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Introduction and Motivation

Quantifying Chaos in Many-Body Quantum Systems

Classical chaos has short-time manifestations (divergence of
trajectories) as well as long-time ones (ergodicity). Classical ergodicity
makes connection with the physics of thermalization or transport.

In quantum chaos, short-time manifestations have to do with the
recently much discussed out-of-time-ordered correlators (OTOCs),
whereas long times are usually associated with spectral statistics (or
ETH). Quantum-Classical correspondence holds for early times, but
late time and classical limits do not commute.

Quantum ergodicity is aimed to provide the foundation of statistical
mechanics. Simple observables in a typical state ”look thermal”.
More tricky to explain the dynamics towards the final thermal state.

Not just an academic exercise, some many-body systems do not
thermalize (MBL).
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Introduction and Motivation

Quantifying Chaos in Many-Body Quantum Systems

In this talk,

Define a series of increasingly more ”fine-grained” OTOCs that probe
aspects of thermalization beyond the initial scrambling.

Calculate them in the context of AdS2 and AdS3 gravity.

Show evolution of these correlators reveals longer and longer time
scales, the 2k-point function will evolve for (k − 1)t∗, where t∗ is the
scrambling time.

Similar ideas:

D. Roberts and B. Yoshida, “Chaos and complexity by design,”
[arXiv:1610.04903].

Z. W. Liu, S. Lloyd, E. Y. Zhu and H. Zhu, “Entanglement, quantum
randomness, and complexity beyond scrambling,” [arXiv:1703.08104].
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Scrambling and OTOCs

Out-of-Time-Order Correlators

The OTOCs are close cousins of

Semi-classical extension of the classical divergence of trajectories and
Lyapunov exponent.

Growth of localized (or simple) operator under unitary time evolution.

Loschmidt echo.

Those all lead to the idea of looking at growth of commutators of general
Hermitian operators [V (t),W (0)]. The expectation value of the
commutator is related to linear response, to a perturbation V as measured
subsequently by W.
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Scrambling and OTOCs

Out-of-Time-Order Correlators

To quantify the ”size” of the commutator look at the second moment

C [t] = −〈[V (0),W (t)]2〉β

Where the expectation value is evaluated at inverse temperature β.

The non-trivial part of this is the 2-OTOC

F (t) = 〈V (0)W (t)V (0)W (t)〉β ∼
1

N
eλt

As the other operator orderings are determined by factorization at large t.
The OTOC grows exponentially
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Scrambling and OTOCs

Comments:

F (t) = 〈V (0)W (t)V (0)W (t)〉β ∼
1

N
eλt

Note this has two operators and two ”switchbacks” in both
Lorentzian time and operator ordering (=Euclidean time). This is the
combinatorics we seek to generalize.

The 2-OTO starts low and experiences exponential growth until it
becomes order one (where higher order corrections cause it to
saturate). The time it is allowed to grow is determined by how low it
can get, or how sensitive it is to the special starting point. This
defines the scrambling time t∗ ∼ LogN

our correlators are more fine-grained, in that they can get start lower,
as they probe finer features of the initial state, and thus they can
grow for a longer time.

the rate of growth λ is bounded, λL ≤ 2π
β

Let’s review and generalize the calculation of the 2-OTO in AdS2, related
to the SYK model.
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AdS2 Gravity Jackiw-Teitelboim Gravity

Dilaton Gravity in 1+1 Dimensions

Gravity in 1+1 dimensions is trivial, to get something interesting we need
at least a dilaton. So look at the theory with a negative cosmological
constant (JT gravity)

I = − 1

16πGN

ˆ √
−g φ(R + 2) + 2

ˆ
bdy

φbdy K

Possibly coupled to matter fields.

Locally any solution is trivial, it can be mapped to AdS2 and a fixed dilaton
profile, in some coordinates φ(z) ∼ 1

z , where z=0 is the boundary of AdS2.

Importantly, this diverges so this theory only makes sense with a cutoff
and the boundary condition φ(z = ε) ∼ φr (u)

ε , for some fixed φr (u).

Now different solutions to the equations of motion are identical locally but
could be different globally. They are characterized by the shape of the
curve on which the prescribed boundary condition is satisfied.
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AdS2 Gravity Schwarzian Action

Schwarzian Action

In the end, the gravitational action reduces to a boundary term, which
describes the dynamics of the soft mode t(u), which represents a
diffeomorphism of the circle.

−Igrav =
1

κ2

ˆ
du

[
− 1

2

(
t ′′

t ′

)2

+

(
t ′′

t ′

)′ ]
This is the Schwarzian action, which is determined by a pattern of
spontaneous and explicit conformal symmetry breaking.

To compute correlators perturbatively in a black hole background, we
transform t(u) = tan τ(u)

2 , corresponding to working with temperature
β = 2π, and expand around the saddle: τ(u) = u + κ ε(u). Our expansion
parameter is κ, the gravitational constant. We are taking backreaction
into account pertrurbatively in κ.

Moshe Rozali (UBC) Fine Grained Chaos Wurzburg, August 2018 9 / 20



AdS2 Gravity Schwarzian Action

Soft Mode Propagator

To leading order in κ the Schwarzian action gives a quadratic term, and
hence a propagator for the mode ε(u)

〈ε(u)ε(0)〉 =
1

2π

[
2 sin u − (π + u)

2
(π + u)

+ 2πΘ(u)(u − sin u)

]
We are only interested in the part that simultaneously cares about
time-ordering, and is exponentially growing in Lorentzian time. We will
organize the calculation to isolate that part later.

For our purposes the propagator can be replaced by −Θ(u) sin u.
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AdS2 Gravity Coupling to Matter

Matter Action

We couple the gravity theory to a matter action which represents external
massless particles:

− Imatter =
1

2π

ˆ
du1du2

t ′(u1)t ′(u2)

(t(u1)− t(u2))2
j(u1)j(u2)

where j is a source for the operator whose correlator we are calculating.
This reproduces, via the usual AdS/CFT. the boundary correlators of
chiral primary field of dimension 1.
We write the expansion in κ as

−Imatter =
1

2π

ˆ
du1du2

j(u1)j(u2)

4 sin2(u122 )

∑
p≥0

κp B(p)(u1, u2) (1)

where u12 ≡ u1 − u2 and B(0) = 1.
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AdS2 Gravity Coupling to Matter

Interaction Vertices

We need the first and second order expansions, corresponding to the way
the matter sources the soft mode ε(u) to orders κ and κ2

B(1)(u1, u2) = ε′(u1) + ε′(u2)− ε(u1)− ε(u2)

tan(u122 )

B(2)(u1, u2) =
1

4 sin2(u122 )

[
(2 + cos u12) (ε(u1)− ε(u2))2

+ 4 sin2
(u12

2

)
ε′(u1)ε′(u2)

− 2 sin u12 (ε(u1)− ε(u2))
(
ε′(u1) + ε′(u2)

) ]
We will not need self-interaction for the soft mode, though that can also
be easily obtained if needed.
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Zoology of OTOCs Maximally Braided Correlators

Maximally Braided Correlators

To define the correlators we are interested in, we start with the observation
that the braiding operation V V W W → V W V W , relating time-ordered
and OTOs, can be generalized to any number of pairs of operators.

The maximally-braided 2k-point function is defined to have the maximal
number of braiding, e.g.

V1 V1 V2 V2 V3 V3 → V1 V2 V1 V3 V2 V3

V1 V1 V2 V2 V3 V3 V4 V4 → V1 V2 V1 V3 V2 V4 V3 V4

etc. Subtracting off the less than maximal braided operators results in the
operator

V1 [V2,V3] [V3,V4] ...V2k

whose (properly normalized) expectation value we call the
”maximally-braided” correlator.
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Zoology of OTOCs Maximally Braided Correlators

Maximally Braided Correlators

These are easy to calculate, we just keep track of the cost of braiding for
each of the ingredients of the calculation, i.e. we organize the result by the
number of Euclidean theta functions.

Furthermore, in the Schwarzian theory, to leading order in N each such
correlator has exactly one diagram contributing:

1
2

3

5

4

7

6
9

8

2k

...

. .
.

= B(1)(u2i−1, u2i )

= B(2)(u2i−1, u2i )

= 〈εε〉
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Zoology of OTOCs Maximal OTO-Number

Lorentzian Times

Once we calculate the maximally braided correlator in Euclidean space, we
can put the operators at various Lorentzian times. Schematically

Vk

Vk

Vk−1

Vk−1

Vk−2

Vk−2

Vk−3

V2

V1

V1

β
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Zoology of OTOCs Maximal OTO-Number

Maximal OTO Configurations

One can classify all Lorentzian time configurations by OTO-number,
roughly the number of ”irreducible” switchbacks in Lorentzian time. We
are interested in the maximal OTO number for our maximally braided
correlators.

Generally a 2k-point function depends on 2k − 1 time differences.
Maximally braided correlator is designed to have the maximal number of
”soft mode” exchanges, so the maximal number of exponentially growing
factors, in some time combination.

Maximal OTO time configuration aligns all these factors, a 2k correlator
which is maximally braided and also maximal OTO number, has a very
simple result, to leading order in N:

I2k(t1, t2, ..., t2k) ∼ 1
Nk−1 e

λL(t2k−t1)
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Zoology of OTOCs Fine-Grained Chaos

Fine-Grained Chaos

I2k(t1, t2, ..., t2k) ∼ 1
Nk−1 e

λL(t2k−t1)
Comments

It is not meaningful to compare different 2k-point functions, but one
can compare the connected I2k to products on lower point functions.
We see that I2k increases at a slower rate than the disconnected
pieces.

Correspondingly, I2k increase for longer time periods, (k − 1)t∗, where
t∗ is the scrambling time.

the suppression factor Nk−1 is the leading order for the connected
part of the 2k-point function, it corresponds to the fact that such
higher point function probes more fine-grained features of the state.
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Future Directions

Conclusions

Possible Directions for further research

Relation to unitary designs and frame potentials.

Relation to other fine-grained probes, e.g the time-dependence of
Renyi entropies.

Lorentzian calculation and relation to (multiple) shock waves.

Relation to ”complexity”.

Calculation in higher dimensions (including butterfly velocities).

In this context, new paper with Felix, ”Effective Field Theory of Chaotic
CFTs”, to appear.
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To Appear: Higher Dimensions

2-OTOs in 2-dimensional CFTs

The calculation of OTO 4-point function is described in a paper by
Roberts and Stanford. It involves the identity conformal block at
large central charge, and its analytic continuation.

Also some assumptions about the dimensions of external operators
and dominance of the identity block, and going beyond the range of
validity of known results.

In the end, at leading order, large c CFT is maximally chaotic, and
the butterfly velocity is the speed of light.

Generalizing to higher OTOs would involve similar steps for the
higher-point conformal blocks.

Instead we use a new idea: hydrodynamic description of chaos,

M. Blake, H. Lee and H. Liu, “A quantum hydrodynamical description for
scrambling and many-body chaos,”
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To Appear: Higher Dimensions

EFT of Chaotic CFTs

Very briefly, one can write the effective field theory for ”boundary
gravitons”in 2D CFT with large central charge. Those soft modes are
holomorphic reparametrizations. They end up having a quadratic action
and matter coupling very much like the ones discussed above.

This is related to 2D induced gravity discussed by Polyakov, though
crucially around the thermal state and not the vacuum.

Using the EFT to calculate the OTOCs reproduces the Roberts- Stanford
result, and can be easily generalized to the fine-grained chaos correlators.

The effective action has many other uses in 2D CFT, beyond the relevance
to chaos. In some sense it generates the identity conformal block at large
central charge.
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