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— Relativistic hydrodynamics:

e ideal hydrodynamics,
™ =T = eutu” + P(e) AMY, uu, = —1, APV = gt +utu”

{e, P} — energy density and pressure of the fluid, u* — local fluid
4-velocity;

e Navier—Stokes hydrodynamics,
TH = T8 —(e) o — () A (V -u)

{n,(} — shear and bulk viscosities; ¥ = O(V*u")



e all-orders,
T =T +1I" (Vu, {(Vu)?, Vu}, )

—> We will be interested in n — oo order in the hydrodynamic expansion,

i.e., focusing on terms (Vu)™ or more generally
(Vklu)pl (szu)pz . (Vkm u)pm

with kip1 + kopas + - - kpypm =1

— Too many indices, and too many different ways to describe flows....



We take the following steps to simplify index structure of the observables:
m we focus on the entropy density s production rate,

d 1 2 o2
o () = = S (Vu {(Vu)?, V2ul, o)

2
= fiw o oMo

m and a specific flow, 7.e., the homogeneous and isotropic expansion:
a
ut = (1,0,0,0) , V,u" =3— =3H = const
a

This flow can be alternatively though as a co-moving frame expansion of the
fluid in de Sitter Universe

ds® = —dt* + a*(t) dx?, a(t) = et

Notice that for such a flow
otV =



—> The full co-moving entropy production is due to conformal symmetry
breaking:
L=Lcrr +2-A0A

where A is a dimension of the CFT breaking operator,

2 2
% In(a’s) o H ()\4_A> O

T T4—A

Qa = Qa (Vu, {(Vu)*, VZu}, ) = QA(%)

—> for some models of holographic QGP fluids we can explicitly compute

0= e (%)n

n=0

Tntl (n4+4—A) — cpn xI'(n+4—A) ~n!



—> Thus:
e hydrodynamic expansion for fluids has zero radius of convergence
e the series in the derivative expansion can be Borel-resummed

e the poles in the Borel transform identify that the physical reason for the
asymptotic character of the hydrodynamics are the

non-hydrodynamic

excitation in fluids (black brane QNMs in the dual holographic picture )

—> this is an old story [Michal Heller+Romuald Janik+..., 2013]

— Now, an even older story [Alex Buchel4+Jim Sethna, 1996]:



— Recall the Hooke’s Law:
F=kzx

where k is a spring constant

m Of course, if can not be a full story:
F=kxz+kya’+ksa’+ -

where k; are non-linear elastic coefficients

—> We argued that in brittle materials (those that can develop cracks under
the stress), the Hooke’s Law is the first term in otherwise asymptotic series,
1.€.,

Elastic theory has zero radius of convergence



—> Specifically,

consider the fully non-linear in external pressure P expression for the
bulk modulus K of a solid:

1 1 [oV

= == — P P2 ...
K (P) V(8P>T e e B

co represents the Hooke’s Law and c¢; ,7 > 1 are higher-order coeflicients

as n — 0o, for 2D elastic materials at temperature 7', the crack surface

tension «, Yong’s modulus Y and the Poisson’s ratio o,

1/2
Cn+t1 . _pl/2 mT(1-0?) /
Cn, 8Y o?

or




—> Elastic theory and hydrodynamics are similar:

e both have a well-defined effective description, akin to derivative

expansion in EFT;

e both expansions are asymptotic series (gradient expansion in fluids,

powers of strain expansion in solids)

e both have 'non-perturbative’ effects responsible for zero radius of

convergence of effective description

— Elastic theory and hydrodynamics are different:

e non-perturbative effects in hydrodynamics: non-hydro modes in plasma

e non-perturbative effects in theory of elasticity: cracks



— BU'T solids and fluids are rather different:

e there is no shear in fluids; as a result the transverse long-wave length

fluctuations are non-propagating, i.e., purely dissipative:
w=—iD ¢
where D is the diffusive constant, T'D = g

e on the contrary, in solids we have transverse sound waves:

L4
e+ P

2
Ww=~¢Cc14q, C| =

where 1 is the shear elastic modulus



— In this talk

solids+fluids = viscoelastic materials

e Fmbed viscoelastic materials in holography

e Have a control parameter that interpolates from

more solid like—to—more fluid like
e study all-derivative viscoelastic hydrodynamics

e signature of holographic cracks?



— The holographic model (think in microcanonical ensemble — we are

interested in dynamics)

e start with the holographic superconductor

1
167TGN

o 1 o A(A—4) ¢2]

/ d’x\/—g [R +12 — 1(aqb)? — ZF? 4
M 2 4 2

as usual, for a fixed charge density (), below some critical energy density
€ below which ¢ condenses

e add a ’lattice’ (J.Gauntlett 4+ others)

g ——¢2Z{ @u+ 22 (@'}

where A\; > 0 are coupling constants; we will be turning on the
non-normalizable component for v; as

v, = k (5;3 T;, where {i,j}=1...3 and k = const



e where is the lattice?
m for simplicity, set Ay =1 and Ay = 0;

Sl

{&, i} —> field redefinition = d, AVeLY

results in a standard kinetic term for 3 complex fields ®;:
—670D;09}
and identifies ¢; as axions:

W ~ i + T2

® since we are turning on v; = k 53 z;, the (boundary) spatial
coordinates x; must be periodically identified:
4 7r\/§

k

since we have a lattice, it will not be a surprise that we have nonzero

Lj ™~ Ly

elastic modulus;



m turns out, elastic modulus in the model exists robustly for any set of

{A1, A2}

m clastic modulus exists independently whether or not the non-normalizable
component of ¢ is turned on:

— in the former case transverse phonons are gapped

— in the latter case transverse phonons are gapless, with expected dispersion

relation dictated by the shear elastic modulus

e enhance the ’lattice’ effects in the model

1 1
_ZFQ —> —Z(1+7¢2)F2, v >0

— | will now highlight the computational results in the model introduced



— Thermodynamics (energy density €, charge density ), entropy density s):
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— Elastic shear modulus G x k*G and the shear viscosity 47 /S =147 in
the model:
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The reduced shear elastic modulus G = 167G nyG/k* (left panel) and the
reduced shear viscosity 7 = (47mn/S — 1) (righ panel) as a functions of k/T for
select values of £ = {5, £}, {red,green} curves, at the criticality.
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—> To study large-order hydrodynamics of our holographic viscoelastic
model we focus on a divergent series for {2a:

QA = Z Cngn
n=0
e construct a Borel transform
(B) —
B n ~n
Q) =) ]
n=0

e Borel resummation is performed as

Q) — B ey =1 ~¢/g (B)
( /Cdfe ()¢ g) g/cdfe (3)(¢)

where the contour C connects 0 and oo.

e Ambiguities in Q(AR) come from the poles in Q(AB)(g ):
1
5Q(AR) ~ e S0/9. once =0
2 (6o)

—> For small g, poles in Q(AB)@ ) generate essential singularity in Q(AR),
responsible for the asymptotic character of QA



—>k = 0 case (fluid)
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e blue filled circles: poles of the (Pade approximation of the) Borel

transform of Qa—»

e green crosses: Starinets-Nunez QNMs



—> £ =100 case (viscoelastic)

e red crosses: QNMs in the model at % = 100

e orange lines: spectral flows of QNMs from % =0 to % = 100



1000 case (solid)
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— I did not have time to discuss:

G with explicit symmetry breaking
elastic bulk modulus K
gapped-vs.-gapless phonons
general A results

how large orders of the hydrodynamics know about spontaneous
symmetry breaking

how and why G depends on the charge density

critical exponents of G and K for spontaneous symmetry breaking

—> Open questions:

what are limitations of Pade approximation of Borel transform?
where are ’cracks’ in the model?

or it is not a brittle solid?

is there a physics in the wall-of-Borel-poles?

can we study boost-invariant expansion of the viscoelastic model?



