

A nAttractor Mechanism for $\textbf{nAdS}_2/\textbf{nCFT}_1$ Holography

Finn Larsen

University of Michigan and Leinweber Center for Theoretical Physics

Gauge/Gravity Duality 2018 Würzburg, August 3, 2018

Ubiquity of AdS_2

- *Extremal* black holes are important: they have the smallest possible mass for given charges so they are *ground states*.
- Spherically symmetric asymptotically flat extremal black holes in D = 4 have *horizon geometry* $AdS_2 \times S^2$.
- In fact *all* extremal black holes include an AdS₂ factor (a theorem).
- This motivates interest in *AdS*₂ *quantum gravity*.

AdS_2/CFT_1 Holography?

- AdS_{d+1}/CFT_d correspondence is confusing for d = 1.
- No finite energy excitations possible in AdS₂: Their *backreaction spoil asymptotic AdS*₂ boundary conditions.
- Also many other (related) unpleasantries.
- So AdS₂/CFT₁ holography is not yet well understood.

$nAdS_2/nCFT_1$ Holography.

- Recently developed version AdS₂/CFT₁ holography: duality between *nearly* AdS₂ geometry and *nearly* CFT₁.
- Conformal symmetry is *broken spontaneously* (by boundary conditions) and *broken dynamically* (by an anomaly).
- Interesting nCFT₁'s realize the symmetry breaking pattern: SYK,....
- This talk: *gravitational aspects*, especially (nearly) extreme 4D black holes with spherically symmetry.

A Canonical Setting

- 4D $\mathcal{N} = 2$ ungauged SUGRA with n_V vector multiplets.
- The black hole parameters are: Mass M not an independent variable (extremality!) Charges $(p^I, q_I), I = 0, ... n_V$ Asymptotic value of complex scalars $z^i_{\infty}, i = 1, ... n_V$.
- *Extreme* black holes in this setting have been studied extensively.

The Extremal Attractor

- A radial *flow*: the scalars z^i *evolve* from infinity to the horizon.
- The *attractor mechanism*: scalar fields *at the horizon* are independent of the asymptotic value of the scalar fields.
- So the horizon theory is *universal*: independent of moduli, including the coupling constants,....
- Many other versions of the extremal attractor mechanism: rotation, asymptotically AdS, 5D, multicenter solutions, nonBPS branch, higher derivative corrections, extended black objects, more SUSY, ...
- This talk: an attractor mechanism for *nearly* extreme black holes.
 A nAttractor.

Near Extreme Black Holes

- The "near" of $nAdS_2/nCFT_1$ appears in *two ways*.
- Black holes only *nearly* extremal so scalars at the horizon depart from their extremal attractor value.
- Also: nAdS₂/nCFT₁ considers the entire *near* horizon region so scalars are *not constant*.
- The corresponding symmetry breakings introduce *new scale*(s).
- These scales are fundamental for $nAdS_2/nCFT_1$ holography.

A Scale: the Specific Heat

• The *extremal* black hole entropy is a ground state entropy

$$S_0 = \frac{4\pi\ell_2^2}{4G_4} = \frac{2\pi}{\kappa_2^2}$$

There is no scale, just a large dimensionless number.

• The *nearly* extreme black hole entropy:

$$S = S_0 + CT$$

- The *specific heat* C = 2L is the *symmetry breaking scale*.
- Literature: is the symmetry breaking scale universal, essentially the AdS $_2$ scale ℓ_2 ?

$$C \sim \frac{\ell_2}{\kappa_2^2}$$

This talk: "no".

Preview: nAttractor Mechanism

- The nAdS $_2$ region introduces *many scales* that are related to the black hole parameters (p^I, q_I) , z^i_{∞} .
- A *nAttractor mechanism*: these scales are computed by a generalization of the *extremal* attractor mechanism
- There is no need to construct and analyze non extremal black hole solutions.

Non-Extreme Black Holes

• General *non-extreme* black hole depends on a single *radial function* R(r):

$$ds_4^2 = -\frac{r(r-2m)}{R^2(r)}dt^2 + \frac{R^2(r)}{r(r-2m)}dr^2 + R^2(r)d\Omega_2^2$$

- There is a horizon at r = 2m.
- Entropy and temperature are encoded in the radial function:

$$S = \frac{\pi R^2(2m)}{G_4}.$$
$$T = \frac{m}{2\pi R^2(2m)}.$$

• The extremal limit is $m \rightarrow 0$ with charges and moduli fixed.

Near-Extreme Black Holes

- The radial function R(r) depends r and *also on* M.
- The entropy depends **only on** M.
- Near extremality (change mass M and position r):

$$\Delta S = \frac{\partial S}{\partial M} \Delta M = \frac{\pi}{G_4} \left(\frac{\partial R^2}{\partial M} \Delta M + \frac{\partial R^2}{\partial r} \Delta r \right)$$

- Estimate 1: $\partial_M S \sim T^{-1}$ so $\Delta M \sim T^2$ and $\Delta S \sim T$. Estimate 2: $\Delta r \sim m \sim T$.
- So $\partial_M R^2$ is *subleading*: at linear order ΔS follows from R^2 *at extremality* but at a new position r = 2m.
- This is a *major simplification* (addressing one aspect of "near").

The Symmetry Breaking Scale

 Therefore, the *heat capacity* follows from the radial function *of the extremal black hole*:

$$L = \frac{1}{2}C = \frac{2\pi^2}{G_4}R^2 \left.\frac{\partial R^2}{\partial r}\right|_{\text{hor}}$$

- The symmetry breaking scale only depends on *moving away from the horizon*.
- Moreover, the dependence is extremely simple: just a radial derivative.

The Extremal Attractor

- Consider the *horizon* attractor: the $AdS_2 \times S^2$ solution.
- For fixed charges, the $F_{\mu\nu}F^{\mu\nu}$ -type terms in the Lagrangian subject the scalars z^i to the *effective potential*

$$V = 2G_4^2 \left(p^I \ q_I \right) \begin{pmatrix} \nu_{IJ} & \mu_{IK} (\nu^{-1})^{KJ} \\ (\nu^{-1})^{IK} \mu_{KJ} & (\nu^{-1})^{IJ} + \mu_{IK} (\nu^{-1})^{KL} \mu_{LJ} \end{pmatrix} \begin{pmatrix} p^J \\ q_J \end{pmatrix}$$

 μ_{IJ}, ν_{IJ} are functions of z^i determined by special geometry.

- The scalars z^i are **constant** on the $AdS_2 \times S^2$ attractor geometry.
- So the *effective potential* V *is extremized*: $\partial_i V = 0$
- The extremum value of the potential gives: $R^4(0) = G_4^2 V_{\text{ext}}^2$

Results of Extremization

• Notation for the resulting radial function on $AdS_2 \times S^2$:

$$R^4(0) = I_4(P^I, Q_I)$$

- The *generating* function I_4 is *quartic* in the charges.
- Example ($\mathcal{N} = 4$ SUGRA): $I_4(p^I, q_I) = \vec{p}^2 \vec{q}^2 (\vec{p}\vec{q})^2$.
- The *scalar* values at the horizon are *also encoded in* I_4 :

$$\begin{pmatrix} X_{\rm hor}^{I} \\ F_{I}^{\rm hor} \end{pmatrix} = \begin{pmatrix} p^{I} \\ q_{I} \end{pmatrix} - i \begin{pmatrix} -\partial_{q_{I}} \\ \partial_{p^{I}} \end{pmatrix} I_{4}^{1/2}(p^{I}, q_{I})$$

Symplectic section (X^{I}, F_{I}) represents scalars projectively: $z^{i} = X^{i}/X^{0}$.

Moving Away from the Horizon

- The radial function *at the horizon* depends only on charges.
- It depends on *scalars at infinity* away from the horizon.
- Parametrize scalars at infinity through "charges" $p_{\infty}^{I}, q_{I}^{\infty}$:

$$\begin{pmatrix} X_{\infty}^{I} \\ F_{I}^{\infty} \end{pmatrix} = \begin{pmatrix} p_{\infty}^{I} \\ q_{I}^{\infty} \end{pmatrix} - i \begin{pmatrix} -\partial_{q_{I}^{\infty}} \\ \partial_{p_{\infty}^{I}} \end{pmatrix} I_{4}^{1/2}(p_{\infty}^{I}, q_{I}^{\infty})$$

- So: parametrize scalars *at infinity* using the charge/scalar relation determined *at the horizon*.
- The *full attractor flow* has the radial function

$$R^4(r) = I_4(P^I + rp_\infty^I, Q_I + rq_I^\infty)$$

The Symmetry Breaking Scale

• The radial derivative of R^2 gives the symmetry breaking scale:

$$L = \frac{\pi}{G_4} \left(p_{\infty}^I \frac{\partial}{\partial P^I} + q_I^{\infty} \frac{\partial}{\partial Q_I} \right) I_4(P^I, Q_I)$$

- The radial derivative is equivalent to *a derivative in charge* space.
- So the *nAttractor behavior* follows from *attractor geometry*.
- The derivative replaces a charge by its corresponding modulus.
- I_4 is quartic in the charges; L is **cubic in charges** and linear in moduli.

A Flow of Many Fields

- "The" breaking scale is (essentially) the radial derivative of R^2 .
- Other scalar fields *approach* their fixed value z_{hor}^i at the horizon.
- Their radial derivatives from differentiation in charge space:

$$\frac{dz^i}{dr} = \left(p_{\infty}^I \frac{\partial}{\partial P^I} + q_I^{\infty} \frac{\partial}{\partial Q_I}\right) z_{\text{hor}}^i$$

• In general *each scalar field introduces a scale*.

Explicit Example: The STU Model

- Eg.: $F = \frac{X^1 X^2 X^3}{X^0}$, simplify charges so $p^0 = 0, q_1 = q_2 = q_3 = 0$.
- The effective potential

$$V = \frac{1}{8y^1y^2y^3} \left(q_0^2 + (p^1y^2y^3)^2 + (p^2y^3y^1)^2 + (p^3y^1y^2)^2 \right) \; .$$

 p^i are M5-brane numbers, q_0 is momentum quantum number $y^i = -\text{Im}z^i$ are volumes of 4-cycles (in string units).

• The **extremal** attractor gives scalar fields y^i at the horizon as

$$y_{\rm hor}^i = \sqrt{\frac{q_0}{p^1 p^2 p^3}} p^i$$

independently of their asymptotic values.

• The extremal entropy

$$S = 4\pi V_{\rm hor} = 2\pi \sqrt{q_0 p^1 p^2 p^3}$$

The nAttractor Mechanism

• Present moduli *at infinity* as "charges" by inverting

$$y^i_{\infty} = \sqrt{\frac{q^{\infty}_0}{p^1_{\infty} p^2_{\infty} p^3_{\infty}}} p^i_{\infty}$$

• The *symmetry breaking scale*/specific heat:

$$L = \frac{\pi^2}{G_4} \left(p_{\infty}^i \frac{\partial}{\partial P^i} + q_0^{\infty} \frac{\partial}{\partial Q_0} \right) I_4$$
$$= \pi^2 q_0 p^1 p^2 p^3 R_{11} \left(\frac{1}{q_0} + \frac{1}{p^1 y_{\infty}^2 y_{\infty}^3} + \frac{1}{p^2 y_{\infty}^3 y_{\infty}^1} + \frac{1}{p^3 y_{\infty}^1 y_{\infty}^2} \right)$$

- It depends on moduli at infinity.
- It depends on *non-trivial combinations of charges*.

The Long String Scale

- In the *dilute gas regime* the momentum charge is *small compared to background* charges (M5-branes).
- Then the symmetry breaking scale is

$$L_{\rm long} = 2\pi p^1 p^2 p^3 R_{11}$$

- This is the *long string scale* known from microscopic black hole models.
- Physics: low energy excitations "live" on a circle of length L_{long} rather than on a circle of radius R_{11} .
- The scales for spatial dependence of the y^i is similar, but with charges permuted.

Summary

- nAdS₂/nCFT₁ holography describes the *near* horizon region of *nearly* extreme black holes.
- The *nAttractor* mechanism computes *near* horizon scalars and *near* extreme heat capacity in terms of the *extreme* attractor.
- The nAttractor introduces new parameters: the moduli, i.e. the asymptotic values of the scalars.
- It computes the *intrinsic scales* of nAdS₂/nCFT₁.

This research was supported by the US DoE.