General holography from QG

AdS/CFT relies on

Asymptotic symmetry of AdS ↔ global CFT symmetry

Geometry of AdS near boundary ↔ UV structure of CFT

→ Generalized holography?

Derive dual theory directly from QG partition function!

Finite region QG

Boundary state / condition ↔ dual theory

〈. . .〉Dual theory(φi
b

) := ZQG

[
φi
b

]

→ Euclidean 3d gravity best understood / solvable
[cf. neg. cos. constant: Castro, Gaberdiel, Hartman, Maloney, Volpato ’11]
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3+0 LQG, Λ = 0

3-dim. gravity is topological:

S =

∫
M

ei ∧ F i (A), δeiS = F i (A) = 0

Path integral:

Z(M) =

∫
De DAe i

∫
M ei∧F i (A) →

∫
DA δ

(
F i (A)

)

Discretize on fixed simplicial decomposition:

ZPR(M) =

(∏
links l

∫
SU(2)

dgl

) ∏
faces f

δ

(
←∏
l∈f

g
ε(l,f )
l

)

Needs regularization: Gauge fixing / quantum group
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Holography from partition functions

Dual 2d Ising model [Costantino ’11; Dittrich, Hnybida ’13; Bonzom, Costantino, Livine ’15]

Tri-valent boundary graph Γ on 2-sphere

(
Z Ising(Γ)

)2

Z LQG(Γ) =

 ∏
edges e

cosh(ye)

2

22#vertices

Ising couplings ye ↔ QG coherent state parameters

Dual “twisted” 6-vertex model [Dittrich, Goeller, Livine, Riello ’17]

Four-valent boundary graph Γ on twisted 2-torus

Only spin 1/2 rep., “fuzzy parallelograms”

Torus twist + monodromy integration in 6-vertex model:

Z LQG(Γ) = Z 6 vertex
twisted (Γ)

Intertwiners ↔ vertex parameters
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Random tensor networks

Approximate ground states of interacting many-body Hamiltonians

Different types, here MERA (gapless systems) [figures from Orús, arXiv:1407.6552]
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Figure 2: (color online) Examples of TN states: (a) MPS; (b) PEPS; (c) TTN; (d) MERA; (e)
branching-MERA.

generalisation of mean-field theory (which uses product states, i.e., D = 1, to describe many-body
systems). It is also well known that TN states can be seen in terms of a collection of maximally
entangled states projected locally on some Hilbert spaces of smaller dimension [5, 6]. But most
importantly, TN states are relevant since they codify the correct structure of entanglement in
many-body states, in turn targeting the (zero-measure) relevant corner of the Hilbert space for
the description of low-energy states of Hamiltonians with local interactions (see, e.g., [1, 7]). As
already proven [7, 8], locality has something to say in the structure of low-energy quantum states
of matter: the wave-function is built locally by sewing fundamental patches of the quantum state
(i.e., the tensors) using entanglement2.

2.2 Classifying tensor network states

TN states may be classified from di↵erent perspectives. For instance, one could classify them
as either (i) discrete, i.e., those for quantum states on lattices, or (ii) continuous, i.e., those for
quantum states on a continuum. Continuous TN states have been proposed rather recently and
are a hot research topic nowadays [9, 10, 11, 12, 13]. In this short review, however, we focus
on discrete TNs for quantum many-body states on lattices, for which there is a more extensive
literature available.

From a di↵erent perspective, TN states may also be classified in terms of the dimensions along
which tensors are spanned. According to these criteria, one can talk about TN (i) without extra
dimensions (such as Matrix Product States (MPS) [2, 14, 15] and Projected Entangled Pair States
(PEPS) [6]), and (ii) with extra dimensions (such as Tree Tensor Networks (TTN) [16, 17, 18]
and the Multi-scale Entanglement Renormalization Ansatz (MERA) [3]). Extra dimensions in a
TN state are usually holographic, in the sense that they define a “tensor bulk space” such that
the physical quantum state is recovered at its boundary. Moreover, such extra dimensions may
be interpreted in terms of a renormalization group scale. Let us quickly review some of the main
families of TN states, and some of their key properties, according to this classification criteria.

2For the sake of this review we shall not discuss the case of Hamiltonians with long-range interactions.
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Figure 4: (color online) (a) constraints on MERA tensors; (b) renormalization group interpretation
of a 1d MERA. This example os for a binary MERA, see Refs.[3, 40].

Figure 5: (color online) Entropy of a 1d MERA: the number of links to cut in order to disconnect
the L physical indices in the block form the rest of the system grows logarithmically with L, hence
S(L) = O(log L). This is an example of an area-law in holographic space.

9

SEE(L) ∼ min. # crossed legs
[Swingle ’09; . . . ; Hayden, Nezami, Qi, Thomas, Walter, Yang ’16; . . . ]

Compares to

Ryu-Takayanagi formula

Tensor network ↔ real space renormalization ↔ AdS geometry

→ Model for discrete holography

How to relate to continuum geometry / continuum RT-formula?

20
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be interpreted in terms of a renormalization group scale. Let us quickly review some of the main
families of TN states, and some of their key properties, according to this classification criteria.

2For the sake of this review we shall not discuss the case of Hamiltonians with long-range interactions.
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Figure 4: (color online) (a) constraints on MERA tensors; (b) renormalization group interpretation
of a 1d MERA. This example os for a binary MERA, see Refs.[3, 40].

Figure 5: (color online) Entropy of a 1d MERA: the number of links to cut in order to disconnect
the L physical indices in the block form the rest of the system grows logarithmically with L, hence
S(L) = O(log L). This is an example of an area-law in holographic space.
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SEE(L) ∼ min. # crossed legs
[Swingle ’09; . . . ; Hayden, Nezami, Qi, Thomas, Walter, Yang ’16; . . . ]

Compares to

Ryu-Takayanagi formula

Tensor network ↔ real space renormalization ↔ AdS geometry

→ Model for discrete holography

How to relate to continuum geometry / continuum RT-formula?
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Deriving RT from random tensor networks

[Hayden, Nezami, Qi, Thomas, Walter, Yang ’16]

Average over random tensors ↔ Ising model ↔ RT-surface as domain wall

Discrete RT formula for constant large bond dimension D:

SEE(L) = logD × min. # crossed legs

Missing input: logD ↔ geometry

LQG interpretation [Han, Hung ’16, figure from Han, Hung: arXiv:1610.02134]

Figure 3. The spatial region ⌃with boundary @⌃ and its semi-classical geometry are built by a large number of polyhedra
p (tetrahedra shown in figure) with semi-classical geometry. The semi-classical geometry of p is fundamentally made by
the spin-networks |�p, { je, jl}, {Iv}, {ml}↵ with a large number of edges and vertices in the graph �p, shown in Figure (C).
Each edge carries a spin j as the quanta of area at Planck scale, while each vertex carries a intertwiner Iv as the quanta
of volume. The spin-networks with the large number of degree of freedom can be coarse grained to the picture shown in
Figure (B). Each of the 4 legs in Figure (B) represents the Hilbert space H@( f ), whose basis is labelled by |µ f i. H@( f )
includes all microstates | jl,mli (the boundary microstates of p) carried by the dangling edges in spin-network graph �p.
The middle ball in Figure (B) represents the Hilbert spaceHb(p), whose basis is labelled by |⇠~µpi. Hb(p) includes all the
spins on the internal edges of �p and intertwiners on all vertices (the bulk microstate inside p). The coarse grained spin-
networks give the exact holographic mapping, and leads to the tensor network representing the ground state of boundary
CFT. Figure (A), (B), and (C) figures are the physical pictures at 3 di↵erent scales: (A) is at the macroscopic scale, where
the typical length scale L is the mean curvature radius of the semi-classical geometry. (B) is at the microscopic scale,
where the tensor network lives, and the typical (squared) length scale is the mean face area Ar f of polyhedron. (C) is
at Planck scale, where spin-network lives, and the typical length scale is the Planck length `P. The semiclassical regime
of LQG is given by `2

P ⌧ Af ⌧ L2. In this regime, we reproduce correctly the Ryu-Takayanagi formula of holographic
entanglement entropy.

generically have a large number of edges and vertices. There are a large number of internal edges e inside
p, and a large number of dangling edges l intersecting the faces of p. A large number of micro-degree of
freedom are carried by the spin-network edges and vertices.

A spin-network state |�, { je, jl}, {Iv}, {ml}i is labelled by (1) a graph � consisting a number of edges e
and vertices v, (2) an SU(2) irrep je 2 N/2 carried by each internal edges e, (3) an SU(2) state | jl,mli in
irrep Vjl carried by each dangling edges l, and (4) an SU(2) invariant tensor (intertwiner) Iv 2 Inv(⌦iV ji )
at each vertex v with ji’s carried by the adjacent edges. The quantum area carried by e relates to je by
Are = 8⇡�`2

P

p
je( je + 1) (the same for l). Are is understood as the (Planck scale) area element of the surface

transverse to e. The quantum volume Vv carried by v relates to both Iv and the adjacent j’s. Vv is understood
as the volume element of the neighborhood at v. The expression of Vv can be found in e.g. [42, 43]

The spin-network states in p describe the quantum fluctuation of polyhedral geometry at the deep Planck
scale. The spin-networks and their linear combinations have both boundary and bulk micro-degrees of free-
dom. The boundary microstates are the states | jl,mli at all dangling edges. Each dangling edge l intersects
a face of p. The bulk microstates are the internal je and Iv. At the coarse grained level, the boundary and
bulk microstates are grouped into the Hilbert spaces H@( f ) and Hb(p). The tensor index µ f of |Vpi counts
the microstates at all l’s which intersects f , while µb counts all the bulk microstates.

The exact holographic mapping |⌃i is then constructed by contracting the µ f indices of |Vpi’s when glu-
ing tetrahedra p’s. It e↵ectively connects the spin-network states from each p, and consistently produces the

– 5 –
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transverse to e. The quantum volume Vv carried by v relates to both Iv and the adjacent j’s. Vv is understood
as the volume element of the neighborhood at v. The expression of Vv can be found in e.g. [42, 43]

The spin-network states in p describe the quantum fluctuation of polyhedral geometry at the deep Planck
scale. The spin-networks and their linear combinations have both boundary and bulk micro-degrees of free-
dom. The boundary microstates are the states | jl,mli at all dangling edges. Each dangling edge l intersects
a face of p. The bulk microstates are the internal je and Iv. At the coarse grained level, the boundary and
bulk microstates are grouped into the Hilbert spaces H@( f ) and Hb(p). The tensor index µ f of |Vpi counts
the microstates at all l’s which intersects f , while µb counts all the bulk microstates.
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Geometric RT from LQG

Codim. 2 area from bond dimension ↔ surface (black hole) entropy

State counting: [Krasnov ’96; Rovelli ’96; Ashtekar, Baez, Corichi, Kransov ’97-; . . . ]

D ∼ exp(A)

Generic codim. 2 surfaces and dimensions [Husain ’98; NB ’13,’14]

Geometric RT from LQG

Repeat computation for generic large bond dimensions D ∼ exp(A)

→ discrete Nambu-Goto path integral

→ minimal surface [Han, Hung ’16]

Correct entanglement spectrum from Wheeler-de Witt wave function in 3d
[Han, Huang ’17]
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Strategy

Test hypothesis of singularity resolution for consistency with holography
[c.f. Engelhardt, Horowitz ’16]

Work with effective bouncing metric in simple models

Independent of underlying QG approach, e.g.

String cosmology
Loop quantum cosmology
Modified gravity
...

Compute 2-point boundary correlators in geodesic approximation
(Neglect possible corrections to geodesic equation)

Check for consistency with CFT description
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