Chiral transport in strong magnetic fields from hydrodynamics & holography

Gauge/Gravity Duality 2018, Julius-Maximilians-Universität Würzburg

July 30th, 2018

Matthias Kaminski (University of Alabama) in collaboration with Juan Hernandez (Perimeter Institute) Roshan Koirala, Jackson Wu (University of Alabama) Martin Ammon, Sebastian Grieninger, Julian Leiber (Universität Jena)

Chiral transport in strong magnetic fields from hydrodynamics & holography

Gauge/Gravity Duality 2018, Julius-Maximilians-Universität Würzburg

July 30th, 2018

Matthias Kaminski (University of Alabama) in collaboration with Juan Hernandez (Perimeter Institute) Roshan Koirala, Jackson Wu (University of Alabama) Martin Ammon, Sebastian Grieninger, Julian Leiber (Universität Jena)

Odd transport

Odd transport

perpendicular

parallel

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

Odd transport

→____ perpendicular

parallel

non-equilibrium parallel conductivity / perpendicular resistivity

 $\langle J^z J^z \rangle(\omega, \mathbf{k} = 0) \sim \sigma_{||}$

 $\langle J^x J^x \rangle(\omega, \mathbf{k} = 0) \sim \rho_\perp$

 $\begin{aligned} & \textbf{non-equilibrium} \\ & \textbf{parity-odd transport} \\ & \langle J^x J^y \rangle(\omega, \mathbf{k} = 0) \sim \frac{n}{B} - \omega^2 \frac{w^2}{B^4} \tilde{\rho}_\perp + \dots \\ & \langle J^x J^y \rangle(\omega = 0, \mathbf{k}) \sim -ik \underbrace{\xi_B}_{C\mu} \end{aligned}$

Outline

- ✓ Invitation: Odd transport
- 1. Review: hydrodynamics & holography
- 2. (Chiral magnetic) hydrodynamics
- 3. Holographic setup

5. Discussion

Shear viscosity measures transverse momentum transport:

Kubo formula derived from hydrodynamics:

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d\boldsymbol{x} \, e^{i\omega t} \, \langle [T_{xy}(x), \, T_{xy}(0)] \rangle$$

from constitutive relation:

 \sim

$$\langle T_{xy} \rangle \sim \eta \, \sigma_{xy}$$
$$\eta (\nabla_x u_y + \nabla_y u_x)$$

Kubo formula derived from hydrodynamics:

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d\boldsymbol{x} \, e^{i\omega t} \left\langle [T_{xy}(x), \, T_{xy}(0)] \right\rangle$$

 \mathcal{Y}

fluid

 u_y

 \mathcal{X}

velocity

Kubo formula derived from hydrodynamics:

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d\boldsymbol{x} \, e^{i\omega t} \left\langle [T_{xy}(x), \, T_{xy}(0)] \right\rangle$$

Holographic calculation: $S = \frac{\pi^3 R^5}{2} \left[\int du \int d^4x \sqrt{-q} \left(\mathcal{R} - 2\Lambda \right) + 2 \int d^4x \sqrt{-h} K \right]$

Holographic correlation function: [Son, Starinets; JHEP (2002)] $G_{xy,xy}(\omega, \boldsymbol{q}) = -\frac{N^2 T^2}{16} \left(i \, 2\pi T \omega + q^2 \right) \qquad \Rightarrow \eta = \frac{\pi}{8} N^2 T^3$ shear viscosity fluid

 u_{y}

velocitu

X

2. Chiral magnetic hydrodynamics - Motivation

Chiral magnetic effect - heavy ion collisions (HICs)

Beam Energy Scan; Isobaric collisions: Zr / Ru [RHIC STAR Collaboration; PoS (2018)]

[Fukushima, Kharzeev, Warringa; PRD (2008)] [Son,Surowka; PRL (2009)] ...

also cond-mat and plasma physics

see Koenraad Schalm's talk

Most vortical fluid in HICs - Lambda hyperon polarization

Deriving chiral magnetic hydrodynamics

Consider a quantum field theory with a chiral anomaly, in a charged thermal plasma state, subjected to a strong external magnetic field

Hydro poles / eigenmodes, and QNMs: [Ammon, Kaminski et al.; JHEP (2017)]

Range of validity
$$B_0 \sim \mathcal{O}(1)$$
 $B_0 \ll T_0^2$
 $\omega, k \ll T_0$

- equilibrium generating functional [Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom; PRL (2012)] [Kovtun; JHEP (2016)]
 equilibrium constitutive equations
- equilibrium constitutive equations

[Kovtun; JHEP (2016)]

$$W_s = \int d^4x \sqrt{-g} \left(p(T,\mu,B^2) + \sum_{n=1}^5 M_n(T,\mu,B^2) s_n + O(\partial^2) \right)$$

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 9

Deriving chiral magnetic hydrodynamics

Consider a quantum field theory with a chiral anomaly, in a charged thermal plasma state, subjected to a strong external magnetic field

Hydro poles / eigenmodes, and QNMs: [Ammon, Kaminski et al.; JHEP (2017)]

 $W_s = \int d^4x \sqrt{-g} \left(p(T,\mu,B^2) + \sum_{n=1}^5 M_n(T,\mu,B^2) s_n + O(\partial^2) \right)$

Range of validity
$$B_0 \sim \mathcal{O}(1)$$
 $B_0 \ll T_0^2$
 $\omega, k \ll T_0$

• equilibrium generating functional [Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom; PRL (2012)] [Kovtun; JHEP (2016)]

- equilibrium constitutive equations [Kovtun; JHEP (2016)]
- add time-dependent hydrodynamic terms [Kovtun, Hernandez; JHEP (2017)] \Rightarrow Kubo formulae
- constrain through Onsager relations and $G_{\varphi_a\varphi_b}^R(\omega, \mathbf{k}; \chi) = \eta_{\varphi_a}\eta_{\varphi_b}G_{\varphi_b^{\dagger}\varphi_a^{\dagger}}^R(\omega, -\mathbf{k}; -\chi)$ entropy current $\nabla_{\mu}s^{\mu} > 0$

Example relation for bulk viscosities:

$$3\zeta_2 - 6\eta_1 - 2\eta_2 = 0$$

- * thermodynamic frame
- * consistent current

🚺 Matthias Kaminski

Chiral transport in strong magnetic fields from hydrodynamics & holography

Kubo formulae I

Perpendicular resistivity z $\frac{1}{\omega} \text{Im } G_{J^x J^x}(\omega, \mathbf{k}=0) = \omega^2 \rho_{\perp} \frac{w_0(w_0 - M_{5,\mu} B_0^2)}{B_0^4}$

Magneto-vortical susceptibility $\frac{1}{k_z} \operatorname{Im} G_{T^{tx}T^{yz}}(\omega = 0, k_z \hat{k}) = -B_0 M_5$ $W_S \sim M_5 B \cdot \Omega$

non-equilibrium parallel conductivity / perpendicular resistivity

$$\langle J^z J^z \rangle(\omega, \mathbf{k} = 0) \sim \sigma_{||}$$

 $\langle J^x J^x \rangle(\omega, \mathbf{k} = 0) \sim \rho_\perp$

Kubo formulae II

(Perpendicular) Hall resistivity

$$\frac{1}{\omega} \operatorname{Im} G_{J^{x}J^{y}}(\omega, \mathbf{k}=0) = \frac{n_{0}}{B_{0}} - \omega^{2} \tilde{\rho}_{\perp} \frac{w_{0}(w_{0} - M_{5,\mu}B_{0}^{2})}{B_{0}^{4}} \operatorname{sign}(B_{0})$$
Chiral magnetic conductivity
$$\xi_{B} = \lim_{k \to 0} \frac{1}{-ik} \langle J^{x}J^{y} \rangle(\omega = 0, k) + \frac{1}{3}C\mu$$

Kubo formulae II

(Perpendicular) Hall resistivity

$$\frac{1}{\omega} \operatorname{Im} G_{J^x J^y}(\omega, \mathbf{k}=0) = \frac{n_0}{B_0} - \omega^2 \tilde{\rho}_{\perp} \frac{w_0(w_0 - M_{5,\mu} B_0^2)}{B_0^4} \operatorname{sign}(B_0)$$
Chiral magnetic conductivity
$$\xi_B = \lim_{k \to 0} \frac{1}{-ik} \langle J^x J^y \rangle(\omega = 0, k) + \frac{1}{3} C\mu$$

$$\begin{aligned} & \overbrace{parity \text{-}odd \ transport}^{non-equilibrium} \\ & \langle J^x J^y \rangle(\omega, \mathbf{k} = 0) \sim \frac{n}{B} - \omega^2 \frac{w^2}{B^4} \tilde{\rho}_\perp + \dots \\ & \langle J^x J^y \rangle(\omega = 0, \mathbf{k}) \sim -ik \underbrace{\xi_B}_{C\mu}^{anomaly \ type} \end{aligned}$$

Matthias Kaminski

Kubo formulae III

Shear viscosity perpendicular

$$\frac{1}{\omega} \operatorname{Im} G_{T^{xy}T^{xy}}(\omega, \mathbf{k}=0) = \eta_{\perp}$$

Shear viscosity parallel

$$\frac{1}{\omega} \operatorname{Im} G_{T^{xz}T^{xz}}(\omega, \mathbf{k}=0) = \eta_{\parallel} + (\bar{c}_{8}c_{15} - c_{10}\bar{c}_{17})\rho_{\perp} - (\bar{c}_{8}\bar{c}_{17} + c_{10}c_{15})\tilde{\rho}_{\perp}$$

$$perpendicular$$

$$resistivity$$

$$resistivity$$

Holographic model values must satisfy:
➡ constraints
➡ consistency checks

3. Holographic setup

Action and background

Einstein-Maxwell-Chern-Simons action

$$S_{grav} = \frac{1}{2\kappa^2} \left[\int_{\mathcal{M}} d^5 x \sqrt{-g} \left(R + \frac{12}{L^2} - \frac{1}{4} F_{mn} F^{mn} \right) - \frac{\gamma}{6} \int_{\mathcal{M}} A \wedge F \wedge F \right]$$
$$S_{bdy} = \frac{1}{\kappa^2} \int_{\partial \mathcal{M}} d^4 x \sqrt{-\hat{g}} \left(K - \frac{3}{L} + \frac{L}{4} R(\hat{g}) + \frac{L}{8} \ln \left(\frac{\varrho}{L}\right) F_{\mu\nu} F^{\mu\nu} \right)$$

Magnetic black branes [D'Hoker, Kraus; JHEP (2009)]

- charged magnetic analog of RN black brane
- Asymptotically AdS5
- zero entropy density at vanishing temperature

$$\begin{split} ds^2 &= \frac{1}{\varrho^2} \left[\left(-u(\varrho) + c(\varrho)^2 \, w(\varrho)^2 \right) \, dt^2 - 2 \, dt \, d\varrho + 2 \, c(\varrho) \, w(\varrho)^2 \, dz \, dt \\ &+ v(\varrho)^2 \, \left(dx^2 + dy^2 \right) + w(\varrho)^2 \, dz^2 \right] \,, \\ F &= A_t'(\varrho) \, d\varrho \wedge dt + B \, dx \wedge dy + P'(\varrho) \, d\varrho \wedge dz \,, \\ \substack{\text{charge}} & \substack{\text{magnetic} \\ \text{field}} \end{split}$$

Correlators from infalling fluctuations

see Richard Davison's talk

Problem: fluctuation equations are coupled (dual to operator mixing in QFT)

Numerical methods

• matrix method and shooting technique

[Kaminski, Landsteiner, Mas, Shock, Tarrio; JHEP (2010)]

$$G^{(ret)}(\mathbf{k}) = -2\lim_{\epsilon \to 0} \mathcal{F}(\mathbf{k}, \epsilon)$$

 \Rightarrow frequency and momentum

find independent solutions to coupled systems (pure gauge solutions)

• one-point functions technique and spectral methods [Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; to appear]

$$\langle \mathcal{O}_A \, \mathcal{O}_B \rangle \sim \frac{\delta \langle \mathcal{O}_B \rangle}{\delta \phi_A} \implies \text{analytic relations}$$

find independent solutions to coupled systems (no pure gauge solutions)

Chiral transport in strong magnetic fields from hydrodynamics & holography

preliminary 4. Results

Thermodynamic transport

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 17

Hydrodynamic transport

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 18

More transport coefficients

η_{\perp}	perpendicular shear viscosity	I
$\eta_{ }$	parallel shear viscosity	Ī
$\tilde{\eta}_{\perp}$	perpendicular Hall viscosity	I
$\tilde{\eta}_{ }$	parallel Hall viscosity	Ī
ζ_1	bulk viscosity	Ī
ζ_2	bulk viscosity	I
η_1	bulk viscosity	I
η_2	bulk viscosity	I
σ_{\perp}	σ_{\perp} perpendicular conductivity	
$\sigma_{ }$	parallel conductivity	I
$\tilde{\sigma}$	Hall conductivity	I
		100 C

Chiral transport in strong magnetic fields from hydrodynamics & holography

Analytic result from one-point function technique

Kubo formula: perpendicular shear viscosity

$$\frac{1}{\omega} \operatorname{Im} G_{T^{xy}T^{xy}}(\omega, \mathbf{k}=0) = \eta_{\perp}$$

Analytic result:

$$\eta_{\perp} = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_{T^{xy}T^{xy}}(\omega, \mathbf{k} = 0) = v(1)^2 w(1)$$

$$s = 4\pi v(1)^2 w(1)$$

$$\frac{\eta_{\perp}}{s} = \frac{1}{4\pi}$$

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 20

Discussion - Summary

- derived hydrodynamic transport coefficients & Kubo relations for QFT with chiral anomaly, in a charged thermal plasma state, within strong external B
- proof of existence within holographic model (EMCS)
- transport coefficients are nonzero and show non-trivial dependence on B, anomaly coefficient C, and chemical potential [Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; to appear]
- novel transport effects arise (e.g. perpendicular/parallel, unidentified)
- order zero CME (and CVE) [Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]
- more motivation for strong *B* model: universal magneto response [Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Discussion - Outlook

correlations far from equilibrium at high density and magnetic field with chiral anomaly [Cartwright, Kaminski; to appear] see my talk at HoloQuark2018

non-relativistic hydrodynamics & QNMs

[Garbiso, Kaminski; to appear] [Davison, Grozdanov, Janiszewski, Kaminski; JHEP (2016)] [Janiszewski, Karch; PRL (2013)]

- dynamical electromagnetic fields magnetohydrodynamics [Kovtun, Hernandez; JHEP (2017)]
- comparison to experimental data

([Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632])

Chiral transport in strong magnetic fields from hydrodynamics & holography

Page 23

APPENDIX

Charge, parity, time reversal

quantity		\mathcal{P}	\mathcal{T}
t		+	-
x^i		-	+
r		+	+
T, h_{tt}, T^{tt}		+	+
μ_A, A_t, J^t		-	+
A_i, J^i		+	-
A_r		-	-
u^i, h_{ti}, T^{ti}		-	-
h_{ij}, T^{ij}		+	+
B^i		-	-
E^i		+	+
$dx^{\mu} \wedge dx^{\nu} \wedge dx^{\rho} \wedge dx^{\sigma} \wedge dx^{\kappa}$		-	-
$\int_{i}^{f} A \wedge F \wedge F$	+	+	+

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix T and u)

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix T and u)

susceptibility:
$$\chi = \frac{\partial n}{\partial \mu}$$

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix T and u)

one point functions
$$\nabla_{\mu} j^{\mu} = 0$$

 $\langle j^{t} \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$
 $\langle j^{x} \rangle = \frac{i\omega\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$
 $\langle j^{y} \rangle = 0$
susceptibility: $\chi = \frac{\partial n}{\partial \mu}$

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix T and u)

one point functions
$$\nabla_{\mu} j^{\mu} = 0$$

 $\langle j^{t} \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$ susceptibility: $\chi = \frac{\partial n}{\partial \mu}$ $\langle j^{x} \rangle = \frac{i\omega\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$ Einstein relation:
 $D = \frac{\sigma}{\chi}$ $\langle j^{y} \rangle = 0$ \Rightarrow two point functions $\langle j^{x} j^{x} \rangle = \frac{\delta \langle j^{x} \rangle}{\delta A_{x}} = \frac{i\omega^{2}\sigma}{\omega + iDk^{2}}$ Authias KaminskiChiral transport in strong magnetic fields from hydrodynamics & holographyPage 26

Simple (non-chiral) example in 2+1 dims:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix T and u)

one point functions
$$\nabla_{\mu} j^{\mu} = 0$$

 $\langle j^{t} \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$ susceptibility: $\chi = \frac{\partial n}{\partial \mu}$ $\langle j^{x} \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$ Einstein relation:
 $D = \frac{\sigma}{\chi}$ $\langle j^{x} \rangle = \frac{i\omega\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}}(\omega A_{x} + kA_{t})$ Einstein relation:
 $D = \frac{\sigma}{\chi}$ $\langle j^{y} \rangle = 0$ \Rightarrow two point functions
 \Rightarrow hydrodynamic poles in spectral function
 \Rightarrow Kubo formulae $\sigma = \lim_{\omega \to 0} \frac{1}{i\omega} \langle j^{x} j^{x} \rangle (\omega, k = 0)$ Matthias KaminskiChiral transport in strong magnetic fields from hydrodynamics & holographyPage 26

Constitutive equations

Generic decomposition: $T^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} + \mathcal{P}\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$ $J^{\mu} = \mathcal{N}u^{\mu} + \mathcal{J}^{\mu}$ $X = X_{ea.} + X_{non-ea.} + X_{anomalous}$ **Examples**: $\mathcal{E}_{eq.} = -p + T p_T + \mu p_{\mu} + (TM_{5,T} + \mu M_{5,\mu} - 2M_5) B \cdot \Omega$ + $(TM_{1,T} + \mu M_{1,\mu} + 4B^2 M_{1,B^2} + T^4 M_{3,B^2} - M_1) s_1$ $+ (TM_{2,T} + \mu M_{2,\mu} - M_2) s_2$ $+\frac{4B^2}{T^4}\left(M_1 - TM_{1,T} - \mu M_{1,\mu} - 4B^2 M_{1,B^2} - T^4 M_{3,B^2}\right)s_3$ + $\left(TM_{4,T} + \mu M_{4,\mu} + \frac{4B^2}{T^4}M_{1,\mu} + M_{3,\mu}\right)s_4$, $\mathcal{N}_{eq.} = p_{,\mu} + \nabla \cdot p - p \cdot a - m \cdot \Omega + (M_{1,\mu} - T^4 M_{4,B^2}) s_1 + M_{2,\mu} s_2$ + $(M_{3,\mu} + TM_{4,T} + \mu M_{4,\mu} + 4B^2 M_{4,B^2}) s_3 + M_{5,\mu} s_5$,

Anomalous parts: $\Delta T^{\mu\nu} = u^{\mu}(\xi_T \,\Omega^{\nu} + \xi_{TB} \,B^{\nu}) + u^{\nu}(\xi_T \,\Omega^{\mu} + \xi_{TB} \,B^{\mu}),$ $\Delta J^{\mu}_{cons} = \frac{1}{3}CB \cdot Au^{\mu} + \xi \,\Omega^{\mu} + \left(\xi_B - \frac{1}{3}C\mu\right)B^{\mu} + \frac{1}{3}C\epsilon^{\mu\nu\rho\sigma}A_{\nu}u_{\rho}E_{\sigma},$ $\xi = \frac{1}{2}C\mu^2 + c_1T^2 + 2c_2T\mu, \quad \xi_B = C\mu + 2c_2T,$ $\xi_T = \frac{1}{2}C\mu^3 + 2c_1T^2\mu + 2c_2T\mu^2, \quad \xi_{TB} = \frac{1}{2}C\mu^2 + c_1T^2 + 2c_2T\mu.$

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 27

Universal magnetoresponse in QCD ...

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Lattice QCD with 2+1 flavors, dynamical quarks, physical massestransverse pressure: $p_{\rm T} = -\frac{L_{\rm T}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $F_{\rm QCD} \dots$ free energytransverse pressure: $p_{\rm T} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $L_{\rm T} \dots$ transverse system sizelongitudinal pressure: $p_{\rm L} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm L}}$ $L_{\rm L} \dots$ longitudinal system size

Chiral transport in strong magnetic fields from hydrodynamics & holography

Universal magnetoresponse in QCD ...

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Lattice QCD with 2+1 flavors, dynamical quarks, physical massestransverse pressure: $p_{\rm T} = -\frac{L_{\rm T}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $F_{\rm QCD} \dots$ free energytransverse pressure: $p_{\rm T} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $L_{\rm T} \dots$ transverse system sizelongitudinal pressure: $p_{\rm L} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm L}}$ $L_{\rm L} \dots$ longitudinal system size

Chiral transport in strong magnetic fields from hydrodynamics & holography

... and N=4 Super-Yang-Mills theory

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Zeroth order CME $B \sim O(1)$ -thermodynamic chiral currents

Previous work: polarized matter at strong B

Generating functionals $W \sim P$ (pressure) for thermodynamics $B \sim \mathcal{O}(1)$

(i) No anomaly: [Kovtun; JHEP (2016)]

$$T^{\mu\nu} = Pg^{\mu\nu} + (Ts + \mu\rho)u^{\mu}u^{\nu} + T^{\mu\nu}_{\rm EM}$$
$$J^{\alpha} = \rho u^{\alpha} - \sum_{\substack{\lambda \\ bound \ current}} M^{\lambda\alpha}$$

$$T^{\mu\nu}_{\rm EM} = M^{\mu\alpha}g_{\alpha\beta}F^{\beta\nu} + u^{\mu}u^{\alpha}\left(M_{\alpha\beta}F^{\beta\nu} - F_{\alpha\beta}M^{\beta\nu}\right)$$

[Israel; Gen.Rel.Grav. (1978)]

Polarization tensor:

$$M_{\mu\nu} = p_{\mu}u_{\nu} - p_{\nu}u_{\mu} - \epsilon_{\mu\nu\rho\sigma}u^{\rho}m^{\sigma}$$

$$M^{\mu\nu} = 2 \frac{\partial P}{\partial F_{\mu\nu}}$$

Including vorticity: $W \sim M_{\omega} B \cdot \omega$ [Kovtun, Hernandez; JHEP (2017)]

Previous work: polarized matter at strong B

Generating functionals $W \sim P$ (pressure) for thermodynamics $|B| \sim \mathcal{O}(1)$

(i) No anomaly: [Kovtun; JHEP (2016)]

$$T^{\mu\nu} = Pg^{\mu\nu} + (Ts + \mu\rho)u^{\mu}u^{\nu} + T^{\mu\nu}_{\rm EM}$$
$$J^{\alpha} = \rho u^{\alpha} - \nabla_{\lambda} M^{\lambda\alpha}_{bound\ current}$$

$$T^{\mu\nu}_{\rm EM} = M^{\mu\alpha}g_{\alpha\beta}F^{\beta\nu} + u^{\mu}u^{\alpha}\left(M_{\alpha\beta}F^{\beta\nu} - F_{\alpha\beta}M^{\beta\nu}\right)$$

[Israel; Gen.Rel.Grav. (1978)]

Polarization tensor:

$$M_{\mu\nu} = p_{\mu}u_{\nu} - p_{\nu}u_{\mu} - \epsilon_{\mu\nu\rho\sigma}u^{\rho}m$$

$$M^{\mu\nu} = 2 \frac{\partial P}{\partial F_{\mu\nu}}$$

Including vorticity: $W \sim M_{\omega} B \cdot \omega$ [Kovtun, Hernandez; JHEP (2017)]

(ii) With anomaly: [Jensen, Loganayagam, Yarom; JHEP (2014)]

➡ opportunity: single framework allows for polarization, magnetization, external vorticity, *E*, *B*, and chiral anomaly

- opportunity: dynamical *E* and *B*; magnetohydrodynamics [Kovtun, Hernandez; JHEP (2017)]
- opportunity: study equilibrium and near-equilibrium transport [Ammon, Grieninger, Kaminski, Koirala, Leiber, Wu; to appear]

Holographic result: thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)]

Background solution: charged magnetic black branes

[D'Hoker, Kraus; JHEP (2009)] [Ammon, Leiber, Macedo; JHEP (2016)]

- external magnetic field
- charged plasma
- anisotropic plasma

Holographic result: thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)]

Background solution: charged magnetic black branes

[D'Hoker, Kraus; JHEP (2009)]

[Ammon, Leiber, Macedo; JHEP (2016)]

- external magnetic field
- charged plasma
- anisotropic plasma

Thermodynamics

$$\langle T^{\mu\nu} \rangle = \begin{pmatrix} -3 u_4 & 0 & 0 & -4 c_4 \\ 0 & -\frac{B^2}{4} - u_4 - 4 w_4 & 0 & 0 \\ 0 & 0 & -\frac{B^2}{4} - u_4 - 4 w_4 & 0 \\ -4 c_4 & 0 & 0 & 8 w_4 - u_4 \end{pmatrix}$$

$$\langle J^{\mu} \rangle = (\rho, 0, 0, p_1) .$$

$$\langle J^{\mu}_{\rm EFT} \rangle = \begin{pmatrix} \epsilon_0 & 0 & 0 & \xi_V^{(0)}B \\ 0 & \rho_0 - \chi_{BB}B^2 & 0 & 0 \\ 0 & 0 & P_0 - \chi_{BB}B^2 & 0 \\ \xi_V^{(0)}B & 0 & 0 & P_0 \end{pmatrix} + \mathcal{O}(\partial)$$

with near boundary expansion coefficients u_4, w_4, c_4, p_1

agrees in form with strong B thermodynamics from EFT

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = -ik^2 \frac{\eta}{\epsilon_0 + P_0} +$$

former momentum diffusion modes

$$\begin{aligned} \mathbf{\mathfrak{s}}_0 &= s_0/n_0\\ \tilde{c}_P &= T_0 (\partial \mathbf{\mathfrak{s}}/\partial T)_P \end{aligned}$$

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

$$\mathfrak{s}_0 = s_0/n_0$$

 $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

former momentum diffusion modes

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

former momentum diffusion modes

$$\begin{aligned} \mathbf{\mathfrak{s}}_0 &= s_0/n_0\\ \tilde{c}_P &= T_0 (\partial \mathbf{\mathfrak{s}}/\partial T)_P \end{aligned}$$

spin 0 modes under SO(2) rotations around B

$$\omega_{0} = v_{0} k - i D_{0} k^{2} + \mathcal{O}(\partial^{3}) \text{ former charge}$$

diffusion mode

$$\omega_{+} = v_{+}\kappa - i\Gamma_{+}\kappa + O(0)$$

former
$$\omega_{-} = v_{-}k - i\Gamma_{-}k^{2} + O(\partial^{3})$$

modes

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

spin 1 modes under SO(2) rotations around *B*

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

former momentum diffusion modes

$$\mathfrak{s}_0 = s_0/n_0$$
$$\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$$

spin 0 modes under SO(2) rotations around B $\omega_{0} = v_{0} k - i D_{0} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former charge}_{diffusion mode}$ $\omega_{+} = v_{+} k - i \Gamma_{+} k^{2} + \mathcal{O}(\partial^{3})$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former}_{modes}$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former}_{modes}$ $D_{0} = \frac{w_{0}^{2} \sigma}{\tilde{c}_{P} n_{0}^{3} T_{0}}$

dispersion relations of hydrodynamic modes are heavily modified by anomaly and B

