Susy Q and

Boomerang RG Flows

Jerome Gauntlett

C. Rosen
A. Donos, C. Rosen, O. Sosa-Rodriguez

Suzie Q and Boomerang RG Flows

Holography provides powerful tools to study strongly coupled CFTs deformed by an operator that explicitly breaks translations

$$
L_{C F T} \rightarrow L_{C F T}+\int d x \phi_{s}(x) \mathcal{O}(x)
$$

Why study?

- Momentum can dissipate and hence finite DC conductivities
- RG flows lead to novel ground states in IR
- Metals with Drude peaks
- Novel metals without Drude peaks [Donos.JPG][Gouteraux][....]
- Insulators [Donos,Hartnoll][Donos,JPG][.....]
- Defects/Interface/Janus [Bak,Gutperle,Hirano][.....]
- "Boomerang" RG flows

with renormalisation of length scales from UV to IR
- Can have intermediate scaling
- Singularity resolving mechanism
- Can generate quantum phase transitions
- Can preserve supersymmetry

Q-Lattices [Donos,JPG]

- Exploit a bulk global symmetry to break translations leading to a system of ODEs rather than PDEs
- E.g. complex scalar field z in $D=4$

$$
\mathcal{L}=R-\partial_{\mu} z \partial^{\mu} \bar{z}-\mathcal{V}(|z|)+\ldots
$$

Use global symmetry $\quad z \rightarrow e^{i \theta} z \quad$ to construct ansatz
$z=\rho e^{i k x}$
$d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+N^{2} d r^{2}$

- Can generalise to break more translations and also to any D

Susy Q - a supersymmetric Q-lattice

- e.g. $N=I$ supergravity in $D=4$ with single chiral multiplet

$$
\mathcal{L}=R-G \partial_{\mu} z \partial^{\mu} \bar{z}-\mathcal{V}
$$

where

$$
G=2 \partial \bar{\partial} \mathcal{K}(z, \bar{z})
$$

$$
\mathcal{V}=4 G^{-1} \partial \mathcal{W} \bar{\partial} \mathcal{W}-\frac{3}{2} \mathcal{W}^{2} \quad \text { and } \quad \mathcal{W}=-2 e^{\mathcal{K} / 2}|W(z)|
$$

- Q-lattice demands $\mathcal{K}=\mathcal{K}(|z|)$
- Susy Q demands $\quad W=$ constant

$$
\begin{aligned}
& z=\rho e^{i k x} \\
& d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+N^{2} d r^{2}
\end{aligned}
$$

- BPS equations

$$
\begin{aligned}
N^{-1} \rho^{\prime}+e^{\mathcal{K} / 2} G^{-1} \mathcal{K}^{\prime} W & =k e^{-V} \rho \\
N^{-1} A^{\prime}-e^{\mathcal{K} / 2} W & =0 \\
N^{-1} V^{\prime}-e^{\mathcal{K} / 2} W & =-\frac{1}{2} e^{-V} k \rho \mathcal{K}^{\prime}
\end{aligned}
$$

- $k=0:$ I/2 BPS Poincare RG flow

$$
\Gamma^{r} \epsilon=-\epsilon
$$

- $k \neq 0:$ I/4 BPS Susy \mathbf{Q} RG flow

$$
\begin{aligned}
& \Gamma^{r} \epsilon=-\epsilon \\
& \Gamma^{t y} \epsilon=-\epsilon
\end{aligned}
$$

$$
\begin{aligned}
& z=\rho e^{i k x} \\
& d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+N^{2} d r^{2}
\end{aligned}
$$

- BPS equations

$$
\begin{aligned}
N^{-1} \rho^{\prime}+e^{\mathcal{K} / 2} G^{-1} \mathcal{K}^{\prime} W & =k e^{-V} \rho \\
N^{-1} A^{\prime}-e^{\mathcal{K} / 2} W & =0 \\
N^{-1} V^{\prime}-e^{\mathcal{K} / 2} W & =-1 e^{-V} k \rho \mathcal{K}^{\prime}
\end{aligned}
$$

- $k=0:$ I/2 BPS Poincare RG flow

$$
\Gamma^{r} \epsilon=-\epsilon
$$

- $k \neq 0:$ I/4 BPS Susy Q RG flow

$$
\begin{aligned}
& \Gamma^{r} \epsilon=-\epsilon \\
& \Gamma^{t y} \epsilon=-\epsilon
\end{aligned}
$$

A Top-Down Example

- Consistent KK truncation

$$
D=11 \quad \text { Sugra } \quad \xrightarrow{S^{7}} \quad N=8 \quad S O(8) \quad \text { Sugra }
$$

- Further truncate to $S O(4) \times S O(4) \subset S O(8)$ sector to get

$$
N=4 \quad S O(4) \quad \text { Sugra }
$$

- Set $S O(4)$ gauge fields to zero to get $\mathrm{N}=\mathrm{I}$ Sugra in $\mathrm{D}=4$

$$
e^{-\mathcal{K} / 2}=\left(1-|z|^{2}\right)^{1 / 2} \quad \text { and } \quad W=\text { constant }
$$

- Can explicitly uplift to $\mathrm{D}=\mathrm{I}$ I solutions [Cvetic,Lu,Pope]
- Vacuum $A d S_{4}$ uplifts to $A d S_{4} \times S^{7}$
- Can quotient by $\mathbb{Z}_{q} \subset U(1)_{b}$ with $\quad U(1)_{b} \times S U(4) \subset S O(8)$ and then dual to ABJM theory at level q
- Dual operators: $z=\mathcal{X}+i \mathcal{Y}$
with

$$
\Delta\left(\mathcal{O}_{\mathcal{X}}\right)=1 \quad \Delta\left(\mathcal{O}_{\mathcal{Y}}\right)=2
$$

achieved via holographic renormalisation:
[Cabo-Bizet,Kol,Pando Zayas,Papadimitriou,Rathee] [Freedman,Pufu]

$$
S_{b d y}=\int d^{3} x \sqrt{-\gamma}\left(2 K+2 \mathcal{W}+4\left(r \mathcal{X} \partial_{r} \mathcal{X}+\mathcal{X}^{2}\right)\right)
$$

$k=0 \quad$ Susy Poincare invariant RG flows [Pope,Warner]

$$
d s^{2}=e^{2 A}\left(-d t^{2}+d x^{2}+d y^{2}\right)+r^{-2} d r^{2}
$$

- Analytic solution

$$
e^{2 A}=r^{2}\left(1-\frac{\mu^{2}}{r^{2}}\right)^{2} \quad z=\frac{2 \mu r}{r^{2}+\mu^{2}} e^{i \theta}
$$

singular at $r=\mu$
$k=0 \quad$ Susy Poincare invariant RG flows [Pope,Warner]

$$
d s^{2}=e^{2 A}\left(-d t^{2}+d x^{2}+d y^{2}\right)+r^{-2} d r^{2}
$$

- Analytic solution

$$
e^{2 A}=r^{2}\left(1-\frac{\mu^{2}}{r^{2}}\right)^{2}
$$

$$
z=\frac{2 \mu r}{r^{2}+\mu^{2}} e^{i \theta}
$$

singular at $r=\mu$

- $\theta=0$

$$
\left\langle\mathcal{O}^{\Delta=1}\right\rangle \neq 0 \quad \text { and no sources }
$$

Coulomb branch RG flow - distribution of membranes

- $\theta \neq 0 \quad$ Switches on source for $\mathcal{O}^{\Delta=2}$

Dielectric RG flow - membranes puff up into fivebranes

- Various operators gapped for these $k=0$ flows
e.g. massless scalar field - dual to marginal operator

$$
\delta h(t, r)=h(r) e^{-i \omega t}
$$

Retarded Greens function

$$
G^{R}(\omega) \propto \omega^{2} \mu \sqrt{1-\frac{\omega^{2}}{4 \mu^{2}}}
$$

is real for $\omega \leq 2 \mu$
$k \neq 0$ Susy Q Boomerang RG flows

$$
d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+r^{-2} d r^{2}
$$

- UV boundary conditions to BPS equations

$$
e^{2 A}=r^{2}+\ldots \quad e^{2 V}=r^{2}+\ldots \quad \rho=\Lambda \frac{1}{r}-k \Lambda \frac{1}{r^{2}}+\ldots
$$

Specified by dimensionless parameter $\frac{\Lambda}{k}$

- UV sources and vevs

$$
\mathcal{X}_{s}=4 k \Lambda \cos k x
$$

$$
\mathcal{Y}_{s}=\Lambda \sin k x
$$

$\left\langle\mathcal{O}_{\mathcal{X}}\right\rangle=\Lambda \cos k x$
$\left\langle\mathcal{O}_{\mathcal{Y}}\right\rangle=-4 k \Lambda \sin k x$

- Stress tensor - spatially modulated
$\left\langle\mathcal{T}^{t t}\right\rangle / k^{3}=-2\left(\frac{\Lambda}{k}\right)^{2} \cos 2 k x$

$$
\left\langle\mathcal{T}^{x x}\right\rangle / k^{3}=4\left(\frac{\Lambda}{k}\right)^{2} \cos ^{2} k x
$$

- Zero average energy density $\left\langle\overline{\mathcal{T}^{t t}}\right\rangle=0$
- RG flows perturbative in $\frac{\Lambda}{k}$

$$
d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+r^{-2} d r^{2}
$$

Solve scalar in $A d S_{4}$ background:

$$
\rho=\frac{\Lambda}{r} e^{-k / r}+\ldots
$$

Back reacts on metric

$$
\begin{aligned}
& e^{2 A}=r^{2}\left[1+\frac{\Lambda^{2}}{4 k^{2}}\left(-1+\frac{(2 k+r)}{r} e^{-2 k / r}\right)+\ldots\right] \\
& e^{2 V}=r^{2}\left[1+\frac{\Lambda^{2}}{4 k^{2}}\left(1-\frac{\left(4 k^{2}+2 k r+r^{2}\right)}{r^{2}} e^{-2 k / r}\right)+\ldots\right]
\end{aligned}
$$

We have a boomerang flow
Generic for Q-lattices with relevant operators

- Refractive index

$$
d s^{2}=e^{2 A}\left(-d t^{2}+d y^{2}\right)+e^{2 V} d x^{2}+r^{-2} d r^{2}
$$

For $A d S_{4}$ speed of light $\quad e^{A-V}$

Refractive index $\quad n_{x}=\frac{\left.e^{A-V}\right|_{U V}}{\left.e^{A-V}\right|_{I R}}$

BPS equations $\quad \Rightarrow \quad n_{x} \geq 1$

Perturbative boomerang flows $\quad n^{x}=1+\frac{1}{4}\left(\frac{\Lambda}{k}\right)^{2}$

- RG flows non-perturbative in

Exist for arbitrary large $\quad \frac{\Lambda}{k} \quad$ (not guaranteed!)

- These boomerang flows resolve singularity

Resolves hard gap in spectral functions

- Index of refraction

ABJM theory
$U(N)_{q} \times U(N)_{-q}$ bosons $Y^{A} \quad 4_{0}$ $S U(4) \times U(1)_{b}$ fermions $\psi_{A} \quad \overline{4}_{0}$

- $q>2 \quad \mathcal{N}=6 \quad$ supersymmetry
- $q=1,2 \quad \mathcal{N}=8 \quad$ supersymmetry
- Deformation in ABJM theory $\quad M_{A}{ }^{B}=\operatorname{diag}(1,1,-1,-1)$
$\rho \cos k x \quad \longleftrightarrow \quad \mathcal{O}^{\Delta=1} \sim M_{A}{ }^{B} \operatorname{Tr}\left(Y^{A} Y_{B}^{\dagger}\right)$
$\rho \sin k x \quad \longleftrightarrow \quad \mathcal{O}^{\Delta=2} \sim M_{A}^{B} \operatorname{Tr}\left(\psi^{\dagger} \psi_{B}+\frac{8 \pi}{q} Y^{C} Y_{[C}^{\dagger} Y^{A} Y_{B]}^{\dagger}\right)$

Deformations of ABJM with $m=m(x)$
$\Delta \mathcal{L}=m^{\prime} M_{A}^{B} \operatorname{Tr}\left(Y^{A} Y_{B}^{\dagger}\right)+m M_{A}^{B} \operatorname{Tr}\left(i \psi^{\dagger}{ }^{A} \psi_{B}+\frac{8 \pi}{q} Y^{C} Y_{[C}^{\dagger} Y^{A} Y_{B]}^{\dagger}\right)+m^{2} \operatorname{Tr}\left(Y^{A} Y_{A}^{\dagger}\right)$
preserve $\mathcal{N}=3$ susy

- We have found the gravity dual for $m(x)=\sin k x$

Corollary: for $q=1,2$ should preserve $\mathcal{N}=4$ susy

- Gravity duals for other $m(x)$?

In general PDEs but a Janus solution is known

- Secondary intermediate scaling? Isotropic flow in M-Theory [Donos,JPG,Rosen,Sosa-Rodriguez

For Susy $\mathbf{Q} \mathbf{?} \quad \mathcal{L}=R-\frac{1}{2}(\partial \lambda)^{2}-\frac{1}{2} \sinh ^{2} \lambda(\partial \sigma)^{2}+2(2+\cosh \lambda)$

$$
\mathcal{L} \approx R-\frac{1}{2}(\partial \lambda)^{2}-\frac{1}{8} e^{2 \lambda}(\partial \sigma)^{2}+e^{\lambda}
$$

Has novel $A d S_{3} \times \mathbb{R}$ solution for arbitrary λ_{0}

Final Comments

- Susy Q is possible
- Susy boomerang RG flows for ABJM theory
- Some questions

Other top down Susy Q from $D=4$?
Not for truncations of $\mathcal{N}=8$ that have scalars in $S L(2) / S O(2) \quad$ classified by [Bobev,Pilch,Warner]

Isotropic Susy Q?
$\mathrm{D}=5$ Susy Q ?
What other susy $m(x)$ are possible for SCFTs?

