<u>Chair for Theoretical Physics III</u> Black Holes, Quantum Information and Correlated Systems

Strongly Correlated Electrons in Solid States

Strongly correlated phases of matter, such as superconductors, are described via the AdS/CFT correspondence

Hydrodynamics and Black Holes

The dynamics of fluids can be mapped to black hole solutions of Einsteins equations

Strongly Interacting Quantum Systems

Perturbation theory is not applicable in strongy interacting systems. They can be

studied using the AdS/CFT correspondence

AdS/CFT Correspondence

A theory of (quantum) gravity in negatively curved spacetime has a dual description by a QFT without gravity in one dimension less

Quantum Information and Black Holes

Aspects of quantum information theory are also found when analysing the physics of black holes

String Theory and Quantum Gravity

Considering strings instead of particles as fundamental objects yields a consistent theory of quantum gravity

We work on:

- Exploration and extension of the duality between QFT and gravitation (AdS/CFT Correspondence)
- Application of the duality in strongly coupled systems from particle physics and solid state physics
- Exploration of connections between quantum information, statistical physics and black holes

We offer:

- Involvement in research of our chair
- Close support

Contact persons for Bachelor and Master theses:

Prof. Dr. Johanna Erdmenger

M1, Room 2.022

Prof. Dr. Haye Hinrichsen M1, Room 2.021

PD Dr. René Meyer M1, Room 2.011

Dr. Souvik Banerjee M1, Room 2.023

Our webpage

Publications

