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=⇒ Relativistic hydrodynamics:

• ideal hydrodynamics,

Tµν ≡ Tµνeq = ǫ uµuν +P (ǫ) ∆µν , uµuµ = −1 , ∆µν = gµν +uµuν

{ǫ, P} — energy density and pressure of the fluid, uµ — local fluid

4-velocity;

• Navier—Stokes hydrodynamics,

Tµν = Tµνeq − η(ǫ) σµν − ζ(ǫ) ∆µν (∇ · u)

{η, ζ} — shear and bulk viscosities; σµν = O(∇µuν)



• all-orders,

Tµν ≡ Tµνeq +Πµν
(

∇u, {(∇u)2,∇2u}, · · ·
)

=⇒ We will be interested in n→ ∞ order in the hydrodynamic expansion,

i.e., focusing on terms (∇u)n or more generally

(∇k1u)p1(∇k2u)p2 · · · (∇kmu)pm

with k1p1 + k2p2 + · · · kmpm = n

=⇒ Too many indices, and too many different ways to describe flows....



We take the following steps to simplify index structure of the observables:

we focus on the entropy density s production rate,

d

dt
ln(s) =

1

T
S
(

∇u, {(∇u)2,∇2u}, · · ·
)

S =

[

(∇ · u)2 ζ

s
+

2η

s
σµνσ

µν

]

+ · · ·

and a specific flow, i.e., the homogeneous and isotropic expansion:

uµ = (1, 0, 0, 0) , ∇µu
µ = 3

ȧ

a
= 3H = const

This flow can be alternatively though as a co-moving frame expansion of the

fluid in de Sitter Universe

ds2 = −dt2 + a2(t) dx2 , a(t) = eHt

Notice that for such a flow

σµν ≡ 0



=⇒ The full co-moving entropy production is due to conformal symmetry

breaking:

L = LCFT + λ4−∆O∆

where ∆ is a dimension of the CFT breaking operator,

d

dt
ln(a3s) ∝ H2

T

(

λ4−∆

T 4−∆

)2

Ω2
∆

Ω∆ = Ω∆

(

∇u, {(∇u)2,∇2u}, · · ·
)

= Ω∆(
H

T
)

=⇒ for some models of holographic QGP fluids we can explicitly compute

Ω∆ =
∞
∑

n=0

cn

(

H

T

)n

and find

cn+1

cn
∝ (n+ 4−∆) =⇒ cn ∝ Γ(n+ 4−∆) ∼ n!



=⇒ Thus:

• hydrodynamic expansion for fluids has zero radius of convergence

• the series in the derivative expansion can be Borel-resummed

• the poles in the Borel transform identify that the physical reason for the

asymptotic character of the hydrodynamics are the

non-hydrodynamic

excitation in fluids (black brane QNMs in the dual holographic picture )

=⇒ this is an old story [Michal Heller+Romuald Janik+. . . , 2013]

=⇒ Now, an even older story [Alex Buchel+Jim Sethna, 1996]:



=⇒ Recall the Hooke’s Law:

F = k x

where k is a spring constant

Of course, if can not be a full story:

F = k x+ k2 x
2 + k3 x

3 + · · ·

where ki are non-linear elastic coefficients

=⇒ We argued that in brittle materials (those that can develop cracks under

the stress), the Hooke’s Law is the first term in otherwise asymptotic series,

i.e.,

Elastic theory has zero radius of convergence



=⇒ Specifically,

• consider the fully non-linear in external pressure P expression for the

bulk modulus K of a solid:

1

K(P )
= − 1

V

(

∂V

∂P

)

T

= c0 + c1 P + c2 P
2 + · · ·

• c0 represents the Hooke’s Law and ci , i ≥ 1 are higher-order coefficients

• as n→ ∞, for 2D elastic materials at temperature T , the crack surface

tension α, Yong’s modulus Y and the Poisson’s ratio σ,

cn+1

cn
−→ −n1/2

(

πT (1− σ2)

8Y α2

)1/2

or

cn ∝ Γ(
n+ 1

2
) ∼ (

n

2
)!



=⇒ Elastic theory and hydrodynamics are similar:

• both have a well-defined effective description, akin to derivative

expansion in EFT;

• both expansions are asymptotic series (gradient expansion in fluids,

powers of strain expansion in solids)

• both have ’non-perturbative’ effects responsible for zero radius of

convergence of effective description

=⇒ Elastic theory and hydrodynamics are different:

• non-perturbative effects in hydrodynamics: non-hydro modes in plasma

• non-perturbative effects in theory of elasticity: cracks



=⇒ BUT solids and fluids are rather different:

• there is no shear in fluids; as a result the transverse long-wave length

fluctuations are non-propagating, i.e., purely dissipative:

ω = −iD q2

where D is the diffusive constant, TD = η
s

• on the contrary, in solids we have transverse sound waves:

ω = c⊥q , c2⊥ =
µ

ǫ+ P

where µ is the shear elastic modulus



=⇒ In this talk

solids+fluids = viscoelastic materials

• Embed viscoelastic materials in holography

• Have a control parameter that interpolates from

more solid like—to—more fluid like

• study all-derivative viscoelastic hydrodynamics

• signature of holographic cracks?



=⇒ The holographic model (think in microcanonical ensemble — we are

interested in dynamics)

• start with the holographic superconductor

S =
1

16πGN

∫

M5

d5x
√−g

[

R+ 12− 1

2
(∂φ)2 − 1

4
F 2 +

∆(∆− 4)

2
φ2

]

as usual, for a fixed charge density Q, below some critical energy density

ǫ below which φ condenses

• add a ’lattice’ (J.Gauntlett + others)

[

· · · − 1

2
φ2

3
∑

i=1

{

λ1(∂ψi)
2 + λ2

(

(∂ψi)
2
)2
}

]

where λi > 0 are coupling constants; we will be turning on the

non-normalizable component for ψi as

ψi = k δji xj , where {i, j} = 1 . . . 3 and k = const



• where is the lattice?

for simplicity, set λ1 = 1 and λ2 = 0;

{φ, ψi} =⇒ field redefinition =⇒ Φi ≡
φ√
2
ei

√
2ψi

results in a standard kinetic term for 3 complex fields Φi:

−δij∂Φi∂Φ⋆j
and identifies ψi as axions:

ψi ∼ ψi + π
√
2

since we are turning on ψi = k δji xj , the (boundary) spatial

coordinates xj must be periodically identified:

xj ∼ xj +
π
√
2

k

since we have a lattice, it will not be a surprise that we have nonzero

elastic modulus;



turns out, elastic modulus in the model exists robustly for any set of

{λ1, λ2};
elastic modulus exists independently whether or not the non-normalizable

component of φ is turned on:

— in the former case transverse phonons are gapped

— in the latter case transverse phonons are gapless, with expected dispersion

relation dictated by the shear elastic modulus

• enhance the ’lattice’ effects in the model

−1

4
F 2 =⇒ −1

4
(1 + γφ2)F 2 , γ > 0

=⇒ I will now highlight the computational results in the model introduced



=⇒ Thermodynamics (energy density ǫ, charge density Q, entropy density s):
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=⇒ Elastic shear modulus G ∝ k4G̃ and the shear viscosity 4πη/S = 1+ η̃ in

the model:
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=⇒ To study large-order hydrodynamics of our holographic viscoelastic

model we focus on a divergent series for Ω∆:

Ω∆ =
∞
∑

n=0

cng
n

• construct a Borel transform

Ω
(B)
∆ (ξ) =

∞
∑

n=0

cn
n!
ξn

• Borel resummation is performed as

Ω
(R)
∆ =

∫

C
dξ e−ξ Ω

(B)
∆ (ξ g) ≡ 1

g

∫

C
dξ e−ξ/g Ω

(B)
∆ (ξ)

where the contour C connects 0 and ∞.

• Ambiguities in Ω
(R)
∆ come from the poles in Ω

(B)
∆ (ξ):

δΩ
(R)
∆ ∼ e−ξ0/g , once

1

Ω
(B)
∆ (ξ0)

= 0

=⇒ For small g, poles in Ω
(B)
∆ (ξ) generate essential singularity in Ω

(R)
∆ ,

responsible for the asymptotic character of Ω∆



=⇒k = 0 case (fluid)
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=⇒ k
T = 100 case (viscoelastic)
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=⇒ k
T = 1000 case (solid)
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=⇒ I did not have time to discuss:

• G with explicit symmetry breaking

• elastic bulk modulus K
• gapped-vs.-gapless phonons

• general ∆ results

• how large orders of the hydrodynamics know about spontaneous

symmetry breaking

• how and why G depends on the charge density

• critical exponents of G and K for spontaneous symmetry breaking

=⇒ Open questions:

• what are limitations of Pade approximation of Borel transform?

• where are ’cracks’ in the model?

• or it is not a brittle solid?

• is there a physics in the wall-of-Borel-poles?

• can we study boost-invariant expansion of the viscoelastic model?


