Einstein Double Field Equations

$$
\begin{gathered}
\qquad G_{A B}=8 \pi G T_{A B} \\
\text { Hereafter } A, B \text { are } \mathbf{O}(D, D) \text { indices }
\end{gathered}
$$

박 정 혁（朴 廷 爀）Jeong－Hyuck Park Sogang University

Conference Gauge／Gravity Duality，Wurzburg，3rd August 2018

Prologue

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu \nu}$. Other fields are meant to be extra matter.

On the other hand, string theory suggests to put a two-form gauge potential, $B_{\mu \nu}$, and a scalar dilaton, ϕ, on an equal footing along with the metric:

- They form the olosed string massless sector, being ubiquitous in all string theories,

This action hides $\mathbf{O}(D, D)$ symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

T-duality hints at a natural augmentation to General Relativity, in which the entire closed string massless sector constitutes the fundamental gravitational multiplet and the above action corresponds to 'pure' gravity.

Double Field Theory (DFT), initiated by Siegel 1993 \& Hull, Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting $\mathbf{O}(D, D)$ T-duality.

My talk sketches the geometric construction of Stringy Gravity.
In particular, I will introduce Einstein Double Field Equations, $G_{A F}=8 \pi G T_{A B}$, as the unifying
single expression for all the equations of motion of the closed string massless sector,
as well as Newton-Cartan, Carroll and Gomis-Ooguri gravities (non-Riemannian).

Einstein Double Field Equations: $G_{A B}=8 \pi G T_{A B}$
1804.00964 with Stephen Angus and Kyoungho Сно

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu \nu}$. Other fields are meant to be extra matter.
- On the other hand, string theory suggests to put a two-form gauge potential, $B_{\mu \nu}$, and a scalar dilaton, ϕ, on an equal footing along with the metric:
- They form the closed string massless sector, being ubiquitous in all string theories,

$$
\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right) \quad \text { where } \quad H=\mathrm{d} B
$$

This action hides $\mathbf{O}(D, D)$ symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

- T-duality hints at a natural augmentation to General Relativity, in which the entire closed string massless sector constitutes the fundamental gravitational multiplet and the above action corresponds to 'pure' gravity.

Double Field Theory (DFT), initiated by Siegel 1993 \& Hull, Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting $\mathbf{O}(D, D)$ T-duality.

- My talk sketches the geometric construction of Stringy Gravity.

In particular, I will introduce Einstein Double Field Equations, $G_{A B}=8 \pi G T_{A B}$, as the unifying single expression for all the equations of motion of the closed string massless sector, as well as Newton-Cartan, Carroll and Gomis-Ooguri gravities (non-Riemannian)

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu \nu}$. Other fields are meant to be extra matter.
- On the other hand, string theory suggests to put a two-form gauge potential, $B_{\mu \nu}$, and a scalar dilaton, ϕ, on an equal footing along with the metric:
- They form the closed string massless sector, being ubiquitous in all string theories,

$$
\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right) \quad \text { where } \quad H=\mathrm{d} B
$$

This action hides $\mathbf{O}(D, D)$ symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

- T-duality hints at a natural augmentation to General Relativity, in which the entire closed string massless sector constitutes the fundamental gravitational multiplet and the above action corresponds to 'pure' gravity.

Double Field Theory (DFT), initiated by Siegel 1993 \& Hull, Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting $\mathbf{O}(D, D)$ T-duality.

- My talk sketches the geometric construction of Stringy Gravity.

In particular, I will introduce Einstein Double Field Equations, $G_{A B}=8 \pi G T_{A B}$, as the unifying single expression for all the equations of motion of the closed string massless sector, as well as Newton-Cartan, Carroll and Gomis-Ooguri gravities (non-Riemannian).

DFT as Stringy Gravity

Notation for $\mathbf{O}(D, D)$ and $\operatorname{Spin}(1, D-1)_{L} \times \operatorname{Spin}(D-1,1)_{R}$ Symmetries

Index	Representation	Metric (raising/lowering indices)
$A, B, \cdots, M, N, \cdots$	$\mathbf{O}(D, D)$ vector	$\mathcal{J}_{A B}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$
p, q, \cdots	$\operatorname{Spin}(1, D-1)_{L}$ vector	$\eta_{p q}=\operatorname{diag}(-++\cdots+)$
α, β, \cdots	$\operatorname{Spin}(1, D-1)_{L}$ spinor	$C_{\alpha \beta}, \quad\left(\gamma^{p}\right)^{T}=C \gamma^{p} C^{-1}$
\bar{p}, \bar{q}, \cdots	$\operatorname{Spin}(D-1,1)_{R}$ vector	$\bar{\eta}_{\bar{p} \bar{q}}=\operatorname{diag}(+--\cdots-)$
$\bar{\alpha}, \bar{\beta}, \cdots$	$\operatorname{Spin}(D-1,1)_{R}$ spinor	$\bar{C}_{\bar{\alpha} \bar{\beta} \bar{\prime}}, \quad\left(\bar{\gamma}^{\bar{\rho}}\right)^{T}=\bar{C} \bar{\gamma}^{\bar{\rho}} \bar{C}^{-1}$

- Each symmetry rotates its own indices exclusively: spinors are $\mathbf{O}(D, D)$ singlet.
- The constant $\mathbf{O}(D, D)$ metric, $\mathcal{J}_{A B}$, decomposes the doubled coordinates into two parts,

$$
x^{A}=\left(\tilde{x}_{\mu}, x^{\nu}\right), \quad \partial_{A}=\left(\tilde{\partial}^{\mu}, \partial_{\nu}\right)
$$

where μ, ν are D-dimensional curved indices.

- The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the left-moving and the right-moving closed string sectors separately \Rightarrow Unification of IIA and IIB.

- Closed string massless sector as 'Stringy Graviton Fields'

The stringy graviton fields consist of the DFT dilaton, d, and DFT metric, $\mathcal{H}_{M N}$:

$$
\mathcal{H}_{M N}=\mathcal{H}_{N M}, \quad \mathcal{H}_{K}{ }^{L} \mathcal{H}_{M}^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}
$$

Combining $\mathcal{J}_{M N}$ and $\mathcal{H}_{M N}$, we get a pair of symmetric projection matrices,

$$
\begin{array}{ll}
P_{M N}=P_{N M}=\frac{1}{2}\left(\mathcal{J}_{M N}+\mathcal{H}_{M N}\right), & P_{L}{ }^{M} P_{M}{ }^{N}=P_{L}{ }^{N}, \\
\bar{P}_{M N}=\bar{P}_{N M}=\frac{1}{2}\left(\mathcal{J}_{M N}-\mathcal{H}_{M N}\right), & \bar{P}_{L}{ }^{M} \bar{P}_{M}{ }^{N}=\bar{P}_{L}{ }^{N},
\end{array}
$$

which are orthogonal and complete,

$$
P_{L}{ }^{M} \bar{P}_{M}^{N}=0, \quad P_{M}^{N}+\bar{P}_{M}^{N}=\delta_{M}^{N}
$$

Further, taking the "square roots" of the projectors,

$$
P_{M N}=V_{M}^{p} V_{N}{ }^{q} \eta_{p q}, \quad \bar{P}_{M N}=\bar{V}_{M} \bar{p}^{\bar{p}} \bar{V}_{N} \bar{q}_{\bar{\eta} \overline{\bar{q}}},
$$

we get a pair of DFT vielbeins:

$$
V_{M p} V^{M}=\eta_{p q}, \quad \bar{V}_{M \bar{p}} \bar{V}_{\bar{q}}=\bar{\eta}_{\bar{p} \bar{q}}, \quad V_{M p} \bar{V}^{M_{\bar{q}}}=0, \quad V_{M}^{p} V_{N p}+\bar{V}_{M} \bar{p}^{\bar{p}} \bar{V}_{N \bar{p}}=\mathcal{J}_{M N}
$$

Classification of DFT backgrounds, 1707.03713 with Kevin Morand
The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} L^{\mathcal{H}_{M}}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}H^{\mu \nu} & -H^{\mu \sigma} B_{\sigma \lambda}+Y_{i}^{\mu} X_{\lambda}^{i}-\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\lambda}^{\bar{\imath}} \\ B_{\kappa \rho} H^{\rho \nu}+X_{\kappa}^{i} Y_{i}^{\nu}-\bar{X}_{\kappa}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} & K_{\kappa \lambda}-B_{\kappa \rho} H^{\rho \sigma} B_{\sigma \lambda}+2 X_{(\kappa}^{i} B_{\lambda) \rho} Y_{i}^{\rho}-2 \bar{X}_{(\kappa}^{\bar{\imath}} B_{\lambda) \rho} \bar{Y}_{\bar{\imath}}^{\rho}\end{array}\right)$
i) Symmetric and skew-symmetric fields
ii) Two kinds of eimenvectors having zern eigenvalue, with $i, j=1,2$,
iii) Completeness relation:

- Orthonormality follows

Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} L^{\mathcal{H}_{M}}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}H^{\mu \nu} & -H^{\mu \sigma} B_{\sigma \lambda}+Y_{i}^{\mu} X_{\lambda}^{i}-\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\lambda}^{\bar{\imath}} \\ B_{\kappa \rho} H^{\rho \nu}+X_{\kappa}^{i} Y_{i}^{\nu}-\bar{X}_{\kappa}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} & K_{\kappa \lambda}-B_{\kappa \rho} H^{\rho \sigma} B_{\sigma \lambda}+2 X_{(\kappa}^{i} B_{\lambda) \rho} Y_{i}^{\rho}-2 \bar{X}_{(\kappa}^{\bar{\imath}} B_{\lambda) \rho} \bar{Y}_{\bar{\imath}}^{\rho}\end{array}\right)$
i) Symmetric and skew-symmetric fields: $\quad H^{\mu \nu}=H^{\nu \mu}, \quad K_{\mu \nu}=K_{\nu \mu}, \quad B_{\mu \nu}=-B_{\nu \mu}$;
ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j=1,2, \cdots, n \& \bar{\imath}, \bar{\jmath}=1,2, \cdots, \bar{n}$,

$$
H^{\mu \nu} X_{\nu}^{i}=0, \quad H^{\mu \nu} \bar{X}_{\nu}^{\bar{\imath}}=0, \quad K_{\mu \nu} Y_{j}^{\nu}=0, \quad K_{\mu \nu} \bar{Y}_{\bar{\jmath}}^{\nu}=0 ;
$$

iii) Completeness relation:

$$
H^{\mu \rho} K_{\rho \nu}+Y_{i}^{\mu} X_{\nu}^{i}+\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\nu}^{\bar{\imath}}=\delta^{\mu}{ }_{\nu} .
$$

- Orthonormality follows

$$
Y_{i}^{\mu} X_{\mu}^{j}=\delta_{i}^{j}, \quad \bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\mu}^{\bar{\jmath}}=\delta_{\bar{\imath}}^{\bar{j}}, \quad Y_{i}^{\mu} \bar{X}_{\mu}^{\bar{j}}=\bar{Y}_{\bar{\imath}}^{\mu} X_{\mu}^{j}=0
$$

Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} \mathcal{H}_{M}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}H^{\mu \nu} & -H^{\mu \sigma} B_{\sigma \lambda}+Y_{i}^{\mu} X_{\lambda}^{i}-\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\lambda}^{\bar{\imath}} \\ B_{\kappa \rho} H^{\rho \nu}+X_{\kappa}^{i} Y_{i}^{\nu}-\bar{X}_{\kappa}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} & K_{\kappa \lambda}-B_{\kappa \rho} H^{\rho \sigma} B_{\sigma \lambda}+2 X_{(\kappa}^{i} B_{\lambda) \rho} Y_{i}^{\rho}-2 \bar{X}_{(\kappa}^{\bar{\imath}} B_{\lambda) \rho} \bar{Y}_{\bar{\imath}}^{\rho}\end{array}\right)$
i) Symmetric and skew-symmetric fields: $\quad H^{\mu \nu}=H^{\nu \mu}, \quad K_{\mu \nu}=K_{\nu \mu}, \quad B_{\mu \nu}=-B_{\nu \mu}$;
ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j=1,2, \cdots, n \& \bar{\imath}, \bar{\jmath}=1,2, \cdots, \bar{n}$,

$$
H^{\mu \nu} X_{\nu}^{i}=0, \quad H^{\mu \nu} \bar{X}_{\nu}^{\bar{\imath}}=0, \quad K_{\mu \nu} Y_{j}^{\nu}=0, \quad K_{\mu \nu} \bar{Y}_{\bar{\jmath}}^{\nu}=0 ;
$$

iii) Completeness relation:

$$
H^{\mu \rho} K_{\rho \nu}+Y_{i}^{\mu} X_{\nu}^{i}+\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\nu}^{\bar{\imath}}=\delta^{\mu}{ }_{\nu}
$$

- It is instructive to note the $\mathbf{O}(D, D)$ invariant trace,

Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} \mathcal{H}_{M}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}H^{\mu \nu} & -H^{\mu \sigma} B_{\sigma \lambda}+Y_{i}^{\mu} X_{\lambda}^{i}-\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\lambda}^{\bar{\imath}} \\ B_{\kappa \rho} H^{\rho \nu}+X_{\kappa}^{i} Y_{i}^{\nu}-\bar{X}_{\kappa}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} & K_{\kappa \lambda}-B_{\kappa \rho} H^{\rho \sigma} B_{\sigma \lambda}+2 X_{(\kappa}^{i} B_{\lambda) \rho} Y_{i}^{\rho}-2 \bar{X}_{(\kappa}^{\bar{\imath}} B_{\lambda) \rho} \bar{Y}_{\bar{\imath}}^{\rho}\end{array}\right)$
i) Symmetric and skew-symmetric fields: $\quad H^{\mu \nu}=H^{\nu \mu}, \quad K_{\mu \nu}=K_{\nu \mu}, \quad B_{\mu \nu}=-B_{\nu \mu}$;
ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j=1,2, \cdots, n \& \bar{\imath}, \bar{\jmath}=1,2, \cdots, \bar{n}$,

$$
H^{\mu \nu} X_{\nu}^{i}=0, \quad H^{\mu \nu} \bar{X}_{\nu}^{\bar{\imath}}=0, \quad K_{\mu \nu} Y_{j}^{\nu}=0, \quad K_{\mu \nu} \bar{Y}_{\bar{\jmath}}^{\nu}=0 ;
$$

iii) Completeness relation:

$$
H^{\mu \rho} K_{\rho \nu}+Y_{i}^{\mu} X_{\nu}^{i}+\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\nu}^{\bar{\imath}}=\delta^{\mu}{ }_{\nu}
$$

- It is instructive to note the $\mathbf{O}(D, D)$ invariant trace, $\mathcal{H}_{A}{ }^{A}=2(n-\bar{n})$ and

$$
\mathcal{H}_{A B}=\left(\begin{array}{cc}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{cc}
H & Y_{i}\left(X^{i}\right)^{T}-\bar{Y}_{\bar{\imath}}\left(\bar{X}^{\bar{\imath}}\right)^{T} \\
X^{i}\left(Y_{i}\right)^{T}-\bar{X}^{\bar{\imath}}\left(\bar{Y}_{\bar{\imath}}\right)^{T} & K
\end{array}\right)\left(\begin{array}{cc}
1 & -B \\
0 & 1
\end{array}\right) .
$$

Classification of DFT backgrounds, 1707.03713 with Kevin Morand
The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} \mathcal{H}_{M}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}H & Y_{i}\left(X^{i}\right)^{T}-\bar{Y}_{\bar{\imath}}\left(\bar{X}^{\bar{\imath}}\right)^{T} \\ X^{i}\left(Y_{i}\right)^{T}-\bar{X}^{\bar{\imath}}\left(\bar{Y}_{\bar{\imath}}\right)^{T} & K\end{array}\right)\left(\begin{array}{cc}1 & -B \\ 0 & 1\end{array}\right)$
$(n, \bar{n})=(0,0)$ corresponds to the Riemannian case or "Generalized Geometry"
II. Generically, string becomes chiral and anti-chiral over the n and \bar{n} dimensions:

Such non-Riemannian examples include

- (1,0) Newton-Cartan gravity c.f. Obers' talk $\left(\mathrm{ds}^{2}=-c^{2} \mathrm{~d} t^{2}+\mathrm{d} \mathrm{x}^{2}, \lim g^{-1}\right.$ is finite \& degenerate)
- $(1,1)$ Gomic-Ooguri non-relativistic string Charles Melhy-Thomneon Rene Mever Ko, JHP 2015
- ($D-1,0$) ultra-relativistic Carroll gravity

Singular geometry in GR can be smooth in DFT.
Their dvnamics will be all governed by the Einstein Double Field Equations.

Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} L^{\mathcal{H}_{M}}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}H & Y_{i}\left(X^{i}\right)^{T}-\bar{Y}_{\bar{\imath}}\left(\bar{X}^{\bar{\imath}}\right)^{T} \\ X^{i}\left(Y_{i}\right)^{T}-\bar{X}^{\bar{\imath}}\left(\bar{Y}_{\bar{\imath}}\right)^{T} & K\end{array}\right)\left(\begin{array}{cc}1 & -B \\ 0 & 1\end{array}\right)$
I. $(n, \bar{n})=(0,0)$ corresponds to the Riemannian case or "Generalized Geometry":
$\mathcal{H}_{M N} \equiv\left(\begin{array}{cc}g^{-1} & -g^{-1} B \\ B g^{-1} & g-B g^{-1} B\end{array}\right), \quad e^{-2 d} \equiv \sqrt{|g|} e^{-2 \phi} \quad$ Giveon, Rabinovici, Veneziano '89, Duff '90
II. Generically, string becomes chiral and anti-chiral over the n and \bar{n} dimensions:

Such non-Riemannian examples include

- (1.0) Newton-Cartan aravity c.f. Obers' tal $\left(d s^{2}=-c^{2} d t^{2}+d x^{2}, \lim g^{-1}\right.$ is finite \& degenerate)
- $(1,1)$ Gomis-Ooguri non-relativistic string Charles Melby-Thompson, Rene Meyer, Ko, JHP 2015
- ($D-1,0$) ultra-relativistic Carroll gravity

Sincular geometry in GR can be smonth ir DFT.
Their dynamics will be all governed by the Einstein Double Field Equations.

Classification of DFT backgrounds, 1707.03713 with Kevin Morand
The most general form of the DFT metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{K} \mathcal{H}_{M}{ }^{N} \mathcal{J}_{L N}=\mathcal{J}_{K M}$, is characterized by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:
$\mathcal{H}_{A B}=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right)\left(\begin{array}{cc}H & Y_{i}\left(X^{i}\right)^{T}-\bar{Y}_{\bar{\imath}}\left(\bar{X}^{\bar{\imath}}\right)^{T} \\ X^{i}\left(Y_{i}\right)^{T}-\bar{X}^{\bar{\imath}}\left(\bar{Y}_{\bar{\imath}}\right)^{T} & K\end{array}\right)\left(\begin{array}{cc}1 & -B \\ 0 & 1\end{array}\right)$
I. $(n, \bar{n})=(0,0)$ corresponds to the Riemannian case or "Generalized Geometry":

$$
\mathcal{H}_{M N} \equiv\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right), \quad e^{-2 d} \equiv \sqrt{|g|} e^{-2 \phi} \quad \text { Giveon, Rabinovici, Veneziano '89, Duff '90 }
$$

II. Generically, string becomes chiral and anti-chiral over the n and \bar{n} dimensions:

$$
X_{\mu}^{i} \partial_{+} x^{\mu}(\tau, \sigma) \equiv 0, \quad \bar{X}_{\mu}^{\bar{\imath}} \partial_{-} x^{\mu}(\tau, \sigma) \equiv 0
$$

- Such non-Riemannian examples include
- $(1,0)$ Newton-Cartan gravity c.f. Obers' talk $\left(\mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+\mathrm{d} \mathbf{x}^{2}, \lim _{c \rightarrow \infty} g^{-1}\right.$ is finite \& degenerate)
- $(1,1)$ Gomis-Ooguri non-relativistic string Charles Melby-Thompson, Rene Meyer, Ko, JHP 2015
- ($D-1,0$) ultra-relativistic Carroll gravity
- Singular geometry in GR can be smooth in DFT.
- Their dynamics will be all governed by the Einstein Double Field Equations.
- Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative":

$$
\hat{\mathcal{L}}_{\xi} T_{A_{1} \cdots A_{n}}:=\xi^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega_{T} \partial_{B} \xi^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} \xi_{B}-\partial_{B} \xi_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}},
$$

where ω_{T} is the weight, e.g. $\delta e^{-2 d}=\partial_{B}\left(\xi^{B} e^{-2 d}\right), \delta V_{A p}=\xi^{B} \partial_{B} V_{A p}+\left(\partial_{A} \xi_{B}-\partial_{B} \xi_{A}\right) V^{B}{ }_{p}$.

- For consistency, the so-called 'section condition' should be imposed: $\partial_{M} \partial^{M}=0$.

From $\partial_{m} \partial^{M}=22$,. $\tilde{\partial}^{\mu}$, the section condition can be easily solved by letting $\tilde{a}^{\mu}=0$.
The general solutions are then generated by the $O(D, D)$ rotation of it.

- The section condition is mathematically equivalent to a certain translational invariance:
where $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left\{d, \mathcal{H}_{M N}, \xi^{M}, \partial_{N} d, \partial_{L} \mathcal{H}_{M N}, \cdots\right\}$, arbitrary functions appearing in DFT,
and Δ^{M} is said to be derivative-index-valued.

Einstein Double Field Equations: $G_{A B}=8 \pi G T_{A B}$

- Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative":

$$
\hat{\mathcal{L}}_{\xi} T_{A_{1} \cdots A_{n}}:=\xi^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega_{T} \partial_{B} \xi^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} \xi_{B}-\partial_{B} \xi_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}},
$$

where ω_{T} is the weight, e.g. $\delta e^{-2 d}=\partial_{B}\left(\xi^{B} e^{-2 d}\right), \delta V_{A p}=\xi^{B} \partial_{B} V_{A p}+\left(\partial_{A} \xi_{B}-\partial_{B} \xi_{A}\right) V^{B}{ }_{p}$.

- For consistency, the so-called 'section condition' should be imposed: $\partial_{M} \partial^{M}=0$.

From $\partial_{M} \partial^{M}=2 \partial_{\mu} \tilde{\partial}^{\mu}$, the section condition can be easily solved by letting $\tilde{\partial}^{\mu}=0$.
The general solutions are then generated by the $\mathbf{O}(D, D)$ rotation of it.

- The section condition is mathematically equivalent to a certain translational invariance:

$$
\Phi_{i}(x)=\Phi_{i}(x+\Delta), \quad \Delta^{M}=\Phi_{j} \partial^{M} \Phi_{k}
$$

where $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left\{d, \mathcal{H}_{M N}, \xi^{M}, \partial_{N} d, \partial_{L} \mathcal{H}_{M N}, \cdots\right\}$, arbitrary functions appearing in DFT, and Δ^{M} is said to be derivative-index-valued.

- Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative":

$$
\hat{\mathcal{L}}_{\xi} T_{A_{1} \cdots A_{n}}:=\xi^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega_{T} \partial_{B} \xi^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} \xi_{B}-\partial_{B} \xi_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}},
$$

where ω_{T} is the weight, e.g. $\delta e^{-2 d}=\partial_{B}\left(\xi^{B} e^{-2 d}\right), \delta V_{A p}=\xi^{B} \partial_{B} V_{A p}+\left(\partial_{A} \xi_{B}-\partial_{B} \xi_{A}\right) V^{B}{ }_{p}$.

- For consistency, the so-called 'section condition' should be imposed: $\partial_{M} \partial^{M}=0$.

From $\partial_{M} \partial^{M}=2 \partial_{\mu} \tilde{\partial}^{\mu}$, the section condition can be easily solved by letting $\tilde{\partial}^{\mu}=0$.
The general solutions are then generated by the $\mathbf{O}(D, D)$ rotation of it.

- The section condition is mathematically equivalent to a certain translational invariance:

$$
\Phi_{i}(x)=\Phi_{i}(x+\Delta), \quad \Delta^{M}=\Phi_{j} \partial^{M} \Phi_{k}
$$

where $\Phi_{i}, \Phi_{j}, \Phi_{k} \in\left\{d, \mathcal{H}_{M N}, \xi^{M}, \partial_{N} d, \partial_{L} \mathcal{H}_{M N}, \cdots\right\}$, arbitrary functions appearing in DFT, and Δ^{M} is said to be derivative-index-valued.

- 'Physics' should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x)
$$

where Δ^{M} is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x)
$$

where Δ^{M} is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

- If we solve the section condition by letting $\tilde{\partial}^{\mu} \equiv 0$, and further choose $\Delta^{M}=c_{\mu} \partial^{M} x^{\mu}$, we note

$$
\left(\tilde{x}_{\mu}, x^{\nu}\right) \sim\left(\tilde{x}_{\mu}+c_{\mu}, x^{\nu}\right): \tilde{x}_{\mu} \text { 's are gauged and } x^{\nu} \text { 's form a section. }
$$

- Then, $\mathbf{O}(D, D)$ rotates the gauged directions and hence the section.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x)
$$

where Δ^{M} is derivative-index-valued.
Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

Further, if we 'gauge' $\mathrm{d} x^{M}$ explicitly by introducing a derivative-index-valued gauge potential,
it is possible to define $O(D, D)$ \& diffeomorphism covariant 'proper length' through a path integral
Proper Length

Roper Lengen

Doubled-yet-gauged spacetime

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x)
$$

where Δ^{M} is derivative-index-valued.
Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

- Further, if we 'gauge' $\mathrm{d} x^{M}$ explicitly by introducing a derivative-index-valued gauge potential,

$$
\mathrm{d} x^{M} \quad \longrightarrow D x^{M}=\mathrm{d} x^{M}-\mathcal{A}^{M}, \quad \mathcal{A}^{M} \partial_{M}=0
$$

it is possible to define $\mathbf{O}(D, D)$ \& diffeomorphism covariant 'proper length' through a path integral,

$$
\text { Proper Length }:=-\ln \left[\int \mathcal{D} \mathcal{A} \exp \left(-\int \sqrt{D x^{M} D x^{N} \mathcal{H}_{M N}}\right)\right]
$$

Under $\delta x^{M}=\xi^{M}, \delta\left(\mathrm{~d} x^{M}\right)=\mathrm{d} x^{N} \partial_{N} \xi^{M} \neq \mathrm{d} x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right)$ versus $\delta\left(D x^{M}\right)=D x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right)$. For the $(0,0)$ Riemannian DFT-metric, with $\tilde{\partial}^{\mu} \equiv 0, \mathcal{A}^{M}=A_{\mu} \partial^{M} x^{\mu}=\left(A_{\mu}, 0\right)$, from
after integrating out A_{μ}, the proper length reduces to the conventional one,

Length

Doubled-yet-gauged spacetime

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x),
$$

where Δ^{M} is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

- Further, if we 'gauge' $\mathrm{d} x^{M}$ explicitly by introducing a derivative-index-valued gauge potential,

$$
\mathrm{d} x^{M} \longrightarrow D x^{M}=\mathrm{d} x^{M}-\mathcal{A}^{M}, \quad \mathcal{A}^{M} \partial_{M}=0
$$

it is possible to define $\mathbf{O}(D, D)$ \& diffeomorphism covariant 'proper length' through a path integral,

$$
\text { Proper Length }:=-\ln \left[\int \mathcal{D} \mathcal{A} \exp \left(-\int \sqrt{D x^{M} D x^{N} \mathcal{H}_{M N}}\right)\right] .
$$

Under $\delta x^{M}=\xi^{M}, \delta\left(\mathrm{~d} x^{M}\right)=\mathrm{d} x^{N} \partial_{N} \xi^{M} \neq \mathrm{d} x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right)$ versus $\delta\left(D x^{M}\right)=D x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right)$.

- For the $(0,0)$ Riemannian DFT-metric, with $\tilde{\partial}^{\mu} \equiv 0, \mathcal{A}^{M}=A_{\mu} \partial^{M} x^{\mu}=\left(A_{\mu}, 0\right)$, from

$$
D x^{M} D x^{N} \mathcal{H}_{M N} \equiv \mathrm{~d} x^{\mu} \mathrm{d} x^{\nu} g_{\mu \nu}+\left(\mathrm{d} \tilde{x}_{\mu}-A_{\mu}+\mathrm{d} x^{\rho} B_{\rho \mu}\right)\left(\mathrm{d} \tilde{x}_{\nu}-A_{\nu}+\mathrm{d} x^{\sigma} B_{\sigma \nu}\right) g^{\mu \nu}
$$

after integrating out A_{μ}, the proper length reduces to the conventional one,

$$
\text { Length } \Longrightarrow \int \sqrt{\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} g_{\mu \nu}(x)}
$$

- Since it is independent of \tilde{x}_{μ}, indeed it measures the distance between two gauge orbits, as desired.

Doubled-yet-gauged sigma models

The definition of the proper length readily leads to 'covariant' actions:
I. Particle action

$$
\mathcal{S}_{\text {particle }}=\int \mathrm{d} \tau e^{-1} D_{\tau} x^{M} D_{\tau} x^{N} \mathcal{H}_{M N}(x)-\frac{1}{4} m^{2} e
$$

II. String action

$$
S_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} D_{i} x^{M} D_{j} x^{N} \mathcal{H}_{M N}(x)-\epsilon^{i j} D_{i} x^{M} \mathcal{A}_{j M}
$$

With the $(0,0)$ Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

the above actions reduce to the conventional ones:

Doubled-yet-gauged sigma models

The definition of the proper length readily leads to 'covariant' actions:
I. Particle action

$$
\mathcal{S}_{\text {particle }}=\int \mathrm{d} \tau e^{-1} D_{\tau} x^{M} D_{\tau} x^{N} \mathcal{H}_{M N}(x)-\frac{1}{4} m^{2} e
$$

II. String action

$$
S_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} D_{i} x^{M} D_{j} x^{N} \mathcal{H}_{M N}(x)-\epsilon^{i j} D_{i} x^{M} \mathcal{A}_{j M}
$$

With the $(0,0)$ Riemannian DFT-metric plugged, after integrating out the auxiliary fields, the above actions reduce to the conventional ones:

$$
\begin{aligned}
& S_{\text {particle }} \Rightarrow \int \mathrm{d} \tau e^{-1} \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}-\frac{1}{4} m^{2} e, \\
& S_{\text {string }} \Rightarrow \frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} g_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} B_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} \tilde{x}_{\mu} \partial_{j} x^{\mu} .
\end{aligned}
$$

III. κ-symmetric doubled-yet-gauged Green-Schwarz superstring, unifying IIA \& IIB

Doubled-yet-gauged sigma models

The definition of the proper length readily leads to 'covariant' actions:
I. Particle action

$$
\mathcal{S}_{\text {particle }}=\int \mathrm{d} \tau e^{-1} D_{\tau} x^{M} D_{\tau} x^{N} \mathcal{H}_{M N}(x)-\frac{1}{4} m^{2} e
$$

II. String action

$$
S_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} D_{i} X^{M} D_{j} x^{N} \mathcal{H}_{M N}(x)-\epsilon^{i j} D_{i} x^{M} \mathcal{A}_{j M}
$$

With the $(0,0)$ Riemannian DFT-metric plugged, after integrating out the auxiliary fields, the above actions reduce to the conventional ones:

$$
\begin{aligned}
& S_{\text {particle }} \Rightarrow \int \mathrm{d} \tau e^{-1} \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}-\frac{1}{4} m^{2} e, \\
& S_{\text {string }} \Rightarrow \frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} g_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} B_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} \tilde{x}_{\mu} \partial_{j} x^{\mu} .
\end{aligned}
$$

III. κ-symmetric doubled-yet-gauged Green-Schwarz superstring, unifying IIA \& IIB

$$
\begin{gathered}
\mathcal{S}_{\mathrm{GS}}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} \Pi_{i}^{M} \Pi_{j}^{N} \mathcal{H}_{M N}-\epsilon^{i j} D_{i} x^{M}\left(\mathcal{A}_{j M}-i \Sigma_{j M}\right) \\
\text { where } \Pi_{i}^{M}:=D_{i} x^{M}-i \Sigma_{i}^{M} \text { and } \Sigma_{i}^{M}:=\bar{\theta} \gamma^{M} \partial_{i} \theta+\bar{\theta}^{\prime} \bar{\gamma}^{M} \partial_{i} \theta^{\prime}
\end{gathered}
$$

On the other hand, upon the generic (n, \bar{n}) DFT backgrounds, the auxiliary gauge potential decomposes into three parts:

$$
A_{\mu}=K_{\mu \rho} H^{\rho \nu} A_{\nu}+X_{\mu}^{i} Y_{i}^{\nu} A_{\nu}+\bar{X}_{\mu}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} A_{\nu}
$$

- The first part appears quadratically, which leads to Gaussian integral.
- The second and third parts appear linearly, as Lagrange multipliers, to prescribe
i) Particle freezes over the $(n+\bar{n})$ dimensions

Remaining orthogonal directions are described by a reduced action:
ii) String becomes chiral over the n dimensions and anti-chiral over the \bar{n} dimensions

On the other hand, upon the generic (n, \bar{n}) DFT backgrounds, the auxiliary gauge potential decomposes into three parts:

$$
A_{\mu}=K_{\mu \rho} H^{\rho \nu} A_{\nu}+X_{\mu}^{i} Y_{i}^{\nu} A_{\nu}+\bar{X}_{\mu}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} A_{\nu}
$$

- The first part appears quadratically, which leads to Gaussian integral.
- The second and third parts appear linearly, as Lagrange multipliers, to prescribe
i) Particle freezes over the $(n+\bar{n})$ dimensions

$$
x_{\mu}^{i} \dot{x}^{\mu} \equiv 0, \quad \bar{x}_{\mu}^{\bar{\imath}} \dot{x}^{\mu} \equiv 0
$$

Remaining orthogonal directions are described by a reduced action:

$$
S_{\text {particle }} \Rightarrow \int \mathrm{d} \tau e^{-1} \dot{x}^{\mu} \dot{x}^{\nu} K_{\mu \nu}-\frac{1}{4} m^{2} e
$$

ii) String becomes chiral over the n dimensions and anti-chiral over the \bar{n} dimensions

On the other hand, upon the generic (n, \bar{n}) DFT backgrounds, the auxiliary gauge potential decomposes into three parts:

$$
A_{\mu}=K_{\mu \rho} H^{\rho \nu} A_{\nu}+X_{\mu}^{i} Y_{i}^{\nu} A_{\nu}+\bar{X}_{\mu}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}^{\nu} A_{\nu}
$$

- The first part appears quadratically, which leads to Gaussian integral.
- The second and third parts appear linearly, as Lagrange multipliers, to prescribe
i) Particle freezes over the $(n+\bar{n})$ dimensions

$$
x_{\mu}^{i} \dot{x}^{\mu} \equiv 0, \quad \bar{x}_{\mu}^{\bar{\imath}} \dot{x}^{\mu} \equiv 0
$$

Remaining orthogonal directions are described by a reduced action:

$$
S_{\text {particle }} \Rightarrow \int \mathrm{d} \tau e^{-1} \dot{x}^{\mu} \dot{x}^{\nu} K_{\mu \nu}-\frac{1}{4} m^{2} e
$$

ii) String becomes chiral over the n dimensions and anti-chiral over the \bar{n} dimensions

$$
\begin{gathered}
X_{\mu}^{i}\left(\partial_{\alpha} x^{\mu}+\frac{1}{\sqrt{-h}} \epsilon_{\alpha}^{\beta} \partial_{\beta} x^{\mu}\right) \equiv 0, \quad \bar{X}_{\mu}^{\bar{\imath}}\left(\partial_{\alpha} x^{\mu}-\frac{1}{\sqrt{-h}} \epsilon_{\alpha}^{\beta} \partial_{\beta} x^{\mu}\right) \equiv 0 \\
S_{\text {string }} \Rightarrow \frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} K_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu} B_{\mu \nu}+\frac{1}{2} \epsilon^{i j} \partial_{i} \tilde{x}_{\mu} \partial_{j} x^{\mu}
\end{gathered}
$$

Covariant derivatives and curvatures in Stringy Gravity feature two stages:
'semi-covariance' and 'complete covariantization'.

$$
\nabla_{C} T_{A_{1} A_{2} \cdots A_{n}}:=\partial_{C} T_{A_{1} A_{2} \cdots A_{n}}-\omega_{T} \Gamma^{B}{ }_{B C} T_{A_{1} A_{2} \cdots A_{n}}+\sum_{i=1}^{n} \Gamma_{C A_{i}}^{B} T_{A_{1} \cdots A_{i-1} B A_{i+1} \cdots A_{n}},
$$

for which the stringy Christoffel connection can be uniquely fixed,

$$
\Gamma_{C A B}=2\left(P \partial_{C} P \bar{P}\right)_{[A B]}+2\left(\bar{P}_{[A}{ }^{D} \bar{P}_{B]}^{E}-P_{[A}{ }^{D} P_{B]}^{E}\right) \partial_{D} P_{E C}-\frac{4}{D-1}\left(\bar{P}_{C[A} \bar{P}_{B]}{ }^{D}+P_{C[A} P_{B]}^{D}\right)\left(\partial_{D} d+\left(P \partial^{E} P \bar{P}\right)_{[E D]}\right)
$$

by demanding the compatibility, $\nabla_{A} P_{B C}=\nabla_{A} \bar{P}_{B C}=\nabla_{A} d=0$, and some torsionless conditions.

* There are no normal coordinates where $\Gamma_{C A B}$ would vanish point-wise: Equivalence Principle is broken for string (i.e. extended object) but recoverable for point particle.
- Semi-covariant Riemann curvature :
$S_{A B C D}=S_{[A B][C D]}=S_{C D A B}:=\frac{1}{2}\left(R_{A B C D}+R_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right), \quad S_{[A B C] D}=0$
where $R_{A B C D}$ denotes the ordinary "field strength": $R_{C D A B}=\partial_{A} \Gamma_{B C D}-\partial_{B} \Gamma_{A C D}+\Gamma_{A C} E_{B F D}-\Gamma_{B C} E_{A F D}$
By construction, it varies as 'total derivative': $\quad \delta S_{A B C D}=\nabla_{[A} \delta \Gamma_{B] C D}+\nabla_{[C} \delta \Gamma_{D] A B}$
- Semi-covariant 'Master' derivative :

The two spin connections for the $\operatorname{Spin}(1, D-1)_{L} \times \operatorname{Spin}(D-1,1)_{R}$ local Lorentz symmetries are determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

$$
\nabla_{C} T_{A_{1} A_{2} \cdots A_{n}}:=\partial_{C} T_{A_{1} A_{2} \cdots A_{n}}-\omega_{T} \Gamma^{B}{ }_{B C} T_{A_{1} A_{2} \cdots A_{n}}+\sum_{i=1}^{n} \Gamma_{C A_{i}}{ }^{B} T_{A_{1} \cdots A_{i-1} B A_{i+1} \cdots A_{n}},
$$

for which the stringy Christoffel connection can be uniquely fixed,

$$
\Gamma_{C A B}=2\left(P \partial_{C} P \bar{P}\right)_{[A B]}+2\left(\bar{P}_{[A}^{D} \bar{P}_{B]}^{E}-P_{[A}^{D} P_{B]}^{E}\right) \partial_{D} P_{E C}-\frac{4}{D-1}\left(\bar{P}_{C[A} \bar{P}_{B]}^{D}+P_{C[A} P_{B]}^{D}\right)\left(\partial_{D} d+\left(P \partial^{E} P \bar{P}\right)_{[E D]}\right)
$$

by demanding the compatibility, $\nabla_{A} P_{B C}=\nabla_{A} \bar{P}_{B C}=\nabla_{A} d=0$, and some torsionless conditions.

* There are no normal coordinates where $\Gamma_{C A B}$ would vanish point-wise: Equivalence Principle is broken for string (i.e. extended object) but recoverable for point particle.
- Semi-covariant Riemann curvature :

$$
S_{A B C D}=S_{[A B][C D]}=S_{C D A B}:=\frac{1}{2}\left(R_{A B C D}+R_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right), \quad S_{[A B C] D}=0
$$

where $R_{A B C D}$ denotes the ordinary "field strength": $R_{C D A B}=\partial_{A} \Gamma_{B C D}-\partial_{B} \Gamma_{A C D}+\Gamma_{A C}{ }^{E} \Gamma_{B E D}-\Gamma_{B C}{ }^{E} \Gamma_{A E D}$.
By construction, it varies as 'total derivative': $\quad \delta S_{A B C D}=\nabla_{[A} \delta \Gamma_{B] C D}+\nabla_{[C} \delta \Gamma_{D] A B}$.

- Semi-covariant 'Master' derivative :

$$
\mathcal{D}_{A}:=\partial_{A}+\Gamma_{A}+\Phi_{A}+\bar{\Phi}_{A}=\nabla_{A}+\Phi_{A}+\bar{\Phi}_{A} .
$$

The two spin connections for the $\operatorname{Spin}(1, D-1)_{L} \times \operatorname{Spin}(D-1,1)_{R}$ local Lorentz symmetries are determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

$$
\mathcal{D}_{A} V_{B p}=\nabla_{A} V_{B p}+\Phi_{A p}{ }^{q} V_{B q}=0, \quad \mathcal{D}_{A} \bar{V}_{B \bar{p}}=\nabla_{A} \bar{V}_{B \bar{p}}+\bar{\Phi}_{A \bar{p}}{ }^{\bar{q}} \bar{V}_{B \bar{q}}=0
$$

- Complete covariantization

- Tensors,

$$
\begin{aligned}
& P_{C}{ }^{D} \bar{P}_{A_{1}} B_{1} \cdots \bar{P}_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \mathcal{D}_{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \\
& \bar{P}_{C}{ }^{D} P_{A_{1}} B_{1} \cdots P_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \mathcal{D}_{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}}, \\
& \mathcal{D}^{p} T_{p \bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}, \quad \mathcal{D}^{\bar{p}} T_{\bar{p} q_{1} q_{2} \cdots q_{n}} ; \quad \mathcal{D}_{p} \mathcal{D}^{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \quad \mathcal{D}_{\bar{p}} \mathcal{D}^{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}} .} .
\end{aligned}
$$

- RR sector, $\mathcal{C}^{\alpha}{ }_{\bar{\alpha}} \mathrm{O}(D, D)$ covariant nilpotent operators
- Yang-Mills,
- Curvatures,

- Complete covariantization

- Tensors,

$$
\begin{aligned}
& P_{C}{ }^{D} \bar{P}_{A_{1}} B_{1} \ldots \bar{P}_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \\
& \bar{P}_{C}{ }^{D} P_{A_{1}} B_{1} \cdots P_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \\
& \mathcal{D}_{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \\
& \mathcal{D}_{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}}, \\
& T_{\bar{q} \bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \quad \mathcal{D}^{\bar{p}} T_{\overline{\bar{p}} q_{1} q_{2} \cdots q_{n}} ; \quad \mathcal{D}_{p} \mathcal{D}^{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \quad \mathcal{D}_{\bar{p}} \mathcal{D}^{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}} .
\end{aligned}
$$

- Spinors, $\rho^{\alpha}, \rho^{\prime \bar{\alpha}}, \psi_{\bar{p}}^{\alpha}, \psi_{\rho}^{\prime \bar{\alpha}}$,

$$
\gamma^{\rho} \mathcal{D}_{p} \rho, \quad \bar{\gamma}^{\overline{ }} \mathcal{D}_{\bar{\rho}} \rho^{\prime}, \quad \mathcal{D}_{\bar{\rho}} \rho, \quad \mathcal{D}_{p} \rho^{\prime}, \quad \gamma^{\rho} \mathcal{D}_{p} \psi_{\bar{q}}, \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \psi_{q}^{\prime}, \quad \mathcal{D}_{\bar{\rho}} \psi^{\bar{p}}, \quad \mathcal{D}_{p} \psi^{\prime p} .
$$

- RR sector, $\mathcal{C}^{\alpha}{ }_{\bar{\alpha}} \mathbf{O}(D, D)$ covariant nilpotent operators

$$
\mathcal{D}_{ \pm} \mathcal{C}:=\gamma^{\rho} \mathcal{D}_{\rho} \mathcal{C} \pm \gamma^{(D+1)} \mathcal{D}_{\bar{\rho}} \mathcal{C} \bar{\gamma}^{\bar{p}}, \quad\left(\mathcal{D}_{ \pm}\right)^{2}=0 \Longrightarrow \mathcal{F}:=\mathcal{D}_{+} \mathcal{C} \quad \text { (RR flux). }
$$

- Yang-Mills,

$$
\mathcal{F}_{p \bar{q}}:=\mathcal{F}_{A B} V^{A}{ }_{p} \bar{V}^{B}{ }_{\bar{q}} \quad \text { where } \quad \mathcal{F}_{A B}:=\nabla_{A} \mathcal{V}_{B}-\nabla_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right] .
$$

- Curvatures,

- Complete covariantization

- Tensors,

$$
\begin{aligned}
& P_{C}{ }^{D} \bar{P}_{A_{1}} B_{1} \ldots \bar{P}_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \mathcal{D}_{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \\
& \bar{P}_{C}{ }^{D} P_{A_{1}} B_{1} \ldots P_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} \cdots B_{n}} \Longrightarrow \mathcal{D}_{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}}, \\
& \mathcal{D}^{p} T_{p \bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \quad \mathcal{D}^{\bar{p}} T_{\bar{p} q_{1} q_{2} \cdots q_{n} ;} ; \mathcal{D}_{p} \mathcal{D}^{p} T_{\bar{q}_{1} \bar{q}_{2} \cdots \bar{q}_{n}}, \quad \mathcal{D}_{\bar{p}} \mathcal{D}^{\bar{p}} T_{q_{1} q_{2} \cdots q_{n}} .
\end{aligned}
$$

- Spinors, $\rho^{\alpha}, \rho^{\prime \bar{\alpha}}, \psi_{\bar{p}}^{\alpha}, \psi_{p}^{\prime \bar{\alpha}}$,

$$
\gamma^{p} \mathcal{D}_{p} \rho, \quad \bar{\gamma}^{\bar{p}} \mathcal{D}_{\bar{p}} \rho^{\prime}, \quad \mathcal{D}_{\bar{p}} \rho, \quad \mathcal{D}_{p} \rho^{\prime}, \quad \gamma^{p} \mathcal{D}_{p} \psi_{\bar{q}}, \quad \bar{\gamma}^{\bar{p}} \mathcal{D}_{\bar{p}} \psi_{q}^{\prime}, \quad \mathcal{D}_{\bar{p}} \psi^{\bar{p}}, \quad \mathcal{D}_{p} \psi^{\prime p}
$$

- RR sector, $\mathcal{C}^{\alpha}{ }_{\bar{\alpha}} \mathbf{O}(D, D)$ covariant nilpotent operators

$$
\mathcal{D}_{ \pm} \mathcal{C}:=\gamma^{p} \mathcal{D}_{p} \mathcal{C} \pm \gamma^{(D+1)} \mathcal{D}_{\bar{p}} \mathcal{C} \bar{\gamma}^{\bar{p}}, \quad\left(\mathcal{D}_{ \pm}\right)^{2}=0 \quad \Longrightarrow \mathcal{F}:=\mathcal{D}_{+} \mathcal{C} \quad(\mathrm{RR} \text { flux })
$$

- Yang-Mills,

$$
\mathcal{F}_{p \bar{q}}:=\mathcal{F}_{A B} V^{A}{ }_{p} \bar{V}^{B}{ }_{\bar{q}} \quad \text { where } \quad \mathcal{F}_{A B}:=\nabla_{A} \mathcal{V}_{B}-\nabla_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]
$$

- Curvatures,

$$
\left.S_{p \bar{q}}:=S_{A B} V_{p}^{A} \bar{V}_{\bar{q}}^{B} \quad(\text { Ricci }), \quad S_{(0)}:=\left(P^{A C} P^{B D}-\bar{P}^{A C} \bar{P}^{B D}\right) S_{A B C D} \quad \text { (scalar }\right) .
$$

Assuming $(0,0)$ Riemannian background, $\left\{e_{\mu}{ }^{p}, \bar{e}_{\mu} \bar{p}, B, \phi\right\}$, they reduce e.g. to

- Generalized Geometry Hitchin 2002, Gualtieri 2004, Waldram et al. 2008, 2011:

$$
\begin{aligned}
& \mathcal{D}_{\bar{p}} T_{q}=\frac{1}{\sqrt{2}}\left(\partial_{\bar{p}} T_{q}+\omega_{\bar{p} q r} T^{r}+\frac{1}{2} H_{\bar{p} q r} T^{r}\right), \\
& \gamma^{\rho} \mathcal{D}_{\rho} \rho=\frac{1}{\sqrt{2}} \gamma^{m}\left(\partial_{m} \rho+\frac{1}{4} \omega_{m n \rho} \gamma^{n \rho} \rho+\frac{1}{24} H_{m n p} \gamma^{n \rho} \rho-\partial_{m} \phi \rho\right) .
\end{aligned}
$$

- With $\boldsymbol{e}_{\mu}{ }^{p} \equiv \bar{e}_{\mu}{ }^{\bar{p}}$, H-twisted \& democratic RR Bergshoeff, Kallosh, Ortín, Roest, Van Proeyen 2001 :

$$
\mathcal{D}_{+} \Rightarrow \mathrm{d}+H \wedge, \quad \mathcal{D}_{-} \Rightarrow \star(\mathrm{d}+H \wedge) \star .
$$

- The scalar curvature gives the closed string effective action:

$$
\int e^{-2 d} S_{(0)}=\int \sqrt{|g|} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right) .
$$

These results show how closed string massless sector, $\left\{g_{\mu \nu}, B_{\mu \nu}, \phi\right\}$, should couple to extra matters minimally, while forming (pure) Stringy Gravity.

Equipped with the semi-covariant derivatives, one can construct, e.g.

- $D=10$ Maximally Supersymmetric Double Field Theory,

$$
\begin{gathered}
\mathcal{L}_{\text {type II }}=e^{-2 d}\left[\frac{1}{8} S_{(0)}+\frac{1}{2} \operatorname{Tr}(\mathcal{F} \overline{\mathcal{F}})+i \bar{\rho} \mathcal{F} \rho^{\prime}+i \bar{\psi}_{\bar{p}} \gamma_{q} \mathcal{F} \bar{\gamma}^{\bar{\rho}} \psi^{\prime q}+i \frac{1}{2} \bar{\rho} \gamma^{p} \mathcal{D}_{p} \rho-i \frac{1}{2} \bar{\rho}^{\prime} \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{p}} \rho^{\prime}\right. \\
\left.-i \bar{\psi}^{\bar{p}} \mathcal{D}_{\bar{\rho}} \rho-i \frac{1}{2} \bar{\psi}^{\bar{\rho}} \gamma^{q} \mathcal{D}_{q} \psi_{\bar{\rho}}+i \bar{\psi}^{\prime p} \mathcal{D}_{p} \rho^{\prime}+i \frac{1}{2} \bar{\psi}^{\prime p} \bar{\gamma}^{\bar{q}} \mathcal{D}_{\bar{q}} \psi^{\prime}{ }_{p}\right]
\end{gathered}
$$

which unifies IIA and IIB SUGRAs, thanks to the twofold spin groups.

- Minimal coupling to the $D=4$ Standard Model, Kangsin Choi \& JHP 2015 [PRL]

$$
\mathcal{L}_{\mathrm{SM}}=e^{-2 d}\left[\begin{array}{l}
\frac{1}{16 \pi G_{N}} S_{(0)} \\
+\sum_{\mathcal{V}} P^{A B} \bar{P}^{C D} \operatorname{Tr}\left(\mathcal{F}_{A C} \mathcal{F}_{B D}\right)+\sum_{\psi} \bar{\psi} \gamma^{a} \mathcal{D}_{a} \psi+\sum_{\psi^{\prime}} \bar{\psi}^{\prime} \bar{\gamma}^{\bar{a}} \mathcal{D}_{\bar{a}} \psi^{\prime} \\
-\mathcal{H}^{A B}\left(\mathcal{D}_{A} \phi\right)^{\dagger} \mathcal{D}_{B} \phi-V(\phi)+y_{d} \bar{q} \cdot \phi d+y_{u} \bar{q} \cdot \tilde{\phi} u+y_{e} \bar{l}^{\prime} \cdot \phi e^{\prime}
\end{array}\right]
$$

Every single term above is completely covariant, w.r.t. $\mathrm{O}(D, D)$, diffeomorphisms, and twofold local Lorentz symmetries, $\operatorname{Spin}(1, D-1)_{L} \times \operatorname{Spin}(D-1,1)_{R}$.

Derivation of the Einstein Double Field Equations

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_{a},

$$
\int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\right],
$$

where $S_{(0)}$ is the stringy scalar curvature and $L_{\text {matter }}$ is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_{M}. The integral is taken over a section, Σ.
We seek the variation of the action induced by all the fields, $d, V_{A p}, \bar{V}_{A p}, \Upsilon_{a}$.
Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

Secondly, the matter Lagrangian transforms as

where we have been naturally led to define

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_{a},

$$
\int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\right]
$$

where $S_{(0)}$ is the stringy scalar curvature and $L_{\text {matter }}$ is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_{M}. The integral is taken over a section, Σ.
We seek the variation of the action induced by all the fields, $d, V_{A p}, \bar{V}_{A p}, \Upsilon_{a}$.

- Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

$$
\delta\left(e^{-2 d} S_{(0)}\right) \simeq 4 e^{-2 d}\left(\bar{V}^{B \bar{q}} \delta V_{B}^{p} S_{p \bar{q}}-\frac{1}{2} \delta d S_{(0)}\right)
$$

- Secondly, the matter Lagrangian transforms as

where we have been naturally led to define

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_{a},

$$
\int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\right]
$$

where $S_{(0)}$ is the stringy scalar curvature and $L_{\text {matter }}$ is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_{M}. The integral is taken over a section, Σ.
We seek the variation of the action induced by all the fields, $d, V_{A p}, \bar{V}_{A p}, \Upsilon_{a}$.

- Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

$$
\delta\left(e^{-2 d} S_{(0)}\right) \simeq 4 e^{-2 d}\left(\bar{V}^{B \bar{a}} \delta V_{B}^{p} S_{p \bar{q}}-\frac{1}{2} \delta d S_{(0)}\right)
$$

- Secondly, the matter Lagrangian transforms as

$$
\delta\left(e^{-2 d} L_{\text {matter }}\right) \simeq e^{-2 d}\left(-2 \bar{V}^{A \bar{a}} \delta V_{A}^{p} K_{p \bar{q}}+\delta d T_{(0)}+\delta \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right)
$$

where we have been naturally led to define

$$
K_{p \bar{q}}:=\frac{1}{2}\left(V_{A p} \frac{\delta L_{\text {matter }}}{\delta \bar{V}_{A} \bar{q}}-\bar{V}_{A \bar{q}} \frac{\delta L_{\text {matter }}}{\delta V_{A}^{p}}\right), \quad T_{(0)}:=e^{2 d} \times \frac{\delta\left(e^{-2 d} L_{\text {matter }}\right)}{\delta d}
$$

- Combining the two results, the variation of the action reads

$$
\begin{aligned}
& \delta \int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\right] \\
= & \int_{\Sigma} e^{-2 d}\left[\frac{1}{4 \pi G} \bar{V} A \bar{q} \delta V_{A}^{p}\left(S_{p \bar{q}}-8 \pi G K_{p \bar{q}}\right)-\frac{1}{8 \pi G} \delta d\left(S_{(0)}-8 \pi G T_{(0)}\right)+\delta \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right]
\end{aligned}
$$

Hence, the equations of motion are for now exhaustively,

$$
S_{p \bar{q}}=8 \pi G K_{p \bar{q}}, \quad S_{(0)}=8 \pi G T_{(0)}, \quad \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}=0
$$

- Specifically when the variation is generated by diffeomorphisms, we have $\delta_{\xi} \Upsilon_{a}=\hat{\mathcal{L}}_{\xi} \Upsilon_{a}$ and
$\delta_{\xi} d=-\frac{1}{2} e^{2 d} \hat{\mathcal{L}}_{\xi}\left(e^{-2 d}\right)=-\frac{1}{2} \mathcal{D}_{A} \xi^{A}, \quad \bar{V}^{A} \bar{\sigma}_{\delta} V_{A}{ }^{p}=\bar{V}^{A \bar{a}} \hat{\mathcal{L}}_{\xi} V_{A}^{p}=2 \mathcal{D}_{[A} \xi_{B]} \bar{V}^{A \bar{a}} V^{B p}$

Substituting these, the diffeomorphic invariance of the action implies

which leads to the definitions of the off-shell conserved stringy Einstein curvature, $G_{A B}:=41 / A^{n} \bar{V}_{B]^{a}} S_{p a}-\frac{1}{2} \mathcal{J}_{A B} S_{(0)} \quad \mathcal{D}_{A} G^{A R}=0$ (off-shell)
and the on-shell conserved stringy Energy-Momentum tensor,

- Combining the two results, the variation of the action reads

$$
\begin{aligned}
& \delta \int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\right] \\
= & \int_{\Sigma} e^{-2 d}\left[\frac{1}{4 \pi G} \bar{V} A \bar{q} \delta V_{A}^{p}\left(S_{p \bar{q}}-8 \pi G K_{p \bar{q}}\right)-\frac{1}{8 \pi G} \delta d\left(S_{(0)}-8 \pi G T_{(0)}\right)+\delta \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right]
\end{aligned}
$$

Hence, the equations of motion are for now exhaustively,

$$
S_{p \bar{q}}=8 \pi G K_{p \bar{q}}, \quad S_{(0)}=8 \pi G T_{(0)}, \quad \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}=0
$$

- Specifically when the variation is generated by diffeomorphisms, we have $\delta_{\xi} \Upsilon_{a}=\hat{\mathcal{L}}_{\xi} \Upsilon_{a}$ and

$$
\delta_{\xi} d=-\frac{1}{2} e^{2 d} \hat{\mathcal{L}}_{\xi}\left(e^{-2 d}\right)=-\frac{1}{2} \mathcal{D}_{A} \xi^{A}, \quad \bar{V}^{A \bar{q}} \delta_{\xi} V_{A}^{p}=\bar{V}^{A \bar{q}} \hat{\mathcal{L}}_{\xi} V_{A}^{p}=2 \mathcal{D}_{[A} \xi_{B]} \bar{V}^{A \bar{q}} V^{B D}
$$

Substituting these, the diffeomorphic invariance of the action implies
$0=\int_{\Sigma} e^{-2 d}\left[\frac{1}{8 \pi G} \xi^{B} \mathcal{D}^{A}\left\{4 V_{[A}^{p} \bar{V}_{B]}{ }^{\bar{q}}\left(S_{p \bar{q}}-8 \pi G K_{p \bar{q}}\right)-\frac{1}{2} \mathcal{J}_{A B}\left(S_{(0)}-8 \pi G T_{(0)}\right)\right\}+\delta_{\xi} \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right]$
which leads to the definitions of the off-shell conserved stringy Einstein curvature,

$$
G_{A B}:=4 V_{[A}^{p} \bar{V}_{B]}^{\bar{q}} S_{p \bar{q}}-\frac{1}{2} \mathcal{J}_{A B} S_{(0)}, \quad \mathcal{D}_{A} G^{A B}=0 \quad \text { (off-shell) }
$$

and the on-shell conserved stringy Energy-Momentum tensor, JHP-Rey-Rim-Sakatani 2015

$$
T_{A B}:=4 V_{[A}^{p} \bar{V}_{B]} \bar{a} K_{p \bar{q}}-\frac{1}{2} \mathcal{J}_{A B} T_{(0)}, \quad \mathcal{D}_{A} T^{A B}=0 \quad \text { (on-shell) }
$$

- Since $G_{A B}$ and $T_{A B}$ each have $D^{2}+1$ components decomposable as

$$
V^{A}{ }_{p} \bar{V}^{B}{ }_{\bar{q}} G_{A B}=2 S_{p \bar{q}}, \quad G^{A} A_{A}=-D S_{(0)}, \quad V^{A}{ }_{p} \bar{V}^{B}{ }_{\bar{q}} T_{A B}=2 K_{p \bar{q}}, \quad T^{A} A=-D T_{(0)},
$$

the equations of motion of the DFT vielbeins and dilaton can be unified into a single expression:

Einstein Double Field Equations

$$
G_{A B}=8 \pi G T_{A B}
$$

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed string massless sector as geometrical stringy graviton fields.

Einstein Double Field Equations

$$
G_{A B}=8 \pi G T_{A B}
$$

- Restricting to the $(0,0)$ Riemannian backgrounds, the EDFE decompose into

- For other non-Riemannian cases, $(n, \bar{n}) \neq(0,0)$, EDFE govern the dynamics of the 'chiral' gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.

Einstein Double Field Equations

$$
G_{A B}=8 \pi G T_{A B}
$$

- Restricting to the $(0,0)$ Riemannian backgrounds, the EDFE decompose into

$$
\begin{aligned}
R_{\mu \nu}+2 \nabla_{\mu}\left(\partial_{\nu} \phi\right)-\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}^{\rho \sigma} & =8 \pi G K_{(\mu \nu)}, \\
\nabla^{\rho}\left(e^{-2 \phi} H_{\rho \mu \nu}\right) & =16 \pi G e^{-2 \phi} K_{[\mu \nu]}, \\
R+4 \square \phi-4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu} & =8 \pi G T_{(0)} .
\end{aligned}
$$

- For other non-Riemannian cases, $(n, \bar{n}) \neq(0,0)$, EDFE govern the dynamics of the 'chiral' gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.

Examples: $T_{A B}:=4 V_{[A}{ }^{p} \bar{V}_{B]} \bar{q} K_{p \bar{q}}-\frac{1}{2} \mathcal{J}_{A B} T_{(0)}$

- RR sector,

$$
L_{\mathrm{RR}}=\frac{1}{2} \operatorname{Tr}(\mathcal{F} \overline{\mathcal{F}}), \quad K_{p \bar{q}}=-\frac{1}{4} \operatorname{Tr}\left(\gamma_{p} \mathcal{F} \bar{\gamma}_{\bar{q}} \overline{\mathcal{F}}\right), \quad T_{(0)}=0 .
$$

- Spinor field,

$$
L_{\psi}=\bar{\psi} \gamma^{p} \mathcal{D}_{p} \psi+m_{\psi} \bar{\psi} \psi, \quad K_{p \bar{q}}=-\frac{1}{4}\left(\bar{\psi} \gamma_{p} \mathcal{D}_{\bar{q}} \psi-\mathcal{D}_{\bar{q}} \bar{\psi} \gamma_{p} \psi\right), \quad T_{(0)} \equiv 0
$$

- Scalar field,

$$
L_{\varphi}=-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \varphi \partial_{N} \varphi-V(\varphi), \quad K_{p \bar{q}}=\partial_{p} \varphi \partial_{\bar{q}} \varphi, \quad T_{(0)}=-2 L_{\varphi}
$$

- Fundamental string: with $D_{i} y^{M}=\partial_{i} y^{M}-\mathcal{A}_{i}^{M}$ (doubled-yet-gauged),

$$
\begin{gathered}
e^{-2 d} L_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma\left[-\frac{1}{2} \sqrt{-h} h^{i j} D_{i} y^{M} D_{j} y^{N} \mathcal{H}_{M N}(y)-\epsilon^{i j} D_{i} y^{M} \mathcal{A}_{j M}\right] \delta^{D}(x-y(\sigma)), \\
K_{p \bar{q}}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma \sqrt{-h} h^{i j}\left(D_{i} y\right)_{p}\left(D_{j} y\right)_{\bar{q}} e^{2 d(x)} \delta^{D}(x-y(\sigma)), \quad T_{(0)}=0 .
\end{gathered}
$$

- More examples in our paper include Yang-Mills, point particle, superstring, etc.

Conclusion

- String theory may predict its own gravity, i.e. Stringy Gravity (DFT), rather than GR.
- Stringy Gravity may be formulated in 'doubled-yet-gauged' spacetime,
unifies Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll Gomis-Ooguri, etc. and deserves further explorations, e.g.
$\mathbf{O}(D, D)$ covariant holographic dual of Stringy Gravity?

Conclusion

- String theory may predict its own gravity, i.e. Stringy Gravity (DFT), rather than GR.
- Stringy Gravity may be formulated in 'doubled-yet-gauged' spacetime,
unifies Riemannian SUGRA and non-Riemannian Newton-Cartan, Carrol, Gomis-Ooguri, etc.
and deserves further explorations, e.g.
$\mathrm{O}(D, D)$ covariant holographic dual of Stringy Gravity?

Conclusion

- String theory may predict its own gravity, i.e. Stringy Gravity (DFT), rather than GR.
- Stringy Gravity may be formulated in 'doubled-yet-gauged' spacetime, unifies Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc. and deserves further explorations, e.g.

$$
\mathbf{O}(D, D) \text { covariant holographic dual of Stringy Gravity? }
$$

Conclusion

- String theory may predict its own gravity, i.e. Stringy Gravity (DFT), rather than GR.
- Stringy Gravity may be formulated in 'doubled-yet-gauged' spacetime, unifies Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc. and deserves further explorations, e.g.
$\mathbf{O}(D, D)$ covariant holographic dual of Stringy Gravity?

Thank you

One must be prepared to follow up the consequence of theory, and feel that one just has to accept the consequences no matter where they lead.

- Paul Dirac -

Einstein Double Field Equations

Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park
Department of Physics, Sogang University, 35 Baekbeomero, Mapo-gu, Seoal 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR

 String Enerry-Momestum tenest. Equating them, all the eqpations of mution of the closed striag massitss secter are uniliced inta a single exprestien [f]).
$G_{A G}-\mathrm{Ks}_{\mathrm{K}} \mathrm{T}_{\mathrm{A}}$
Double Field Theory as Stringy Gravity

- Hualimingumetrice $\&$ Notation:

O D, D, T) Tanily

taldex	Requesemation	Meric (nisingloweing idicee)
A, B, \ldots, M, N,	$\mathrm{o}(D, D)$ wetat	$J_{A B}-\left[\begin{array}{c} 0 \\ 10 \end{array}\right]$
p.q. ${ }^{\text {a }}$	Spini(1.D-1) vatue	
a, $8, \ldots$	Span($(1 . D-1)$ spinur	$c_{\text {mat }} \quad(s p)^{T}-C_{7}{ }^{2} C^{-1}$
j..\%...	Spini (D-1,1) vetiex	
4. $\mathrm{B}_{\text {, }}$...	spini $(D-1,1)$ spinur	

The douthodyet-vauzad spacestime:

ceta puit of ymmerric and arthing anal projectici
$\left.P_{M N}-P_{X J}=\frac{1}{2} J_{X N N}+H_{A N S}\right) \quad P_{\perp}^{11} P_{P_{S}}^{N}-P_{\perp}^{N}$

alisfling thest twn defaning properiio

${ }^{-1}$ Che maxiant derivitive:
 The stringy Crisodel xymbets ate 3$\}$

- Scallar nead Rieci curvatures

Derivation of Einstein Double Field Equations

$$
G_{A B}=4 V_{A N} A^{V} V_{A} S_{N M}-\frac{1}{2} J_{A B} S_{N} \quad D_{A} G^{A A}=0 \quad \text { (CT:shleal]) }
$$

$$
\nabla^{*}\left(e^{-3 * H_{p p w}}\right)-16 \pi G e^{-20} K_{|p|}
$$

Examples

C is is dhuge se mo

Gravitational effect


```
\(\square\)
```


References

 84 (2011) 104022 [uxiv. 111165628 |lap-wi)

T1. Jon, K.

on douth
vass fuxivi $16 m 9.04265$ fhep-hill

Gravitational effect

- The regular spherical solution to the $D=4$ Einstein Double Field Equations shows that Stringy Gravity modifies GR (Schwarzschild geometry), in particular at "short" dimensionless scales, $R / M G$, i.e. distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially from "short distance" observations:

Electron $(R \simeq 0)$	Proton	Hydrogen Atom	Billiard Ball	Earth	Solar System $\left(1 \mathrm{AU} / M_{\odot} G\right)$	Milky Way $($ visible $)$	Galaxy Cluster	Universe $\left(M \propto R^{3}\right)$	
	0^{+}	7.1×10^{38}	2.0×10^{43}	2.4×10^{26}	1.4×10^{9}	1.0×10^{8}	1.5×10^{6}	$\sim 10^{5}$	0^{+}

- Furthermore, it would be intriguing to view the B-field and DFT dilaton d as 'dark gravitons', since they decouple from the geodesic motion of point particles, which should be defined in string frame.

