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Motivation

Explore holographic complexity conjectures (“C = V” and “C=A”) in a simple setting

—  1+1-dilaton gravity model
Teitelboim 1993; Jackiw 1995
Almheiri, Polchinski 2014; Jensen 2016; Engelsöy, Mertens, Verlinde 2016
Maldacena, Stanford, Yang 2016; Harlow, Jafferis 2018; …..

—  broken conformal symmetry —>  low-energy dynamics governed by 
Schwarzian effective action

—  the same (broken) symmetry is realized in the SYK model
—>  Schwarzian action captures important aspects of SYK dynamics

—  SYK model has discrete field variables with q-local Hamiltonian
—>  quantum complexity better defined than in continuum QFT



Global coordinates on AdS2

Jackiw-Teitelboim model

Field equations
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JT black hole in “Schwarzschild” coordinates
write it in a 1+1-dimensional version of Schwarzschild coordinates,

ds2 = �r2 � r2H
L2

dt2 +
L2

r2 � r2H
dr2 . (2.35)

In this coordinate system, there is a coordinate singularity at the event horizon at r = rH

and the dilaton is linear in r,

' = 'H
r

rH
. (2.36)

Requiring the horizon to be non-singular when the metric is continued to Euclidean sig-

nature gives the Hawking temperature,

T =
rH

2⇡L2
, (2.37)

and a straightforward calculation yields the following result for the on-shell Euclidean

action

SE = �S + �M2d = �⇡Q2 � ⇡'H . (2.38)

By comparing to the entropy formula (2.34) we can infer the following values for the

1+1-dimensional black hole entropy and mass,

S = S0 + (2.39)

M2d = (2.40)

TO BE CONTINUED [[Larus to complete?]]

2.4 SYK

[[Mention similarities between SYK and JT

• the scaling symmetry that SYK has in common with JT

• as we change the temperature, the specific entropy of SYK goes from .23N to .35N ,

i.e. it doesn’t change much

this is to be compared with the area not changing very much in the throat in the

geometric theory (indeed this is the origin of the long throat)
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JT black hole thermodynamics
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Model BH scrambling dynamics by a quantum circuit with a total number of qubits of order S 

and a universal set of primitive gates.

Holographic quantum complexity
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Figure 1: The Penrose diagrams for two-sided eternal black holes (left) and one-sided

black holes that form from collapsing shock waves (right). The two-sided black hole is

dual to an entangled state of two CFTs that live on the left and right boundaries; the

one-sided black hole is dual to a single CFT. The (old) complexity/volume conjecture

related the complexity of the entangled CFT state to the volume of the maximal spatial

slice anchored at the CFT state. Our (new) complexity/action conjecture relates the

complexity of the CFT state to the action of the Wheeler-DeWitt patch.
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The quantum complexity of a circuit state is the minimum number of primitive gates needed 

to obtain that state from a given reference state.

Assuming each qubit gets acted on by at most one primitive gate per cycle we expect
�C
�⌧

⇠ S

or, if each cycle takes of order one unit of Rindler time:

Hayden, Preskill 2006

⌧R =
2⇡

�
tS

dC
dtS

⇠ S T

1) Complexity equals volume

Holographic complexity conjectures: 

2) Complexity equals action

Susskind 2014

Brown, Roberts, Susskind, Swingle, Zhao 2015

C ⇠ V

GNR0

C =
A
⇡ WdW patch



“C = V” for JT black hole

Calculation simplifies for  tL = tR = t

Consider geodesic connecting tL and tR on  
left and right boundaries and calculate the 
geodesic length L0 inside BH.

“volume” of maximal slice:

transverse area
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“C = A” for JT black hole
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i) The topological term gives2⇡ �
��
WdW

= 2⇡i

Euler characteristic
constant

iii)  Careful evaluation of remaining boundary term gives dA
dt

! 0 as t ! 1

the action on the WdW patch does not grow at late times!�!

on AdS2 �! bulk JT term gives 0R = � 2

L2

This does not mean that“C = A” fails but rather that we need to remember 
how the JT theory arises in the context of higher-dimensional charged BH’s
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3+1-dimensional charged BH

Schwarzian from extrinsic curvature in EM-NERN

Scaling symmetry

2.1 Near-extremal Reissner-Nordström black holes

[[This section includes language and equations directly lifted from our previous paper. In

the interests of not self-plagiarizing, let’s rewrite/paraphrase some of those parts.]]

Our starting point is the 3+1-dimensional Einstein-Maxwell theory with action,

S =
1

16⇡

Z

M
d4x

p
�G

✓
1

`2
R � Fµ⌫F

µ⌫

◆
+

1

8⇡`2

Z

@M
d3y

p
�h (K � K0) , (2.1)

where ` =
p
GN is the 3+1-dimensional Planck length. We have included the usual

Gibbons-Hawking-York boundary term involving the trace of the extrinsic curvature K at

an asymptotic spacetime boundary with induced metric hij. We also include a regulator

term that subtracts K0, the trace of the extrinsic curvature of the same boundary sur-

face when embedded in a flat spacetime, in order to obtain a finite free energy from the

corresponding on-shell Euclidean action.

The boundary conditions obeyed by the electromagnetic field at @M will play an

important role in our discussion. As it stands, the action (2.1) does not include any

boundary term involving the Maxwell field and Aµ is kept fixed at the boundary. In the

Euclidean formalism this corresponds to a thermal ensemble where the chemical potential

is held fixed but the total electric charge of the system is allowed to fluctuate. If, on the

other hand, the following boundary term is added to the action,

Sem
b =

1

4⇡

Z

@M
d3y

p
�h n̂µ F

µ⌫A⌫ , (2.2)

then free variations of Aµ are allowed at the boundary and the corresponding thermal

ensemble is that of fixed charge but varying chemical potential.

A 3+1-dimensional Reissner-Nordström black hole with electric charge Q > 0 and

mass M � Q/` is described by the following static spherically symmetric solution of the
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Einstein-Maxwell field equations,

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2d⌦2 ,

f(r) =
⇣
1 � r+

r

⌘⇣
1 � r�

r

⌘
, (2.3)

Frt =
Q

r2
,

where r± = `2M ±
p

`4M2 � `2Q2 are the locations of the outer and inner horizon.

In the extremal limit, M ! M0 = Q/`, the horizons are degenerate r+ = r� = `Q ⌘ re

and the Hawking temperature,

T =
(r+ � r�)

4⇡r2+
, (2.4)

goes to zero. In the following, we’ll mainly be interested in near-extremal black holes with

r+ � r� ⌧ r+, which amounts to taking a low-temperature limit � � r+. Following our

recent work [14], we find it useful to divide the spacetime geometry outside a near-extremal

black hole into three regions (shown in Figure 1):

r = r+ r ⇠ 2r+ � r� r ⇠ 2r+

Newtonian  

�� ⇠ r+ �� ⇠ r+ log[�/r+]

Figure 1: The three regions outside the horizon of a near-extremal RN black hole. [[Men-
tion that 2r+ is the top of the potential barrier.]]

• Closest to the outer horizon of the black hole is the Rindler region,

r+ < r . 2r+ � r� , (2.5)
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term that subtracts K0, the trace of the extrinsic curvature of the same boundary sur-

face when embedded in a flat spacetime, in order to obtain a finite free energy from the

corresponding on-shell Euclidean action.

The boundary conditions obeyed by the electromagnetic field at @M will play an

important role in our discussion. As it stands, the action (2.1) does not include any

boundary term involving the Maxwell field and Aµ is kept fixed at the boundary. In the

Euclidean formalism this corresponds to a thermal ensemble where the chemical potential

is held fixed but the total electric charge of the system is allowed to fluctuate. If, on the

other hand, the following boundary term is added to the action,
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then free variations of Aµ are allowed at the boundary and the corresponding thermal

ensemble is that of fixed charge but varying chemical potential.

A 3+1-dimensional Reissner-Nordström black hole with electric charge Q > 0 and

mass M � Q/` is described by the following static spherically symmetric solution of the

3



JT model from spherical reduction Navarro-Salas, Navarro 1999

Spherically symmetric ansatz:

[REFS]. The dimensional reduction of the 3+1-dimensional Einstein-Maxwell theory is

described in detail in [15] and we will only sketch the main steps here.

The first step is to adopt an ansatz for a spherically symmetric metric,

ds2 =
1p
2�

g↵� dx
↵dx� + 2`2� d⌦2 , (2.13)

and insert it into into the 3+1-dimensional action (2.1). Here g↵�(x0, x1) is a 1+1-

dimensional metric and the dilaton �(x0, x1) is a scalar field, that describes how the

area of the transverse two-sphere depends on time and radial position. The resulting

1+1-dimensional action is
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with the boundary terms evaluated along a timelike boundary with induced metric �00. The

two-dimensional field strength F↵� is inherited unchanged from the 3+1-dimensional theory

but the contraction in the F 2 term in the action is now with the two-dimensional metric.

The �-dependent prefactor in front of g↵� in (2.13) implements a Weyl transformation on

the two-dimensional metric that eliminates derivative terms involving � from (2.14). Under

spherical reduction, the extrinsic curvature term in the original 3+1-dimensional action

(2.1) gives rise to the boundary term containing the one-dimensional extrinsic curvature in

(2.14) and also a term involving the normal derivative of the dilaton field on the boundary.

This latter term cancels against a total derivative term involving the dilaton that comes

from the 3+1-dimensional Ricci scalar. The last term in (2.14) comes from the spherical

reduction of the K0 regulator term in the original action. Finally, if the electromagnetic

boundary term (2.2) is included in the 3+1-dimensional action, then the 1+1-dimensional

action will include its spherical reduction,
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↵�A� , (2.15)

as an additional boundary term.
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1+1 D metric transverse area is a 
scalar field in 1+1 D

The field equations of the 1+1-dimensional theory are,
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The Maxwell equation determines the electromagnetic field strength in terms of the dilaton,

F↵� =
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where "↵� is the two-dimensional Levi-Civita tensor,1 and this can be used to eliminate

F↵� from the remaining field equations,
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We note that these equations are satisfied by the dimensional reduction of the Reissner-

Nordström solution, (2.3),
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and a linear dilaton field �(x) = x/`. The results of Section A.5 on charged black hole

thermodynamics can be reproduced from the 1+1-dimensional Euclidean on-shell action,

evaluated on this solution. In particular, the presence or absence of the Euclidean counter-

part to the spherically reduced electromagnetic boundary term (2.15) determines whether

the ensemble is at fixed chemical potential or fixed charge.

In the following, we will mainly be interested in near-extremal black holes. More

specifically, we want to study the near horizon physics of a near-extremal black hole. For

this purpose, we expand the dilaton field around its value at the horizon of an extremal

1With the convention "01 = +
p

�g.
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and this can be used to eliminate the gauge field from the remaining equations



Spherical reduction (p.2)
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Remaining field equations for the metric and dilaton

Now expand the dilaton around its value at the horizon of an extremal RN black hole:

black hole,

� =
Q2

2
+ ' , (2.23)

and work order by order in '/Q2. At leading order, the field equations (2.20) and (2.21)

reduce to,

0 = R +
2

L2
, (2.24)

0 = r↵r�' � g↵�

⇣
r2' � 1

L2
'
⌘
, (2.25)

with L ⌘ Q3/2`. It immediately follows that in the near-horizon region the 1+1-dimensional

geometry is that of AdS2, with a characteristic length scale L that is parametrically large

compared to the 3+1-dimensional Planck length whenQ � 1. This is the long throat of the

near-extremal Reissner-Nordström black hole referred to in Section 2.1. Long-wavelength

radial modes traveling along the throat can be described by a simple 1+1-dimensional

dilaton gravity model originally considered by Jackiw and Teitelboim [REFS]. Indeed,

the reduced field equations (2.24) and (2.25), can be obtained directly from the Jackiw-

Teitelboim action,

S =
1

2

Z
d2x

p
�g '

⇣
R +

2

L2

⌘
, (2.26)

that only involves a 1+1-dimensional metric and a dilaton field ' but no Maxwell field.

We arrived at the reduced set of field equations by using the 1+1-dimensional Maxwell

equations to eliminate F↵� and it is natural to ask if the Jackiw-Teitelboim action can

similarly be obtained by integrating out the gauge field from the spherically reduced action

and considering the near-horizon limit. The answer is yes but with a somewhat subtle twist.

The most naive approach, where one simply inserts the solution (2.19) for F↵� into the full

1+1-dimensional action (2.14) does not work. This naive procedure does lead to a dilaton

gravity theory but one where the term in the e↵ective potential for the dilaton that comes

from the gauge field has the wrong sign to reproduce the Jackiw-Teitelboim theory in the

near-horizon limit. The problem can be traced to the fact that the gauge field we are

integrating out is an electric field and we are replacing its kinetic energy by an e↵ective

potential for the dilaton. In fact, this kind of sign flip occurs any time a dynamical variable

carrying kinetic energy is integrated out in favor of a potential energy term.
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�! JT equations with L = Q3/2 `

Q:  Can the JT action be obtained by integrating out the gauge field and considering  
 the near-horizon limit?

A:  Yes, but there is a twist.

Eliminating the gauge field from the 1+1 action, as it stands, leads to a dilaton gravity 
theory but one with a wrong-sign effective potential for the dilaton.

This kind of sign flip occurs any time a dynamical variable carrying  
kinetic energy is integrated out in favor of a potential energy term. 

The problem is solved by adding an EM boundary term to the original action.



Electromagnetic boundary terms

Schwarzian from extrinsic curvature in EM-NERN

Scaling symmetry

2.1 Near-extremal Reissner-Nordström black holes

[[This section includes language and equations directly lifted from our previous paper. In

the interests of not self-plagiarizing, let’s rewrite/paraphrase some of those parts.]]

Our starting point is the 3+1-dimensional Einstein-Maxwell theory with action,
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where ` =
p
GN is the 3+1-dimensional Planck length. We have included the usual

Gibbons-Hawking-York boundary term involving the trace of the extrinsic curvature K at

an asymptotic spacetime boundary with induced metric hij. We also include a regulator

term that subtracts K0, the trace of the extrinsic curvature of the same boundary sur-

face when embedded in a flat spacetime, in order to obtain a finite free energy from the

corresponding on-shell Euclidean action.

The boundary conditions obeyed by the electromagnetic field at @M will play an

important role in our discussion. As it stands, the action (2.1) does not include any

boundary term involving the Maxwell field and Aµ is kept fixed at the boundary. In the

Euclidean formalism this corresponds to a thermal ensemble where the chemical potential

is held fixed but the total electric charge of the system is allowed to fluctuate. If, on the

other hand, the following boundary term is added to the action,
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then free variations of Aµ are allowed at the boundary and the corresponding thermal

ensemble is that of fixed charge but varying chemical potential.

A 3+1-dimensional Reissner-Nordström black hole with electric charge Q > 0 and

mass M � Q/` is described by the following static spherically symmetric solution of the
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Our 3+1 D action did not have any boundary terms for the Maxwell field and Aµ is kept fixed 
at the boundary.

then free variations of Aµ  at the boundary are allowed and the corresponding thermal ensemble  
is that of fixed charge but varying chemical potential

If we add the following boundary term to the action

In the gauge theory case this will become something like

f(�)ArȦr = f(�)ErAr , (A.69)

and give

f(�)ErAr|a � f(�)ErAr|b . (A.70)

A.3 NERN C-A calculation gives good answer

CALCULATION HERE

The calculation with the gauge field included gives an extra term that fixes the dis-

crepancy between C-V and C-A, but it cannot be represented without including the gauge

field.

A.4 Discussion of result

Not all Actions are equal. (Some Actions are not even equal to Complexity.) Some are

more equal than others.

A.5 Charged black hole thermodynamics

The free energy of a static black hole may be obtained by continuing to Euclidean sig-

nature and evaluating the Euclidean on-shell action [16]. Which free energy this gives

is determined by the boundary terms in the action. Let us apply this method to the

Reissner-Nordström solution (2.3).

In the absence of the electromagnetic boundary term (2.2) one finds

SE = �F
��
µ
= �S + �M � �µQ , (A.71)

where S = ⇡r2+/`
2 is the Bekenstein-Hawking entropy and µ = Q/r+ is the black hole

chemical potential. This is the free energy for an ensemble where the chemical potential

µ is kept fixed. On the other hand, when the electromagnetic boundary term is included,

a cancellation occurs and the free energy reduces to that of a fixed charge ensemble,

�F
��
Q
= �S + �M . (A.72)

Later on we will see how the free energy of a black hole in two-dimensional Jackiw-
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The free energy of a static black hole may be obtained by continuing to Euclidean sig-

nature and evaluating the Euclidean on-shell action [16]. Which free energy this gives

is determined by the boundary terms in the action. Let us apply this method to the

Reissner-Nordström solution (2.3).

In the absence of the electromagnetic boundary term (2.2) one finds

SE = �F
��
µ
= �S + �M � �µQ , (A.71)

where S = ⇡r2+/`
2 is the Bekenstein-Hawking entropy and µ = Q/r+ is the black hole

chemical potential. This is the free energy for an ensemble where the chemical potential

µ is kept fixed. On the other hand, when the electromagnetic boundary term is included,

a cancellation occurs and the free energy reduces to that of a fixed charge ensemble,

�F
��
Q
= �S + �M . (A.72)

Later on we will see how the free energy of a black hole in two-dimensional Jackiw-
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with M =
Q

`
+ 2⇡2Q3`T 2S = ⇡Q2 + 4⇡2Q3`T and

 (1) JT model describes RN black holes at fixed Q 
 (2) Higher dimensional embedding provides a reference scale 

' =
r
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Electromagnetic boundary terms (p.2)

[REFS]. The dimensional reduction of the 3+1-dimensional Einstein-Maxwell theory is

described in detail in [15] and we will only sketch the main steps here.

The first step is to adopt an ansatz for a spherically symmetric metric,

ds2 =
1p
2�

g↵� dx
↵dx� + 2`2� d⌦2 , (2.13)

and insert it into into the 3+1-dimensional action (2.1). Here g↵�(x0, x1) is a 1+1-

dimensional metric and the dilaton �(x0, x1) is a scalar field, that describes how the

area of the transverse two-sphere depends on time and radial position. The resulting

1+1-dimensional action is

S2d =
1

2

Z
d2x

p
�g

�
�R +

1

`2
(2�)�

1
2 � `2

2
(2�)

3
2F↵�F

↵�
�
+

Z
dy0

p
��00

�
�K � 1

`
(2�)

1
4
�
,

(2.14)

with the boundary terms evaluated along a timelike boundary with induced metric �00. The

two-dimensional field strength F↵� is inherited unchanged from the 3+1-dimensional theory

but the contraction in the F 2 term in the action is now with the two-dimensional metric.

The �-dependent prefactor in front of g↵� in (2.13) implements a Weyl transformation on

the two-dimensional metric that eliminates derivative terms involving � from (2.14). Under

spherical reduction, the extrinsic curvature term in the original 3+1-dimensional action

(2.1) gives rise to the boundary term containing the one-dimensional extrinsic curvature in

(2.14) and also a term involving the normal derivative of the dilaton field on the boundary.

This latter term cancels against a total derivative term involving the dilaton that comes

from the 3+1-dimensional Ricci scalar. The last term in (2.14) comes from the spherical

reduction of the K0 regulator term in the original action. Finally, if the electromagnetic

boundary term (2.2) is included in the 3+1-dimensional action, then the 1+1-dimensional

action will include its spherical reduction,

Sem
b,2d = `2

Z
dy0

p
��00 (2�)

3
2 n̂↵ F

↵�A� , (2.15)

as an additional boundary term.
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Adding a boundary term involving the gauge field does not change its dynamical equations,  
i.e. the Maxwell equations are not affected, but the boundary term contributes to the effective  
dilaton potential that results from integrating out the gauge field

If the electromagnetic boundary term is included in the 3+1D action, then the  
1+1 D action will include its spherical reduction

Write the boundary term as a 1+1-dimensional bulk term involving a total derivative, 

We illustrate this e↵ect in Appendix A using the familiar example of a non-relativistic

particle moving in a central potential. The analysis of particle orbits is facilitated by

introducing an e↵ective potential for radial motion with a centrifugal term involving the

conserved angular momentum. This is usually done at the level of the equations of mo-

tion but if one instead attempts to integrate out the angular variable at the level of the

Lagrangian before deriving the radial equation then an analogous sign issue arises. The

remedy, both for motion in a central potential and in the case at hand, is to include appro-

priate boundary terms for the kinetic variable in the original action. Adding a boundary

term involving the gauge field does not change its dynamical equations, i.e. the Maxwell

equations are not a↵ected, but a boundary term will in general contribute to the e↵ective

dilaton potential that results from integrating out the gauge field.

As it turns out, we have already introduced a boundary term (2.15) that has the desired

e↵ect. To see this, we can use the divergence theorem to rewrite the boundary term as

a 1+1-dimensional bulk term involving a total derivative, apply the chain rule, and then

use the Maxwell equation (2.16) to simplify the result,

Sem
b,2d = `2

Z
d2x

p
�gr↵

�
(2�)

3
2 F ↵�A�

�

=
`2

2

Z
d2x

p
�g(2�)

3
2 F ↵�F↵� . (2.27)

This has the same form as the electromagnetic bulk term in the 1+1-dimensional action

that we obtained from spherical reduction but has a coe�cient in front that is twice as

large and of opposite sign. This is precisely what is needed to reverse the sign of the

electromagnetic contribution to the dilaton e↵ective potential when we insert the solution

(2.19) for the Maxwell field into the action. The resulting bulk e↵ective action is

S =
1

2

Z
d2x

p
�g

⇣
�R +

1

`2
(2�)�

1
2 � Q2

`2
(2�)�

3
2

⌘
. (2.28)

To capture the near-horizon physics of a near-extremal black hole we write the dilaton as

in (2.23) and work order by order in ',

S =
Q2

4

Z
d2x

p
�g R +

1

2

Z
d2x

p
�g '

⇣
R +

2

L2

⌘
+ . . . . (2.29)

The leading term is non-dynamical in two spacetime dimensions but it is nevertheless

important for black hole thermodynamics as it keeps track of the zero temperature extremal
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dilaton potential that results from integrating out the gauge field.

As it turns out, we have already introduced a boundary term (2.15) that has the desired

e↵ect. To see this, we can use the divergence theorem to rewrite the boundary term as

a 1+1-dimensional bulk term involving a total derivative, apply the chain rule, and then

use the Maxwell equation (2.16) to simplify the result,
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This has the same form as the electromagnetic bulk term in the 1+1-dimensional action

that we obtained from spherical reduction but has a coe�cient in front that is twice as

large and of opposite sign. This is precisely what is needed to reverse the sign of the

electromagnetic contribution to the dilaton e↵ective potential when we insert the solution

(2.19) for the Maxwell field into the action. The resulting bulk e↵ective action is
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To capture the near-horizon physics of a near-extremal black hole we write the dilaton as

in (2.23) and work order by order in ',

S =
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4

Z
d2x

p
�g R +

1
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p
�g '

⇣
R +

2

L2

⌘
+ . . . . (2.29)

The leading term is non-dynamical in two spacetime dimensions but it is nevertheless

important for black hole thermodynamics as it keeps track of the zero temperature extremal
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Now write and work order by order in φ � =
Q2

2
+ '0

�!

We illustrate this e↵ect in Appendix A using the familiar example of a non-relativistic

particle moving in a central potential. The analysis of particle orbits is facilitated by

introducing an e↵ective potential for radial motion with a centrifugal term involving the

conserved angular momentum. This is usually done at the level of the equations of mo-

tion but if one instead attempts to integrate out the angular variable at the level of the

Lagrangian before deriving the radial equation then an analogous sign issue arises. The

remedy, both for motion in a central potential and in the case at hand, is to include appro-

priate boundary terms for the kinetic variable in the original action. Adding a boundary

term involving the gauge field does not change its dynamical equations, i.e. the Maxwell

equations are not a↵ected, but a boundary term will in general contribute to the e↵ective

dilaton potential that results from integrating out the gauge field.

As it turns out, we have already introduced a boundary term (2.15) that has the desired

e↵ect. To see this, we can use the divergence theorem to rewrite the boundary term as

a 1+1-dimensional bulk term involving a total derivative, apply the chain rule, and then

use the Maxwell equation (2.16) to simplify the result,
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This has the same form as the electromagnetic bulk term in the 1+1-dimensional action

that we obtained from spherical reduction but has a coe�cient in front that is twice as

large and of opposite sign. This is precisely what is needed to reverse the sign of the

electromagnetic contribution to the dilaton e↵ective potential when we insert the solution

(2.19) for the Maxwell field into the action. The resulting bulk e↵ective action is
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To capture the near-horizon physics of a near-extremal black hole we write the dilaton as

in (2.23) and work order by order in ',
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The leading term is non-dynamical in two spacetime dimensions but it is nevertheless

important for black hole thermodynamics as it keeps track of the zero temperature extremal
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“C = A” revisited
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Figure 1: The Penrose diagrams for two-sided eternal black holes (left) and one-sided

black holes that form from collapsing shock waves (right). The two-sided black hole is

dual to an entangled state of two CFTs that live on the left and right boundaries; the

one-sided black hole is dual to a single CFT. The (old) complexity/volume conjecture

related the complexity of the entangled CFT state to the volume of the maximal spatial

slice anchored at the CFT state. Our (new) complexity/action conjecture relates the

complexity of the CFT state to the action of the Wheeler-DeWitt patch.
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black holes that form from collapsing shock waves (right). The two-sided black hole is

dual to an entangled state of two CFTs that live on the left and right boundaries; the

one-sided black hole is dual to a single CFT. The (old) complexity/volume conjecture

related the complexity of the entangled CFT state to the volume of the maximal spatial

slice anchored at the CFT state. Our (new) complexity/action conjecture relates the

complexity of the CFT state to the action of the Wheeler-DeWitt patch.
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The improved WdW patch action for “C = A” 
calculation gives a finite growth rate at late times

A = AJT +

Q

2

`

2

Z
d

2
x

p
�g

�
2�

��3/2

⇡ AJT +

1

Q`

2

Z
d

2
x

p
�g

= �2Q

2
log(cos ⌫R)� 2Q

2
log(cos ⌫L) + . . .

�! dA
dtR

= 4S T +O(T 2) as tR ! 1



Conclusion

Both “C = V” and “C = A” give expected results for near-AdS2 BH’s  

—  but not all actions are equal

Thank you!


