Holographic relations at finite radius

Marika Taylor

Mathematical Sciences and STAG research centre, Southampton

August 3, 2018

Marika Taylor Holographic relations at finite radius

• The original example of holography in string theory is the famous AdS/CFT conjecture of Maldacena:

- String theory on a background with (d + 1)-dimensional Anti-de Sitter asymptotics is dual to a d-dimensional conformal field theory.

 Many examples of gauge/gravity dualities involving various spacetime asymptotics.

- Original argument for holography: maximum entropy associated with a given spacetime volume scales as the surface area in Planck units.
- Follows from black holes being the most entropic objects for a given mass.
- No dependence on asymptotics!

- Consider a timelike
 hypersurface Σ_c, in a spacetime with generic asymptotics.
- Can we define a QFT on Σ_c , holographically dual to the interior of the spacetime?

- M.T. "TT deformations in general dimensions", 1805.10287.
- Old work: Compère, McFadden, Skenderis and M.T., 2011-2012.
- Related work: Hartman, Kruthoff, Shaghoulian and Tajdini, 1807.11401

・ 同 ト ・ ヨ ト ・ ヨ ト

- **Top-down** models postulate a complete relationship between string theory in a given background and a specific QFT e.g. $AdS_5 \times S^5$ and $\mathcal{N} = 4$ SYM.
- In **bottom-up** models, we instead engineer the gravity theory to capture defining features of the QFT.

- Consider an RG flow to a UV fixed point, driven by a single operator O.
- The minimal ingredients required to describe this holographically are:

$$S = \int d^{d+1}x \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 + V(\phi) \right)$$

where ϕ is the bulk scalar dual to O and the potential is such that the action admits AdS_{d+1} extrema.

Holographic dictionary

 More precisely, one can extract from asymptotic expansions near the conformal boundary ρ = 0:

$$ds^2 = \frac{d\rho^2}{\rho^2} + \frac{1}{\rho^2} \left(g_{(0)ij} + \rho^2 g_{(2)ij} \cdots + \rho^d g_{(d)ij} \cdots\right) dx^i dx^j$$

and

$$\phi = \rho^{d-\Delta}(\phi_{(d-\Delta)} + \cdots) + \rho^{\Delta}(\phi_{(\Delta)} + \cdots)$$

the dilatation Ward identity for $\langle T_{ij} \rangle \sim g_{(d)ij}$ and $\langle O \rangle \sim \phi_{(\Delta)}$ $\langle T_i^i \rangle + \phi_{(d-\Delta)} \langle O \rangle \sim 0$

イロト 不得 とくほ とくほ とうほ

Use radial foliation near the conformal boundary

$$ds^2 = dr^2 + \gamma_{ij}(r, x) dx^i dx^j$$

where for AAdS $\gamma_{ij}(r, x) \sim e^{2r} g_{(0)ij} + \cdots$ as $r \to \infty$.

 The conjugate momentum to γ is the Brown-York quasi-local stress tensor

$$\mathcal{T}_{ij} = (\mathbf{K}_{ij} - \mathbf{K}\gamma_{ij})$$

where the extrinsic curvature $K_{ij} = \frac{1}{2} \partial_r \gamma_{ij}$.

ヘロン 人間 とくほ とくほ とう

Holographic renormalization

- \mathcal{T}_{ij} is not finite as $r \to \infty$.
- Boundary counterterms added to the Einstein-Hilbert action

$$S_{\mathrm{ct}} = -\int d^d x \sqrt{-h} \left((d-1) + \cdots \right)$$

render the onshell action finite and give additional contributions to the quasi-local stress tensor:

$$T_{ij} = (K_{ij} - K\gamma_{ij} + (d-1)\gamma_{ij} + \cdots)$$

(Balasubramanian and Kraus; de Haro, Skenderis and Solodukhin)

ヘロト ヘアト ヘビト ヘビト

• T_{ij} does have a finite limit as $r \to \infty$:

$$\mathcal{L}_{r \to \infty} \left(T_{ij}
ight) = \langle T_{ij}
angle \sim g_{(d)ij}.$$

 The renormalized stress tensor satisfies the expected CFT identities e.g. for d = 2

$$\langle T_i^i
angle = rac{c}{6} \mathcal{R}(g_{(0)})$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Finite radius hypersurface

- Natural to ask about duality for finite radius hypersurface.
- From QFT perspective: radial evolution is RG flow.
- In presence of horizons, one obtains a fluid/gravity relation.

(Minwalla et al; Polchinski et al; Strominger et al; Compère, McFadden, Skenderis and Taylor;) **STAG**

- In the radial Hamiltonian decomposition, one can write the Einstein equations in Gauss-Codazzi form.
- In particular, for AdS gravity

$$K^2 - K^{ij}K_{ij} = \mathcal{R}(\gamma) + d(d-1)$$

which implies that, for flat hypersurfaces at finite radius,

$$T_i^i = -4\pi G\left(T_{ij}T^{ij} - \frac{1}{(d-1)}(T_i^i)^2\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We view this relation as a dilatation Ward identity:

$$T_i^i = -\lambda \mathcal{T}$$

where

$$\mathcal{T} = \left(T_{ij}T^{ij} - \frac{1}{(d-1)}(T_i^j)^2\right)$$

• In d = 2, T is the $T\overline{T}$ operator explored by Zamoldchikov.

 Holographic relation in d = 2 proposed by (McGough et al; Kraus et al).

< ⊒ >

$T\bar{T}$ operator in 2d

Zamoldchikov showed that this operator has a remarkable
 OPE structure as x → y:

$$T\overline{T}(x,y) = T(y) + \sum_{\alpha} A_{\alpha}(x-y) \nabla_{y} \mathcal{O}_{\alpha}(x)$$

i.e. we can identify the operator as local, modulo derivatives of other local operators.

 Smirnov and Zamoldchikov also explored the behaviour of a CFT under deformations by T i.e.

$$S_{\rm CFT}
ightarrow S_{
m CFT} + \lambda \int d^2 x \ {\cal T}.$$

프 > - 프 > · ·

- Consider the (Euclidean) theory on a cylinder of radius *R*.
- In a stationary state such that

$$\langle T_{ au au}
angle = -rac{E}{R}$$

the defining relation for the family of QFTs implies that

$$\frac{\partial E}{\partial \lambda} + 2E \frac{\partial E}{\partial R} = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• This can be re-expressed in terms of dimensionless quantities (ϵ, α) using

$$\alpha = \frac{\lambda}{R^2} \qquad E = \frac{1}{R}\epsilon$$

with

$$\partial_{\alpha}\epsilon = \mathbf{2}\epsilon \left(\epsilon + \mathbf{2}\alpha\partial_{\alpha}\epsilon\right)$$

• This is the defining ODE for the **energy spectrum** $\epsilon(\alpha)$.

イロト 不得 とくほ とくほ とうほ

In general dimensions:

$$\mathcal{T} = \left(T_{ij}T^{ij} - \frac{1}{(d-1)}(T_i^j)^2\right)$$

- Definite of composite operator more subtle; renormalization required as operators approach each other.
- Details of operator definition not required for energy spectrum, but would be needed for correlation functions, entanglement entropy etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

Energy spectrum

• Consider the (Euclidean) theory

$$S_{\text{CFT}} o S_{\text{CFT}} + \lambda \int d^{D+1}x \ \mathcal{T}.$$

on a cylinder of spatial volume R^{D} . With

$$\alpha = \frac{\lambda}{R^d} \qquad E = \frac{1}{R}\epsilon$$

dimensionless energy $\epsilon(\alpha)$ satisfies

$$\partial_{\alpha}\epsilon = \left(1 + \frac{1}{D}\right)\left(\epsilon + 2\alpha\epsilon\partial_{\alpha}\epsilon\right)$$

with $\epsilon(0)$ the CFT energy.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• The conjectured holographic theory dual for finite radius is

$$S_{\text{CFT}} o S_{\text{CFT}} + \lambda \int d^{D+1}x \ \mathcal{T}.$$

- Identifying the quasi-local stress tensor as the dual stress tensor,
 Ward identity matches by construction.
- Can we also reproduce energy spectrum in gravity?

Consider a static black brane in (D+2) dimensions

$$ds^{2} = (\rho^{2} - \frac{\mu}{\rho^{D-1}})d\tau^{2} + \frac{d\rho^{2}}{(\rho^{2} - \frac{\mu}{\rho^{D-1}})} + \rho^{2}dx^{a}dx_{a}$$

We can then read off from the quasi local stress tensor the dimensionless energy:

$$\epsilon = \frac{D\rho^d}{2\lambda} \left(1 - \left(1 - \frac{\lambda M}{\rho^d} \right)^{\frac{1}{2}} \right)$$

where $\mu = 4\pi GM$.

STAG W RESEARCH

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Black brane solutions

• In terms of dimensionless coupling $\alpha = \lambda / \rho^d$,

$$\epsilon = \frac{D}{2\alpha} \left(1 - (1 - \alpha M)^{\frac{1}{2}} \right)$$

Note that the CFT energy is

$$\epsilon(\mathbf{0}) = \frac{D}{4}M$$

and $\epsilon(\alpha)$ indeed satisfies:

$$\partial_{\alpha}\epsilon = \left(1 + \frac{1}{D}\right)(\epsilon + 2\alpha\epsilon\partial_{\alpha}\epsilon)$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

- Trivial to generalize to boosted (spinning) branes.
- Addition of extra **bulk fields** (gauge fields, scalars etc) modifies CFT deformation e.g.

$$T_i^i = -\lambda \left(T^{ij} T_{ij} - \frac{1}{D} (T_i^i)^2 + 2 \mathcal{J}^i \mathcal{J}_i \right)$$

Also noticed in d = 2 by (Bzowski and Guica; Kraus et al).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Conclusions and outlook

 The conjectured holographic theory dual for finite radius AdS is

$$S_{\rm CFT} o S_{
m CFT} + \lambda \int d^{D+1}x \ {\cal T}.$$

with

$$\mathcal{T} = \left(T^{ij}T_{ij} - \frac{1}{D}(T^{i}_{i})^{2}\right)$$

 Natural generalization of d = 2 proposal.

- Passes preliminary checks: Ward identity, energy relations.
- More detailed checks require renormalized definition of composite operator T.
- Proposal can easily be extended beyond AdS asymptotics (but UV behaviour is required to fix integration constants).

Gauge/Gravity Duality 2018: Summary and Outlook

Marika Taylor

Mathematical Sciences and STAG research centre, Southampton

August 3, 2018

・ 同 ト ・ ヨ ト ・ ヨ ト

Marika Taylor Gauge/Gravity Duality 2018

Summary

- Nunez: "The talks fall into two categories: using gravity to learn about strongly interacting theories and using our knowledge of quantum field theory to explore string theory/quantum gravity."
- 21 years after Maldacena's paper, a continual stream of new implications and applications.

- Goal since 1997: classify all AdS/CFT dualities visible in supergravity and find exact supergravity solutions for renormalization group flows.
- We still have very few exact solutions for RG flows exhibiting features such as confinement -Klebanov-Strassler is over used!

- Construction of supergravity solutions dual to 5d SCFTs (Gutperle).
- Explicit type II solutions describing 4d $\mathcal{N} = 1^*$ flows (Skenderis).
- Geometries obtained from (non-Abelian) T dualities, using knowledge of dual CFTs (Nastase, Nunez).
- Susy Q and boomerang RG flows (Gauntlett).

ヘロト 人間 とくほとくほとう

Exploits G structures and generalized geometry techniques (see also double field theory, Park).

- Reconstruction of other susy RG flows?
- Extract information from new geometries: spectra, correlation functions etc.
- Numerical relativity techniques for constructing holographic geometries? (Ren)

Huge amount of unexploited information in 10d geometries -Kaluza-Klein holography! (see Porfyriadis)

Integrability techniques established $\mathcal{N} = 4$ SYM duality at planar level.

- Beyond conformality: integrability for defect conformal field theories (Kristjansen).
- Hints of unexploited integrable structure/exact solvability. (Bekaert, Ishii, Kraus)

- Initially, particle physics viewpoint: holographic descriptions of CFTs and relativistic RG flows.
- From 2008 AdS/CMT: why stick to relativistic theories?!

프 에 세 프 어

- Non-relativistic gravity/field theory dualities (Obers)
- Modelling of momentum dissipation (Gauntlett and AdS/CMT talks)
- Boundary/defect CFT (Herzog, Kristjansen, O'Bannon,...)
- P-adic theories (Gubser)

Embedding of new dualities in holography

- Embedding of 3d Chern-Simons theories, using probe branes etc (Karch).
- Much to compute, compiling evidence for 3d CS dualities!

String landscape and swampland

- Ooguri and Vafa: Are many effective field theories doomed to be in the swampland?
- Holography: a huge landscape of (consistent) dualities, looking for new applications!

- Particle physics: hadrons, quark-gluon plasma
- Condensed matter physics
- Fluids: transport and turbulence
- New perspectives on quantum information

Particle physics: mesons

Phenomenological holographic models (Evans); necessity of including string effects (Sonnenschein).

Marika Taylor Gauge/Gravity Duality 2018

STA

Other aspects of QCD

Deep inelastic scattering and pomerons (Costa); phases of QCD (Ewerz, Henriksson, Jarvinen) STAG

・ロト ・回ト ・ヨト ・ヨト

Phases of matter

Holographic models for superconductors, intertwined order, cuprates, bad metals and semimetals, Mott insulators, charge density waves....(Amoretti, Arean, Cremonini, Krikun, Schalm, Sin, Zaanen, Zingg,..)

Quantum chaos

- New insights into quantum chaos from SYK. (Altland, Rozali)
- Hydrodynamic origin of quantum chaos in holographic theories. (Davison)

Note that SYK is not dual to an Einstein gravity theory: how are maximal chaos and gravity description entwined?

- String theory provides a landscape of strongly interacting phases.
- What features would be shared by small *N* (non-susy) systems?
- Can we sharpen intuitive arguments?

< 🗇 > <

Fluid/gravity relations

- New insights into thermalization, hydrodynamics, turbulence etc from holography. (Buchel, Craps, Ishii, Kaminski, Landsteiner, Sonner)
- Physical implications of anomalies in e.g. Weyl semi-metals. (Landsteiner et al)
- Elegant new formulations of hydrodynamics and fluid action principles.

Quantum information

Holographic entanglement entropy

Complexity (action of WdW patch)

(Holographic) entanglement entropy

- Generalise shape of entangling region and apply to new theories (Leigh, Tonni)
- Spacetime reconstruction and properties of HEE (Galli, Pedraza, Romero-Bermudez, Rota, Sarkar)
- Exploit entanglement to understand M5-brane/self dual strings. (O'Bannon)

< 🗇 🕨

- One of the most popular themes of the conference.
- Defining complexity. (Heller, Jefferson, K-Y. Kim)
- Exploring (holographic) complexity. (Ageev, Bagrov, Flory, Roy, Thorlacius)

・ロト ・四ト ・ヨト・

Ambiguities? Derivation from defining relation of holography?

Marika Taylor Gauge/Gravity Duality 2018

What is complexity in a QFT?

(K-Y Kim)

- Complexity is defined in QI textbooks for finite numbers of qubits.
- Challenging to define complexity in an interacting quantum field theory (Heller, Jefferson, K-Y Kim).
- How are reference state and basis gates encoded in bulk?

< 17 ▶

Emergence of (quantum) gravity from quantum field theory; explaining properties of black holes; singularity resolution.

・ 「「「」 ・ ・ 三 ト

Marika Taylor Gauge/Gravity Duality 2018

Spacetime reconstruction

SPACETIME RECONSTRUCTION

Reconstruction using entanglement.

・ロト ・四ト ・ヨト ・ヨト

Explicit reconstruction of near boundary metric from QFT data (one point function of stress tensor etc).

- Generalisations of Fefferman-Graham spacetime reconstructions. (Korovin, M.T.)
- SYK suggests relevance of **radon transforms** (Das, Jevicki), which arose previously (de Boer et al, Ooguri et al.)
- How are approaches connected?

Higher spin theories

- Holography beyond Einstein gravity: tensionless string limit.
- Three-dimensional higher spin theories are an educational playground, capturing aspects of black holes (Castro).
- Many technical challenges, particularly for d > 3: characters (Bekaert); interactions and correlation functions (Mkrtchyan, Ponomarev, Skvortsov) and loops (Basile).

Long-standing issue of non-trivial solutions (black holes etc) in $d \ge 4$.

Ubiquitous in thermalisation, hydrodynamics, holographic phases.

- Black hole microstate counting. (Larsen)
- Low-dimensional black holes as controllable models (Castro, Thorlacius)
- Constructions of new explicit solutions. (e.g. Sybsema)

• • • • • • • •

- What does holography tell us about the experience of an observer falling into a black hole?
- How is information recovered from the black hole?
- Is soft hair (Semenoff) relevant to black hole physics?

Conclusions

- Many exciting directions of research for the next edition of Gauge/Gravity Duality!
- Thanks to Johanna, René and their group for hosting us!

프 🖌 🛪 프 🛌