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Zusammenfassung

Diese Arbeit beschäftigt sich mit einer U(1)B−L-Erweiterung der Standardmodell-
Eichgruppe. Modelle dieser Art sind besonders attraktiv, da zusätzliche U(1)-
Eichgruppen mit geladener Baryonzahl minus Leptonzahl im Niederenergielimes
einer großen Anzahl von vereinheitlichten Theorien entspringen. Da die Supersym-
metrie zudem Lösungen zu fundamentalen Problemen des Standardmodells bietet,
betrachten wir eine supersymmetrische Version des Modells.

Eine direkte Folge der zusätzlichen lokalen Eichsymmetrie ist die Existenz eines
weiteren neutralen Eichbosons, des Z ′, dessen Eigeschaften hier näher untersucht
werden. Ein besonderes Augenmerk wird hierbei auf eine Eigenschaft gelegt, die durch
die Existenz zweier Abelscher Eichgruppen auftritt: die eichkinetische Mischung.
Diese beeinflusst sowohl die Kopplungen als auch die Produktion des Z ′ am LHC,
was wir explizit zeigen. Desweiteren berechnen wir die Massenbeschränkung auf das
Z ′ für unser Modell unter Benutzung von Dilepton-Produktionsdaten der ATLAS-
Kollaboration. Die Beschränkung wird hierbei einerseits durch die Anwesenheit
der kinetischen Mischung als auch durch offene Zerfallskanäle in supersymmetri-
sche Teilchen im Vergleich zu verwandten Modellen gelockert, sodass die untere
Massenschranke im betrachteten Modell bei etwa 1.7 TeV liegt.

Im letzten Teil der Arbeit wird untersucht, wie eine Z ′-Resonanz sich auf die
Smyonen-Produktion am LHC auswirkt. Ein wichtiger Entdeckungskanal hiervon
enthält zwei Myonen sowie nicht detektierbare Teilchen. Um das Entdeckungspotential
der Smyonen über eine Z ′-Resonanz an einem Hadronenbeschleuniger zu testen,
führen wir eine Monte-Carlo-Studie durch. Hierbei wird festgestellt, dass bei einer
Schwerpunktsenergie von 14 TeV und einer integrierten Luminosität von 100 fb−1

(300 fb−1) Smyonen mit einer Masse von bis zu 800 GeV (900 GeV) potentiell entdeckt
werden können.
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Abstract

In this thesis we consider a U(1)B−L extension of the Standard Model gauge group.
The investigation of such models is motivated by the fact that a U(1) with charged
baryon number minus lepton number emerges out of various Grand Unified Theories
as an effective theory at low energy scales. We further consider the model to be
supersymmetric as supersymmetry helps solving various problems of the Standard
Model.

Since we consider a local U(1)B−L, there arises an additional neutral gauge boson,
the Z ′, and its properties and especially decays into supersymmetric particles are
the main topic of this work. We investigate the effects of gauge kinetic mixing
which is the consequence of a mixing term between the U(1) field strength tensors in
the Lagrangian of the model. The influence on the branching ratios of the Z ′ and
the production at the LHC is shown. We further constrain the Z ′ mass using the
latest ATLAS data on dilepton production. It is found that the bound gets reduced
substantially by the effect of gauge kinetic mixing as well as open decay channels
into supersymmetric partcles such that the Z ′ must be heavier than about 1.7 TeV
in the considered model.

In the last part of this work we examine the impact of a Z ′ resonance on smuon
production and discovery. In a Monte Carlo study searching for two muons and
missing energy at 100 fb−1 (300 fb−1) of integrated luminosity and

√
s = 14 TeV, we

find that smuons with masses up to 800 GeV (900 GeV) can potentially be discovered
at the LHC.

iv



Contents

1 Introduction 1

2 Z ′ physics 3

2.1 Implications of a new gauged U(1) . . . . . . . . . . . . . . . . . . . 3

2.2 Different models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Current bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Supersymmetry 8

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Superalgebra and Superfields . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Soft SUSY-breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 The CMSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7 Particle content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7.1 Higgs sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7.2 Neutralinos and charginos . . . . . . . . . . . . . . . . . . . . 16

3.7.3 Gluinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7.4 Sfermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The Model: BLSSM 18

4.1 Particle content and superpotential . . . . . . . . . . . . . . . . . . . 18

4.2 Gauge kinetic mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Neutral gauge sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Higgs sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 CP -even states . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.2 CP -odd states . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Neutralinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Sleptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Tadpole equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 GUT scale boundary conditions . . . . . . . . . . . . . . . . . . . . . 25

v



Contents

5 Production and supersymmetric decays of the Z ′B−L 27
5.1 Calculation chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Study of the parameter space . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Z ′ decay modes on tree level . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Decay into a pair of scalars . . . . . . . . . . . . . . . . . . . 30
5.3.2 Decay into a pair of fermions . . . . . . . . . . . . . . . . . . 32
5.3.3 Decay into a scalar and a vector boson . . . . . . . . . . . . . 33
5.3.4 Decay into a pair of vector bosons . . . . . . . . . . . . . . . . 33

5.4 Branching ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.1 Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.2 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.3 Gauge and Higgs bosons . . . . . . . . . . . . . . . . . . . . . 37
5.4.4 Neutralinos and charginos . . . . . . . . . . . . . . . . . . . . 38
5.4.5 Squarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.6 Sleptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 LHC limits on the Z ′B−L production . . . . . . . . . . . . . . . . . . . 40
5.6 Z ′ production and SUSY cascade decays . . . . . . . . . . . . . . . . 43

5.6.1 BLVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6.2 BLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Monte Carlo study: Dimuon production 49
6.1 Simulation of signal and background . . . . . . . . . . . . . . . . . . 49
6.2 Background reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Significance of the signal . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Significance reach for variable Z ′ and µ̃ masses . . . . . . . . . . . . . 55

6.4.1
∫
Ldt = 100 fb−1 . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.2
∫
Ldt = 300 fb−1 . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Summary 60

A Z ′ couplings 62
A.1 Couplings to fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.2 Couplings to scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 Coupling to vector bosons . . . . . . . . . . . . . . . . . . . . . . . . 65
A.4 Coupling to one vector boson and one scalar . . . . . . . . . . . . . . 65

B Z ′ decays at BLV and BLVI 67
B.1 BLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 BLVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C Mass matrices 69
C.1 Sneutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 Squarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C.2.1 Up-type squarks . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



Contents

C.2.2 Down-type squarks . . . . . . . . . . . . . . . . . . . . . . . . 70

References 71

List of Figures 76

List of Tables 79

vii





Chapter 1

Introduction

With the start of data-taking at the Large Hadron Collider (LHC) [1] at the CERN
in Geneva, particle physics has entered a new era: for the first time, the TeV scale is
experimentally accessible in collider experiments. Presently, it is very likely that the
much-anticipated Higgs boson has finally been discovered, which is the last particle
not yet found in the so far greatly affirmed Standard Model of particle physics1 (SM).
Even more interestingly, most theories that go beyond the SM predict new particles
at the TeV scale. Thus, the LHC has the unique possibility to confirm or to strongly
constrain appealing models.

One class of these models under frequent discussion imposes supersymmetry
(SUSY) [4, 5], which is a symmetry between fermionic and bosonic degrees of freedom.
Hence, a bosonic partner to each fermion is postulated and vice versa. High hopes
are invested in SUSY as supersymmetric models are able to provide solutions to some
problems of the SM and to eradicate some disfigurements. Thus, SUSY is among
the most favoured extensions to the SM. We consider a constrained model, i.e. we
impose boundary conditions on the free parameters at a high energy scale, which is
determined by the energy where all gauge couplings unify to a single value, which is
possible in SUSY due to the additional field content.

However, minimal constrained models like the CMSSM are for one thing not
complete – e.g. neutrino masses can still not be explained within their framework –
and for another thing, more and more parameter space has been excluded by LHC
measurements, direct and indirect ones. A way out of this misery is an extension of
the gauge group of the model. One of the simplest and best-motivated extensions
is an extra U(1) symmetry group which has a rich variety of phenomenological
consequences.

In this thesis we study a U(1) extension of the MSSM with charged B−L, where
B and L are baryon and lepton number. We further impose CMSSM-like boundary
conditions. An immediate consequence of the additional local symmetry group is the
existence of an additional neutral vector boson, the Z ′, the decays and production of
which at the LHC we are about to discuss here.

1For an overview of the SM, see e.g. [2, 3].
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Chapter 1. Introduction

The work is organized as follows: first we will introduce the Z ′ as a product of
the additional U(1)B−L symmetry. Afterwards, an overview of supersymmetry and
the MSSM as well as the B − L extension, the BLSSM, is given in chapters 3 and
4. Subsequently, a brief study of the free parameter space is performed and after
deriving the Z ′ couplings and partial decay widths, the branching ratios into the
various SM and supersymmetric particles are shown. We will particularly highlight
the impact of gauge kinetic mixing, an effect that naturally arises in this class of
extended gauge groups. We will then concentrate on the on-shell production of the Z ′

at a proton-proton collider and derive the lower bounds on the mass of the particle,
followed by an analysis of its most interesting supersymmetric decay modes. At the
end, in chapter 6, we show the results of a Monte Carlo analysis searching for smuons
at the LHC driven by a Z ′ resonance. Finally, we will summarize. In the appendix
we show the relevant Z ′ vertices, branching ratios at distinct parameter points as
well as some mass matrices.
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Chapter 2

Z ′ physics

It is a common belief among particle physicists that the symmetry group of the
Standard Model, which is GSM = SU(3)c × SU(2)L × U(1)Y , is not all there is. One
instead often assumes that it arises from a higher symmetry group which unifies the
gauge couplings at some high energy scale and gets broken down to the Standard
Model group at lower energies. The simplest gauge group which fully contains GSM
and thus is a candidate for a Grand Unified Theory (GUT) is SU(5) [6, 7]. As the
rank of SU(5) is 4, which is the same for GSM , no additional gauge groups appear
with the breakdown to the SM group. However, non-supersymmetric SU(5)-GUT
has been ruled out by experimental data1. Moreover, a global B − L symmetry
is present in SU(5), which is why there is no Majorana mass term available for
neutrinos. Thus, a mechanism to explain neutrino masses is absent in these models
[10, 11]. As a consequence, larger GUT-groups like SO(10) or E6 are considered.
As those have ranks higher than GSM , breaking them at a high scale can lead to
GSM ×U(1)′n. Thus, additional U(1) gauge groups appear quite naturally if one tries
to extend the Standard Model towards higher energies. As gauge symmetries are
always accompanied by gauge bosons, a new local U(1) involves a new electrically
neutral spin-1 boson, which we will call Z ′. In what follows, we will consider n = 1,
i.e. we add one Z ′ to the gauge sector of the Standard Model.

2.1 Implications of a new gauged U(1)

Extending the SM gauge group by a U(1)′, the group structure reads

G ′ = SU(3)c × SU(2)L × U(1)Y × U(1)′ . (2.1)

Besides the arising Z ′, an additional U(1) symmetry also has implications on the
matter content. The cancellation of both gauge and mixed gauge-gravity anomalies

1SU(5) GUTs predict proton decay as they involve bosons which carry both lepton and baryon
number and thus mediate L and B breaking interactions. In minimal SU(5), the proton lifetime is
at most O(10−31) years [8]. This limit has been exceeded experimentally decades ago (see, e.g., [9]).

3



Chapter 2. Z ′ physics

is in general not possible if one assumes SM particles alone, but additional fermions,
so-called exotics, are needed [12–14]. Depending on the particular model, these may
carry some SM quantum numbers or be singlets under GSM .

Looking at the Lagrangian of our model, we see a special feature arising in the
presence of two U(1) groups in eq. (2.1) known as gauge kinetic mixing. As the
corresponding field strength tensors F µν

i are Abelian and thus gauge invariant by
themselves [15], this allows for a mixing term between the hypercharge and the
additional field tensor in the kinetic part of the Lagrangian [16]:

Lmix = −χF̂ µν
Y F̂ ′µν . (2.2)

This in turn gives rise to a mixing between the two U(1)s as the physical fields need
to be diagonal. Diagonalization can be done by a rotation in the U(1) fields Bµ

and B′µ, which leads new, mixed linear combinations [15]. These fields consequently
couple to both hypercharge and the new U(1)′ charge.

An equivalent and technically more manageable approach [17] is to consider a
general covariant derivative of the form [16]

Dµ = ∂µ − iQiGijAj , (2.3)

where Qi and Aj are 2-vectors containing the charges and U(1) fields, respectively
and G is a 2×2 coupling matrix that allows for off-diagonal couplings. This approach
has been chosen to work with in our model (see chapter 4).

As there are no additional gauge bosons observed yet, the Z ′, if it exists, needs
to be a massive particle. Thus, the corresponding U(1)′ has to be broken by some
scalar field Φ which couples to the Z ′ and, by acquiring a vacuum expectation value
(vev), generates a mass term for the Z ′. Allowing for a kinetic mixing between the
fields then implies mass mixing terms between the Standard Model Z and the Z ′.
Additional mixing terms can arise if the Higgs field responsible for the U(1) breaking
is gauged under the SM gauge group or vice versa [15, 18]. The mass mixing can be
parametrized by a mixing angle θ′W so that the rotation between the gauge and mass
eigenstates reads [19]



Bµ

W 3µ

B′µ


 =




cos θW − sin θW cos θ′W sin θW sin θ′W
sin θW cos θW cos θ′W − cos θW sin θ′W

0 sin θ′W cos θ′W





γµ

Zµ

Z ′µ


 . (2.4)

Electroweak precision measurements at the Z pole have the power to strongly
constrain the mixing with a Z ′ because its influence will alter precision observables
like asymmetries, decay ratios and the Z lineshape. Thus, limits of the order
|θ′W | < O(10−3) could be set [13].

2.2 Different models

There is a huge number of distinct Z ′ models which all have different features. We do
not name all of them here but give a brief overview over some frequently discussed
classes of models.
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2.3. Current bounds

The sequential model

In the sequential model, the Z ′ is assumed to be a copy of the Standard Model Z
boson, but only with a higher mass. Thus, all the couplings remain the same.

E6-derived models: U(1)χ and U(1)ψ

When decomposing E6 into effective subgroups, several different U(1)s can arise, e.g.
E6 → SO(10)× U(1)ψ → SU(5)× U(1)χ × U(1)ψ [14, 18] where linear combinations
ψ cos β + χ sin β can give a light Z ′. The charges of the matter fields associated with
these U(1)s are [14]

−QqL
χ =

1

3
QlL
χ =

1√
40
, QqL

ψ = QlL
ψ =

1√
24
, g′1 = g1

√
5

3
sin θW . (2.5)

Often discussed Z ′ scenarios (see, e.g. [13, 14]) are the pure Z ′χ and Z ′ψ and also

the Z ′η where β = − arctan
√

5/3.

Z ′B−L: charged baryon and lepton number

In a large variety of models a U(1)B−L occurs after the decomposition of some higher
GUT group, i.e. the matter fields carry charges proportional to their baryon number
minus lepton number.

As U(1)B−L is a subgroup of SO(10), gauged B−L often appears associated with
an SO(10)-GUT over an intermediate left-right-symmetric stage SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L (see e.g. [20]). However, in this work we focus on the minimal
(supersymmetric) B − L model, i.e. we consider the gauge group GSM × U(1)B−L in
a so to speak bottom-up approach. Beginning from a GUT, this structure can, for
instance, arise from an E8 × E8 heterotic string and M-theory [21].

Gauged B −L is a very appealing extension of the Standard Model as it explains
the (in the SM accidental) conservation of baryon minus lepton number. Additionally,
to cancel anomalies, at least one SM-singlet fermion per generation has to be
introduced [19]. The B − L charge these singlets have to carry can be interpreted as
a lepton number of -1 which, in turn, points directly towards right-handed neutrinos.
Hence the theory incorporates right-handed neutrinos by default and neutrino masses
can be generated in a natural way.

2.3 Current bounds

LEP-II limits

No non-SM resonances have been observed over the full energy range of LEP-II,
implying that either the U(1)′ coupling g′1 is at most of the order 10−2, or that the
mass of the Z ′ is above 209 GeV [22]. We will study the latter case.
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Chapter 2. Z ′ physics

In order to get information about a possible Z ′ intermediate state, 4-fermion
contact interactions of the form [12, 23]

Leff =
±4π

(1 + δef )
(

Λf±
AB

)2 (ēγµPAe)
(
f̄γµPBf

)
(2.6)

have been considered where A,B = L,R and thus PA/B are the left/right projection
operators. Also vector-like (V ) and axial-vector-like (A) coupling structures have
been taken into account, such that for instance PV = PR + PL. Λ is the mass
dimension observable. The contact interaction for an s-channel Z ′ up to the order
s/MZ′ then reads [12, 22]

M≈ g′21
M2

Z′ − s
(ēγµ (QeLPL +QeRPR) e)

(
f̄γµ (QfLPL +QfRPR) f

)
, (2.7)

where QeL/QfL and QeR/QfR denote the U(1)′ charges of the left- and right-handed
components of the electron/final-state fermion. The impact of kinetic and mass
mixing has been neglected for these derivations.

Since the LEP data agrees with the Standard Model expectations, bounds on
MZ′/g

′
1 can be set. According to ref. [12], the bounds on a non-supersymmetric

Z ′B−L with its B − L coupling gBL ≡ g′1 read

MZ′

gBLQB−L
e

> 6 TeV . (2.8)

However, ref. [24] claims to be able to set even stronger bounds ofMZ′/(gBLQ
B-L
e ) >

6.7 TeV by the combination of all the 4-fermion operators measured in [23]. In what
follows, we will refer to this bound as it is the more conservative one. We will see
later on that this formula has to be modified if we do not neglect gauge kinetic
mixing since then the Z ′ vertex with fermions is altered by means of the off-diagonal
coupling.

LHC limits

The results on the searches for dilepton resonances have recently been published by
the LHC-collaborations ATLAS [25] and CMS [26] for an integrated luminosity of
5 fb−1 at

√
s = 7 TeV. The theoretical calculation has been done for the on-shell

production of a Z ′ assuming the factorisation

σ(pp→ Z ′ +X → l+l− +X) ≈ σ(Z ′)×BR(Z ′ → l+l−) , (2.9)

where the convolution of the proton PDFs is understood to be included in σ(Z ′).
Interference between the Z ′ and Z/γ exchange has been neglected. The experimental
limits have been compared to the expectations of Z ′s originating from E6 models and

6



2.3. Current bounds

m [TeV]
0.5 1 1.5 2 2.5 3

 B
 [

p
b

]
σ
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1
Expected limit

σ 1±Expected 

σ 2±Expected 
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SSMZ’

χZ’

ψZ’

 PreliminaryATLAS

 ll→Z’ 

 = 7 TeVs

1
 L dt = 5.0 fb∫: µµ

1
 L dt = 4.9 fb∫ee: 

Figure 2.1: ATLAS results for the upper bound on MZ′ in the search for dilepton
resonances. The red curve shows the experimental limits using data with
5 fb−1 of integrated luminosity. Image taken from [25].

for the sequential model. Fig. 2.1 shows the related ATLAS plot of the experimental
constraints.

Bounds on the Z ′B−L have not been given but will be derived in section 5.5 for
the minimal supersymmetric B − L model whereby we explicitly take care of the
influence of U(1)-mixing.
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Chapter 3

Supersymmetry

3.1 Motivation

When constructing a theory from scratch, one needs to know which symmetries
should be fulfilled by the S-Matrix. The theorem of Coleman and Mandula [27]
states that the only conserved charges transforming as tensors under the Lorentz
group – and thus the only spacetime symmetries – are the generators of translations
Pµ and of Lorentz transformations Mµν . All other symmetries ought to be Lorentz
scalars [28]. This is, however, not true in its entirety. What Coleman and Mandula
assumed for their no-go theorem were exclusively commutation relations between
the charges and thus bosonic symmetries. Haag,  Lopuszański and Sohnius [29],
however, showed that Fermi-type generators, obeying anticommutation relations and
transforming as spinors under the Lorentz group, may be added as a third nontrivial
spacetime symmetry. As these generators Q carry spinor charge, they will turn
fermionic degrees of freedom into bosonic ones and vice versa. Thus, they create a
symmetry which connects bosons and fermions:

Q|fermion〉 = |boson〉, Q|boson〉 = |fermion〉 . (3.1)

This type of symmetry is called supersymmetry (SUSY). But why should we make
the effort to consider this type of additional symmetry?

It is well known that the Standard Model has some severe problems to face which
are assumed to be solved by introducing new physics at some high scale. A simple
example of a phenomenon where the description of nature fails is the missing dark
matter candidate in the SM1. The probably most popular theoretical issue is the
so-called hierarchy problem [30, 31], which is a problem of quadratic divergencies
appearing in loop corrections to scalar fields: the masses in the SM are generated by
the couplings to the Higgs field, which has the scalar potential

V = m2
Hφ
†φ+ λ(φ†φ)2 . (3.2)

1Such candidates can be found in supersymmetry, as we will see later on, e.g. in the fermionic
counterpart of the neutral SM bosons.
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3.1. Motivation

φ φ
f

f̄ φ φ

f̃ φ φ
f̃

f̃ ∗

Figure 3.1: Loop corrections to a scalar line coming from a fermion loop (left) and
from scalar loops (middle, right).

The mass scale of the SM is set by the Higgs vev v/
√

2 = 〈φ〉 =
√
−m2

H/2λ which
is experimentally determined by the mass of the W boson to 〈φ〉 = 174 GeV [30].
Hence, all masses range up to O(100 GeV), depending on the distinct couplings to
the Higgs field.

By calculating the quantum corrections to the scalar field, it turns out that m2
H

receives large loop contributions from all the particles that couple to the Higgs. If
we do the regularization by a cut-off Λ, this has to be set for logical reasons to
the scale of new physics or, if no new physics does occur, at least the Planck scale

MP ∼
√
GNewton

−1 ∼ 10−19 GeV, since quantum gravitational effects should become
sizeable here2. Consider e.g. the coupling to fermions: the interaction term in the
Lagrangian reads −λfφf̄f , which results in loop contributions of the form [30]

∆m2
H = −|λf |

2

8π2
Λ2 + ... , (3.3)

i.e., the loop corrections are orders of magnitude higher (up to 30 orders if Λ = MP )
than the actual value of m2

H . This in turn has to be around −(100 GeV)2 if we
take λ as a small quantity in order to preserve perturbativity. This behaviour needs
enormous fine-tuning and thus spoils the desirable principle of naturalness, which in
plain terms says that physical observables should be stable under small variations of
the bare (unrenormalized) quantities [28].

A way to elegantly avoid this problem is provided by SUSY: assume a scalar
counterpart f̃ for each Standard Model fermion. Then, for each fermion loop diagram,
there exist two loops containing the scalar which together give positive contributions
to ∆m2

H (recall that the minus sign in eq. (3.3) is due to the fermion loop and does
not appear in scalar loops). The additional quantum correction quadratic in Λ reads3

∆m2
H =

λS
16π2

Λ2 − ... , (3.4)

with λS being the quadrilinear coupling related to the interaction term −λS|φ|2|f̃ |2.
Since supersymmetry not only adds a scalar to each fermion but relates them by a

2The renormalizability of the Standard Model ensures that the theory is well-defined and just
receives finite loop contributions even in the limit of infinite energies, i.e. for Λ→∞ [31]. This
would, however, imply that the SM is all there is. Hence, a finite cut-off scale seems natural.

3To be exact, only the quadrilinear coupling in fig. 3.1 gives a term quadratic in Λ which may
cancel the contribution in eq. (3.3).
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Chapter 3. Supersymmetry

symmetry transformation, the coupling parameters |λf |2 and λS are equal. With a
fermion getting a scalar counterpart for each chirality state, for each SM fermion,
there are two scalars running in the second loop of fig. 3.1. Thus, the leading terms
in ∆m2

H cancel exactly and the hierarchy problem is solved.

3.2 Superalgebra and Superfields

As stated in the last section, the generators of supersymmetry transformations carry
spinorial charges. They can be expressed by the two-component Weyl spinors Qα

and Q̄α̇ = (Qα)∗ [32]. In general, N different generators QA
α are allowed, where A

labels a possible internal symmetry4. We will restrict ourselves to the case N = 1
in this work. As they perform spacetime operations, the generators have to form a
closed algebra [32, 33]:

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 (3.5)

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ (3.6)

[P µ, Qα] = 0 , (3.7)

where σµ = (12,σ).

The irreducible representations of the SUSY algebra contain both fermionic and
bosonic states with the same quantum numbers, the so-called superpartners. These
representations are known as supermultiplets. The bosonic superpartners of the SM
fermions are commonly labelled by an additional “s” in front of the name, while the
fermionic superpartners receive an extra “ino” at the end, so we are talking about
sfermions and gauginos. For this reason, supersymmetric particles are sometimes
called “sparticles”. One can show that, in a supersymmetric theory, the number of
fermionic degrees of freedom nF equals the number of bosonic ones nB [30, 32].

The corresponding matter supermultiplets can be realized by chiral supermulti-
plets containing one Weyl fermion ψi and one complex scalar (or two real scalars) φj .
In order to close the SUSY algebra off-shell5, we require an auxiliary complex scalar
field F with mass dimension 2. The supersymmetric free-field Lagrangian may be
written as [30, 32]

Lfree = (∂µφ
∗)(∂µφ) + iψ̄σ̄µ∂µψ + F ∗F . (3.8)

The Euler-Lagrange equation of motion accordingly gives F = 0 on-shell, which
means that F is a non-propagating (unphysical) field which is just needed to formulate
an interacting theory.

4Only the cases N ≤ 4 allow for renormalizable theories while for N > 8, gravity can not
included consistently into the theory [28].

5A Weyl spinor field has one complex component in the on-shell case while it has two components
off-shell. This would imply a mismatch of nF and nB that has to be absorbed.
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3.2. Superalgebra and Superfields

In order to write an interaction term, we define the (left) chiral superfield

Φ(x, θ, θ̄) =φ(x) +
√

2θψ(x) + θθF (x)− i∂µφ(x)θσµθ̄

+
i√
2
θθ∂µψ(x)σµθ̄ − 1

4
∂µ∂

µφ(x)θθθ̄θ̄ , (3.9)

with the two-component Grassmann variables θ and θ̄. Particularly interesting for the
kinetic part of the Lagrangian are the coefficients of the θθθ̄θ̄ terms in the products
of superfields, the so-called D-terms. The F -terms, in contrast, are the coefficients
of θθ. They are especially useful for supersymmetric model construction [33].

Now, we are ready to write down an interacting Lagrangian. In the Wess-Zumino
Model, it is given by [32]

L =
∑

i

[Φ†iΦi]D + ([W (Φ)]F + h.c.) , (3.10)

where we have made use of the superpotential

W (Φ) =
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk , (3.11)

mij and λijk being totally symmetric. A special feature of the superpotential is that
it has to be analytic in the fields such that terms like Φ∗Φ are forbidden [30]. The
derivatives due to the scalar fields are commonly written as

W i =
∂

∂φi
W (φ), W ij =

∂2

∂φi∂φj
W (φ) . (3.12)

The auxiliary fields in the chiral Lagrangian can be eliminated by its equations
of motion [30]:

Fi = −W ∗
i , F ∗i = −W i , (3.13)

so that we arrive at the chiral Lagrangian

Lchiral = ∂µφ
∗
i∂

µφi + iψ̄iσ̄
µ∂µψi −

1

2
(W ijψiψj +W ∗

ijψ̄
iψ̄j)−W iW ∗

i , (3.14)

whereas W iW ∗
i is the scalar potential V 6.

The gauge fields are included in gauge supermultiplets containing one vector
boson Aaµ and a Weyl fermion λa. The Lagrangian for that reads [30]

Lgauge = −1

4
F a
µνF

a,µν + iλ̄aσ̄µDµλ
a +

1

2
DaDa , (3.15)

6Therefore, if we replace the superfields Φ by scalar fields φ in the superpotential, mij corresponds
to a fermion mass matrix and λijk to the Yukawa couplings.
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Chapter 3. Supersymmetry

with the covariant derivative Dµ. Here again, auxiliary fields Da are needed to close
the algebra off-shell. The interaction terms between the gauge and chiral multiplets
read

Lint = −
√

2g(φ∗T aψ)λa −
√

2gλ̄a(ψ̄T aφ) + g(φ∗T aφ)Da . (3.16)

whereas the last term together with 1
2
DaDa in Lgauge induces the equations of motion

for the auxiliary fields [30]

Da = −g(φ∗T aφ) . (3.17)

Altogether, one arrives at the full supersymmetric Lagrangian

L = Lchiral + Lgauge + Lint , (3.18)

where we imply the substitution ∂µ → Dµ in Lchiral.

3.3 Soft SUSY-breaking

Eq. (3.7) implies that the masses of the superpartners are identical. This, however,
would have been measured long time ago and thus is not the case. Hence, if SUSY
is realized in nature, it has to be broken spontaneously, i.e. while the Lagrangian
is invariant under supersymmetry transformations, the vacuum state is not. The
mechanism of how this should occur is an open question. Thus, it is useful to
parametrize the breaking by adding explicit SUSY-breaking terms to the Lagrangian.

We introduced (unbroken) supersymmetry as a solution of the hierarchy problem.
This is still possible if the mass difference mf̃ −mf is not too big as the leading
contribution to ∆m2

H is proportional to (m2
f̃
−m2

f ) log(m2
f̃
/m2

f ) [33]. These contribu-

tions are small enough if the breaking occurs at most at the TeV scale. One then
speaks about softly broken supersymmetry. A generic soft breaking Lagrangian can
be written as [30]

Lsoft = −M2
ijφ
∗
iφj −

(
1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ h.c. , (3.19)

with the explicit gaugino mass parameters Ma as well as additional scalar-only mass
terms and couplings which shift the sfermion masses to higher values.

3.4 The MSSM

In its minimal supersymmetric realization, the Standard Model particle content is
just doubled by the respective superpartners and additional fields or symmetries are
only included if necessary. We label it the Minimal Supersymmetric Model (MSSM).
Detailed overviews can be found in [28, 30, 31, 34].
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superfield spin-0 spin-1
2

SU(3)c × SU(2)L × U(1)Y

quarks Q̂ Q̃ = (ũ, d̃) Q = (u, d) (3,2, 1
6
)

and squarks Û ũc uc (3̄,1,−2
3
)

D̂ d̃c dc (3̄,1, 1
3
)

sleptons L̂ L̃ = (ν̃, ẽ) L = (ν, e) (1,2,−1
2
)

and leptons Ê ẽc ec (1,1, 1)

Higgses Ĥu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1,2, 1

2
)

and Higgsinos Ĥd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1

2
)

Table 3.1: Matter content of the MSSM.

There is, however, one peculiarity that arises when extending the SM towards
the MSSM: while it is sufficient in the SM to have just one scalar SU(2)L doublet
field H that generates the masses of all matter fields, this is not possible within the
MSSM: invariance under supersymmetry imposes a superpotential that has to be
analytic in the chiral superfields [34]. Hence, the adjoint of a chiral superfield, Ĥ†,
may not appear together with Ĥ in the superpotential and thus a term proportional
to Ĥ†Ĥ is not allowed. So, in order to write a gauge and supersymmetry invariant
Lagrangian but also break SU(2)L × U(1)Y by Higgs vev(s), two complex Higgs
doublets Hu and Hd are needed such that the superpotential of the MSSM reads

WMSSM = Y ij
u Ûi Q̂j Ĥu − Y ij

d D̂i Q̂j Ĥd − Y ij
e Êi L̂j Ĥd + µ Ĥu Ĥd . (3.20)

Û , D̂, Q̂, Ê and L̂ denote the chiral superfields and Y are the corresponding Yukawa
couplings. Generation indices have been suppressed. A summary over the chiral and
gauge supermultiplets is given in tables 3.1 and 3.2.

The soft SUSY-breaking terms of the MSSM, which follow from eq. (3.19), are

Lsoft,MSSM =− 1

2

(
M1 B̃B̃ +M2 W̃iW̃i +M3 g̃

ag̃a + h.c.
)
−m2

Hu |Hu|2 −m2
Hd
|Hd|2

−M2
Q̃

(ũ∗ũ+ d̃∗d̃)−M2
ũ (ũc)∗ũc −M2

d̃
(d̃c)∗d̃c −M2

L̃
(ν̃∗ν̃ + ẽ∗ẽ)

−M2
ẽ (ẽc)∗ẽc +Bµ (HuHd + h.c.)−

(
TuHuQ̃ũ

c + TdHdQ̃d̃
c + TeHdL̃ẽ

c
)
.

(3.21)

The mass dimension 1 parameters Mi and B are in general complex parameters.
M2

Q̃
,M2

ũ ,M
2
d̃
,M2

L̃
and M2

ẽ are hermitian, while Tu, Td and Te are complex 3 × 3

matrices. m2
Hi

are real quantities [33].

3.5 R-parity

So far, we have not written down the most generic superpotential. In general, we can
also allow for terms which explicitly violate baryon number B or lepton number L as
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Chapter 3. Supersymmetry

superfield spin-1
2

spin-1 SU(3)c × SU(2)L × U(1)Y

winos and W s W̃±, W̃ 0 W±,W 0 (1,3, 0)

bino and B B̃ B (1,1, 0)
gluino and gluon g̃ g (3,1, 0)

Table 3.2: Gauge content of the MSSM.

they are not protected by any symmetry in the MSSM. Yet this would immediately
lead to the possibility of proton decay, which has not been observed to date, despite
huge efforts7.

Thus, in order to protect the theory from that issue, an additional symmetry
is imposed, expressed by the multiplicative quantum number called R-parity. It is
defined by [30]

R = (−1)3(B−L)+2s , (3.22)

with s being the spin of the particle. Now, one can easily check that all SM
particles have R = 1 while the superpartners have R = −1. Hence, if R-parity is
conserved, SUSY particles can only be pair-produced from collisions of SM particles.
Additionally, a sparticle can not decay into SM particles only. The consequences
are apparent: supersymmetric decay chains are forced to end up with the lightest
supersymmetric particle (LSP), which is compulsorily stable. If the LSP happens to
be neutral and only weakly interacting, it provides an excellent candidate for dark
matter.

3.6 The CMSSM

The MSSM as we introduced it above has a lot of free parameters, most of them due
to the soft SUSY-breaking terms, which make complete parameter studies impossible.
One thus aims to reduce the parameter space. This is commonly done by imposing
GUT scale conditions which connect or even unify some of the free parameters. For
this purpose, however, one has to restrict oneself to a particular supersymmetry
breaking pattern. A widely used scheme that we will also apply in this work considers
a gravity-mediated SUSY-breaking. One introduces non-renormalizable terms to the
Lagrangian which are suppressed by powers of MP while the breaking occurs by the
vev of some auxiliary field F . The soft scale thus arises through the combination
msoft ∼ 〈F 〉/MP [30]. A nice feature of this breaking scheme is the flavour-blindness
of gravity.

In the framework of minimal supergravity (mSUGRA), the soft SUSY-breaking

7Current experiments (see, e.g., [35]) have set bounds on the proton lifetime of τp > O(1033) yrs.
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3.7. Particle content

terms have a particularly simple form at the GUT scale [31]:

M1 = M2 = M3 = M1/2 (3.23)

m2
Q̃

= m2
ũ = m2

d̃
= m2

L̃
= m2

ẽ = m2
01 and m2

Hu = m2
Hd

= m2
0 (3.24)

(1 being the unit matrix in generation space)

Tu = A0Yu, Td = A0Yd and Te = A0Ye . (3.25)

The GUT scale is set to the energy value where the gauge couplings g1, g2 and
g3 unify. This is possible in supersymmetric theories due to the additional particles
running in the loops and thus modifying the renormalization group equations (RGEs)
for the gauge couplings (see, e.g., [30]). The GUT scale is typically of the order
1016 GeV.

Altogether, when applying the mSUGRA-like conditions to the parameters of the
MSSM, we are left with only five free parameters which give the whole spectrum
of MSSM parameters with RGE evolution of the particular quantities. The free
parameters at MGUT are

• the soft mass of the scalars m0,

• the soft mass of the fermions M1/2,

• the trilinear coupling A0,

• the ratio of the Higgs vevs, tan β = vu/vd and

• the sign of µ in WMSSM .

This model is known as the constrained MSSM, or CMSSM.

3.7 Particle content

3.7.1 Higgs sector

With the MSSM containing two complex Higgs doublets, we have four scalar and
four pseudoscalar degrees of freedom in the MSSM. The particular fields in gauge
eigenbasis are

Hu =

(
φ+
u

1√
2
(vu + φ0

u + iχu)

)
, Hd =

( 1√
2
(vd + φ0

d + iχd)

φ−d

)
, (3.26)

with vevs 〈H0
u〉 = vu/

√
2 and 〈H0

d〉 = vd/
√

2. They have to satisfy

v =
√
v2
u + v2

d = 246 GeV (3.27)
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Chapter 3. Supersymmetry

in order to give the correct masses to the electroweak gauge bosons. The rotations
into the mass eigenstates can be done by [36]

(
H0

h0

)
=

(
cosα sinα
− sinα cosα

)(
φ0
d

φ0
u

)

(
G0

A0

)
=

(
cos β sin β
− sin β cos β

)(
χ0
d

χ0
u

)

(
G+

H+

)
=

(
cos β sin β
− sin β cos β

)(
φ+
d

φ+
u

)
, (3.28)

so that G0 and G± are (pseudo-) Goldstone bosons which, after electroweak symmetry
breaking (EWSB) and gauge fixing, serve as the longitudinal components of the Z
and W± bosons. The remaining fields are massive physical states such that there are
two (CP -even) neutral Higgs bosons h0 and H0, one (CP -odd) pseudoscalar A0 and
two charged Higgs bosons H±.

3.7.2 Neutralinos and charginos

The superpartners of the neutral gauge bosons, the gauginos, as well as the Higgs
counterparts, the Higgsinos, are spin-1

2
fermions. All of them mix after EWSB to

four neutral fermion fields, the so-called neutralinos χ̃0
i . The tree-level mass matrix

in the basis (B̃, W̃ 0, H̃0
d , H̃

0
u) reads

mχ̃0 =




M1 0 −g1vd
2

g1vu
2

0 M2
g2vd

2
−g2vu

2

−g1vd
2

g2vd
2

0 −µ
g1vu

2
−g2vu

2
−µ 0


 . (3.29)

Diagonalization can be done by a unitary matrix.
The lightest neutralino is the LSP in a wide range of parameter space and thus

serves as a dark matter candidate if R-parity is conserved.

As stated above, there are also two charged Higgs bosons in the MSSM. Thus the
superpartners are two charged Weyl fermions, likewise with the charged winos.
The mass eigenstates are called charginos χ̃±i . The mass matrix in the basis
(W̃+, H̃+

u , W̃
−, H̃−d ) has the form [30]

mχ̃± =

(
0 XT

X 0

)
with X =

(
M2

g2vu√
2

g2vd√
2

µ

)
(3.30)

and can be diagonalized using two unitary 2× 2 matrices U and V such that

U∗XV −1 =

(
mχ̃±1

0

0 mχ̃±2

)
. (3.31)
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3.7. Particle content

3.7.3 Gluinos

Due to unbroken SU(3)c, the superpartners of the gluons are the only SUSY particles
that do not mix with others. The mass of the colour-octet fermions is determined
by the soft parameter M3 and its RGE evolution. With mSUGRA-like boundary
conditions, it can be related to the other soft SUSY-breaking gaugino masses in the
form [30]

M3 =
αs
α

sin2 θWM2 =
3αs
5α

cos2 θWM1 . (3.32)

Hence, at the TeV scale, the mass hierarchy is about

M3 : M2 : M1 ≈ 6 : 2 : 1 , (3.33)

which predicts the gluino to be among the heaviest supersymmetric particles.

3.7.4 Sfermions

As stated above, there exists one scalar superpartner for each chirality state of a
Standard Model fermion as these are two different degrees of freedom. We thus
distinguish between right-handed and left-handed sfermions, which have the same
quantum numbers as their respective fermionic partners. Of course, handedness is
just a labelling for the scalars and does not have any physical interpretation. Due to
broken SU(2)L × U(1)Y , the left- and right-handed sfermions may mix with each
other. Consequently, by means of the generic soft SUSY-breaking terms, there are in
general three 6× 6 matrices for the up- and down-type squarks as well as for the
charged sleptons and additionally one 3×3 matrix for the sneutrinos (as right-handed
neutrinos are not included in the minimal realization of SUSY). Restricting ourselves
to mSUGRA-inspired boundary conditions, most of the mixing angles are small or
zero due to the flavour-blindness of gravitational interactions and thus the diagonal
form at the GUT scale (see eqns. (3.24) and (3.25)).

All sfermions then have the same mass at the GUT scale, m0. The mass splitting
at the electroweak scale (which is the energy observable for us) is generated by
RGE evolution where a strong dependence of M1/2 occurs due to virtual gauginos
running in the loops. Usually, the squarks are heavier than the sleptons because of
the additional coupling to gluinos.

The Yukawa couplings are the only couplings that differ in flavour. As they are
small for the first and second family, Higgsino contributions can be neglected to
a good approximation, leading to nearly mass-degenerate states of the first- and
second-generation sfermions. Noticeable mass splitting and also left-right-mixing will
thus only occur for the third-generation squarks and sleptons [30].
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Chapter 4

The Model: BLSSM

In this work we consider an R-parity conserving U(1)B−L extension of the MSSM,
which we will call the BLSSM. Thus, we combine the advantages of supersymmetry
with those of having a local B − L symmetry. As already stated in chapter 2, this
will lead to some new particles as well as new mixings which we will discuss in the
following sections. A detailed overview of the model with its particles and masses as
well as loop-corrections can be found in ref. [16]. Studies of the non-supersymmetric
version and its Z ′ physics are for instance provided in [37, 38].

4.1 Particle content and superpotential

Compared with the MSSM, there is one right-handed neutrino per generation plus
their superpartners in addition to the chiral supermultiplets. It is known that all
matter particles can be embedded in SO(10) 16-plets [39]. The Higgs sector also
has to be extended as U(1)B−L must be broken. Therefore we need two scalar fields
η and η̄ similar to the two MSSM Higgs doublets. A Majorana mass term of the
right-handed neutrinos is generated by the vev of η such that their mass is driven
by the B − L breaking scale. In order to get a gauge invariant Lagrangian, η needs
to have twice the B − L charge of the right-handed neutrinos. For this reason we
label them bileptons. In table 4.1 we summarize the chiral supermultiplets with their
distinct quantum numbers.

The superpotential of the model is given by

W =Y ij
u Ûi Q̂j Ĥu − Y ij

d D̂i Q̂j Ĥd − Y ij
e Êi L̂j Ĥd + µ Ĥu Ĥd

+ Y ij
ν ν̂i L̂j Ĥu − µ′ η̂ ˆ̄η + Y ij

x ν̂i η̂ ν̂j , (4.1)

where Y ij
ν and Y ij

x are the Dirac and Majorana Yukawa couplings of the neutrinos
which generate their masses. With Yν being small and Yx large, we can thus achieve
light left-handed and heavy right-handed neutrinos. Due to the new supersymmetric
particles in the spectrum compared to the MSSM, there are also additional soft
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superfield spin-0 spin-1
2

SU(3)c × SU(2)L × U(1)Y × U(1)B−L

quarks Q̂ Q̃ = (ũ, d̃) Q = (u, d) (3,2, 1
6
, 1

6
)

and squarks Û ũc uc (3̄,1,−2
3
,−1

6
)

D̂ d̃c dc (3̄,1, 1
3
,−1

6
)

leptons L̂ L̃ = (ν̃, ẽ) L = (ν, e) (1,2,−1
2
,−1

2
)

and sleptons Ê ẽc ec (1,1, 1, 1
2
)

ν̂ ν̃c νc (1,1, 0, 1
2
)

Higgses Ĥu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1,2, 1

2
, 0)

and Higgsinos, Ĥd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1

2
, 0)

bileptons η̂ η η̃ (1,1, 0,−1)
and bileptinos ˆ̄η η̄ ˜̄η (1,1, 0, 1)

Table 4.1: Matter content of the BLSSM.

SUSY-breaking terms such that the soft Lagrangian reads

Lsoft =Lsoft,MSSM − B̃B̃′MBB′ −
1

2
B̃′B̃′MB′ −m2

η|η|2 −m2
η̄|η̄|2 −M2

ν̃,ij(ν̃
c
i )
∗ν̃cj

− ηη̄Bµ′ + T ijν Huν̃
c
i L̃j + T ijx ην̃

c
i ν̃

c
j . (4.2)

We have the freedom to choose B′µ as well as Bµ to be real quantities [40].

4.2 Gauge kinetic mixing

We have already introduced the possibility of gauge kinetic mixing due to the two
Abelian gauge groups in chapter 2. Here we study this effect in some more detail in
terms of the BLSSM as it has been neglected in most phenomenological studies so
far (see, e.g., [41, 42]). Actually, we will show the necessity of taking into account
the kinetic mixing in the next sections since it leads to tree level particle mixing
and mass shifts that would be absent otherwise. Moreover, even if we force the
mixing term to vanish at a particular scale, it will be inevitably induced with RGE
evaluation. One can illustrate this behaviour by the consideration of the anomalous
dimension γab (with a and b labelling the different U(1) groups). At 1-loop, it is
given by [16]

γab =
1

16π2
Tr{QaQb} , (4.3)

the trace running over all U(1) charges Q. Regarding the BLSSM, in the basis
(U(1)Y , U(1)B−L)T the anomalous dimension can be written as [16]

γ =
1

16π2




33
5

6
√

2
5

6
√

2
5

9


 . (4.4)
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Accordingly, off-diagonal elements and thus mixing between the two Abelian
groups will always be generated by RGE running. As pointed out in chapter 2, we
can handle the kinetic mixing in terms of off-diagonal couplings in the coupling
matrix G of eq. (2.3). We define this coupling matrix in the basis (AY , AB−L) as

G =

(
gYY gYB

gBY gBB

)
. (4.5)

As both couplings and mass of the Z boson are severely constrained by electroweak
precision data, explicit coupling terms to B − L are disfavoured at the associated
scale. Therefore, we perform an orthogonal rotation in the fields and the coupling
matrix that fixes the corresponding off-diagonal coupling to zero. Such a rotation
may always be executed in the still-unbroken fields. Hence, at the scale of EWSB,
we are left with

g1 = g′YY =
gYYgBB − gYBgBY√

g2
BB + g2

BY

(4.6)

gBL = g′BB =
√
g2

BB + g2
BY (4.7)

ḡ = g′YB =
gYBgBB + gBYgYY√

g2
BB + g2

BY

(4.8)

g′BY = 0 . (4.9)

In the following discussion of the model we will make use of these definitions and
explicitly direct our attention to points where kinetic mixing affects the phenomenol-
ogy of the model.

4.3 Neutral gauge sector

As stated in chapter 2, the gauge kinetic mixing also gives rise to a tree level mass
mixing between the neutral gauge bosons. In the basis (B,W 3, B′), it reads

M2
V =




1
4
g2

1v
2 −1

4
g1g2v

2 1
4
ḡg1v

2

−1
4
g1g2v

2 1
4
g2

2v
2 −1

4
ḡg2v

2

1
4
ḡg1v

2 −1
4
ḡg2v

2 1
4
ḡ2v2 + g2

BLx
2


 , (4.10)

whereas v and x are defined in analogy to eq. (3.27): v2 = v2
d + v2

u as well as
x2 = v2

η + v2
η̄, vη and vη̄ being the bilepton vevs.

The neglection of gauge kinetic mixing would lead to a decoupling of the upper-left
block, restoring the same relations between the gauge bosons as in the SM and leaving
an isolated Z ′ with the simple mass formula MZ′ = xgBL. By applying eq. (2.4), the
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mass matrix can be diagonalized. The eigenvalues after the rotation are given by

M2
γ =0 (4.11)

M2
Z/Z′ =

1

8

(
(g2

1 + g2
2 + ḡ2)v2 + 4g2

BLx
2∓

√
(g2

1 + g2
2 + ḡ2)2v4 − 8(g2

1 + g2
2 − ḡ2)g2

BLv
2x2 + 16g4

BLx
4
)
. (4.12)

The mixing angle θ′W that characterizes the mixing of the gauge eigenstate B′

with B and W 3 to the mass eigenstates Z ′, γ and Z can be calculated as [43]

tan 2θ′W =
2ḡ
√
g2

1 + g2
2

ḡ2 + 16x
2

v2
g2

BL − g2
1 − g2

2

. (4.13)

Obviously, tan 2θ′W and thus θ′W has to be very small with Z ′ masses in the TeV
range since it is suppressed by powers of v2/x2.

4.4 Higgs sector

Here we review the masses and mixing of the neutral Higgs fields. In the same
manner as in eq. (3.26) for the MSSM Higgs bosons, we decompose the bileptons η
and η̄ into CP -even and CP -odd components:

η =
1√
2

(
vη + φη + iχη

)
, η̄ =

1√
2

(
vη̄ + φη̄ + iχη̄

)
. (4.14)

4.4.1 CP -even states

A mixing between the MSSM Higgs bosons and the bileptons already exists at tree
level through the off-diagonal coupling ḡ. The mass matrix in the basis (φ0

d, φ
0
u, φη, φη̄)

reads at tree level

m2
h =


m2
h,11 − (g21+g22+ḡ2)vdvu

4
−Bµ

1
2
ḡgBLvdvη −1

2
ḡgBLvdvη̄

− (g21+g22+ḡ2)vdvu
4

−Bµ m2
h,22 −1

2
ḡgBLvuvη

1
2
ḡgBLvuvη̄

1
2
ḡgBLvdvη −1

2
ḡgBLvuvη m2

h,33 −g2
BLvηvη̄ −Bµ

−1
2
ḡgBLvdvη̄

1
2
ḡgBLvuvη̄ −g2

BLvηvη̄ −Bµ m2
h,44




(4.15)
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and the diagonal elements are

m2
h,11 =m2

Hd
+

1

8
(g2

1 + g2
2 + ḡ2)(3v2

d − v2
u) +

1

4
ḡgBL(v2

η − v2
η̄) + |µ|2 (4.16)

m2
h,22 =m2

Hu −
1

8
(g2

1 + g2
2 + ḡ2)(v2

d − 3v2
u)−

1

4
ḡgBL(v2

η − v2
η̄) + |µ|2 (4.17)

m2
h,33 =m2

η +
1

4
ḡgBL(v2

d − v2
u) +

1

2
g2

BL(3v2
η − v2

η̄) + |µ′|2 (4.18)

m2
h,44 =m2

η̄ −
1

4
ḡgBL(v2

d − v2
u)−

1

2
g2

BL(v2
η − 3v2

η̄) + |µ′|2 . (4.19)

The soft SUSY-breaking Higgsino and bileptino masses can be eliminated by
applying the tadpole equations (see sec. 4.7).

4.4.2 CP -odd states

Analogously to the scalar Higgs sector, there exist four pseudoscalar states that can
in principle mix with each other. After the rotation into the mass eigenbasis, two
of the states must be physical particles A0 and A0

η while the other two form the
Goldstone bosons G0

1 and G0
2 which become the longitudinal parts of the neutral

gauge bosons after electroweak and B − L symmetry breaking. The masses of these
bosons are adjusted by gauge fixing. We choose to work in the Feynman-’t Hooft
gauge, i.e. the values are shifted to the masses of the Z and Z ′ boson, respectively.

It was claimed in ref. [16] that in contrast to the CP -even Higgses, the pseudoscalar
mass matrix had a block-diagonal form at tree level. This is true for the part of the
mass matrix that emerges from the kinetic terms of the Lagrangian. At tree level, it
reads

m2
A,kin =




Bµ tan β Bµ 0 0
Bµ Bµ cot β 0 0
0 0 Bµ′ tan β′ Bµ′

0 0 Bµ′ Bµ′ cot β′


 . (4.20)

The other part which influences the pseudoscalar masses is the gauge fixing
Lagrangian. A simple choice would be the gauge fixing terms of the MSSM in mass
eigenbasis, just appended by a term that connects the Z ′ and its corresponding
Goldstone boson. The resulting gauge fixing Lagrangian for the massive neutral
gauge bosons can be written as

LGF,Z/Z′ = − 1

2ξZ

∣∣∣∂µZµ −G0
1MZξZ

∣∣∣
2

− 1

2ξZ′

∣∣∣∂µZ ′µ −G0
2MZ′ξZ′

∣∣∣
2

. (4.21)

Such terms imply that the rotation of the pseudoscalar fields into the mass
eigenstates has to be done before gauge fixing, simply using the mass matrix in eq.
(4.20). This in turn means that the Goldstone bosons would be purely MSSM- or
B − L-like as the upper-left and the lower-right block decouple. Hence, despite the
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4.5. Neutralinos

fact that Z and Z ′ already mix at tree level, their longitudinal components would
decouple completely.

The gauge fixing procedure described above works correctly if U(1) mixing is
turned off. However, as soon as we consider a non-zero ḡ, we have to be more
careful. In the loop corrections to the pseudoscalar Higgs masses we find that with
gauge kinetic mixing, the correct Goldstone boson masses cannot be restored with
the respective values for ξi in eq. (4.21) which, of course, must not be and thus is
unsustainable.

The issue can be traced back to the kind of gauge fixing applied. While it is fine
in the MSSM to use a gauge fixing Lagrangian like eq. (4.21), this is not the case if
a second U(1) can mix with the initial U(1)Y . With a diagonal gauge fixing term,
the ghost fields associated with the Z and Z ′ bosons also decouple and thus cannot
cancel all the related terms in the loops. In a consistent approach we thus consider a
gauge fixing Lagrangian in the gauge eigenbasis of the pseudoscalars and allow for
explicit mixing terms, as has been done in [44]. Hence, we use

LGF,Z/Z′ =
1

2ξZ

∣∣∣∂µZµ +
∑

i

ciχiξZ

∣∣∣
2

+
1

2ξZ′

∣∣∣∂µZ ′µ +
∑

i

diχiξZ′
∣∣∣
2

, i = u, d, η, η̄ .

(4.22)

The mass-dimension coefficients ci and di correspond to those occurring in the
kinetic Lagrangian after the rotation of the gauge bosons into the mass eigenstates:

∑

i

ciZ
µ∂µχi +

∑

j

diZ
′µ∂µχj . (4.23)

They may depend on the Higgs vevs, gauge couplings, and the gauge boson
mixing angles θW and θ′W . The gauge fixing defined above automatically contains
off-diagonal mass terms that have to be added to the mass matrix of eq. (4.20) before
diagonalization. Thus, a tree level mixing of the Goldstone bosons is induced which
vanishes in the limit ḡ → 0. The physical states cannot depend on the gauge fixing,
so they still decouple at tree level and gain the masses already stated in ref. [16]:

m2
A0 =

2Bµ

sin 2β
, m2

A0
η

=
2B′µ

sin 2β′
. (4.24)

4.5 Neutralinos

The neutralino sector contains three more states in the BLSSM, which are the
superpartner of the B′ – the BLino B̃′ – and the two bileptinos η̃ and ˜̄η. All of them
mix at tree level with the MSSM submatrix (see eq. (3.29)) proportional to ḡ. The
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mass matrix reads in the basis (B̃0, W̃ 0, H̃0
d , H̃

0
u, B̃

′, η̃, ˜̄η)

mχ̃0 =




M1 0 −g1vd
2

g1vu
2

MBB′
2

0 0
0 M2

g2vd
2

−g2vu
2

0 0 0
−g1vd

2
g2vd

2
0 −µ − ḡvd

2
0 0

g1vu
2

−g2vu
2

−µ 0 ḡvu
2

0 0
MBB′

2
0 − ḡvd

2
ḡvu
2

MB′ −gBLvη gBLvη̄
0 0 0 0 −gBLvη 0 −µ′
0 0 0 0 gBLvη̄ −µ′ 0




. (4.25)

Depending on the soft gaugino masses Mi as well as the parameters µ and µ′, the
lightest neutralino can have a different nature. Hence, in comparison to the MSSM,
two more dark matter scenarios are conceivable: BLino-like LSP and bileptino-like
LSP. A detailed discussion of this matrix as well as various dark matter scenarios
due to different admixtures of the lightest neutralino is provided by ref. [45].

4.6 Sleptons

There are a few changes in the slepton sector in comparison to the MSSM that we
briefly discuss in this section. The most obvious change in this sector of course is
the presence of right-handed sneutrinos. Moreover, due to the Majorana mass term
in the superpotential (eq. (4.1)) a splitting of the sneutrino states into real and
imaginary parts occurs such that we end up with one 6× 6 mixing matrix for the real
(scalar) part ν̃S and one for the imaginary (pseudoscalar) part ν̃P . The respective
terms in the mass matrix are shown in appendix C.1 whereas as a discussion about
possible sneutrino LSPs and thus dark matter scenarios can be found in ref. [45]. In
general, the masses of the scalar and pseudoscalar sneutrinos differ.

The most important change one gets in the charged slepton sector due to the
U(1)B−L is the existence of new D-terms in the mass matrix. Furthermore, the
MSSM-like D-term is modified by means of gauge kinetic mixing. The slepton mass
matrix in the basis (ẽL, ẽR) is given by

m2
ẽ =


 mLL

1√
2

(
vdTe − vuµ∗Ye

)

1√
2

(
vdT

†
e − vuµY †e

)
mRR


 (4.26)

mLL = M2
L̃

+
v2
d

2
Y †e Ye +

1

8

(
(g2

1 − g2
2 + ḡ2 + ḡgBL)(v2

d − v2
u) + 2(ḡgBL + g2

BL)(v2
η − v2

η̄)
)
1

(4.27)

mRR = M2
ẽ +

v2
d

2
YeY

†
e +

1

8

(
(2g2

1 + 2ḡ2 + ḡgBL)(v2
u − v2

d)− 2
(

2ḡgBL + g2
BL

)
(v2
η − v2

η̄)
)
1 ,

(4.28)

where 1 is the unit matrix in flavour space. With large bilepton vevs – and thus
large MZ′ – the mass splitting between left- and right-handed sleptons gets even more
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4.7. Tadpole equations

enhanced than in the MSSM since in mSUGRA-inspired models Mẽ is usually smaller
than ML̃ and we conventionally take tan β′ > 1. We will refer to the respective left-
and right-handed slepton eigenstates as L-sleptons and R-sleptons.

4.7 Tadpole equations

The minimalization conditions for the scalar potential stemming from the electroweak
and B−L symmetry breaking are provided by the tadpole equations. There are four
of them in the BLSSM due to the new scalar fields η and η̄. At tree level, these are
given by

|µ|2 =
1

8

((
2ḡgBLx

2 cos(2β′) + 4m2
Hu − 4m2

Hd

)
sec(2β)− 4

(
m2
Hu +m2

Hd

)

−
(
g2

1 + ḡ2 + g2
2

)
v2
)

(4.29)

Bµ =− 1

8

(
− 2ḡgBLx

2 cos(2β′)− 4m2
Hu + 4m2

Hd
+
(
g2

1 + ḡ2 + g2
2

)
v2 cos(2β)

)
tan(2β)

(4.30)

|µ′|2 =
1

4

(
− 2
(
g2

BLx
2 +m2

η +m2
η̄

)
+
(

2m2
η − 2m2

η̄ + ḡgBLv
2 cos(2β)

)
sec(2β′)

)

(4.31)

Bµ′ =
1

4

(
− 2g2

BLx
2 cos(2β′) + 2m2

η − 2m2
η̄ + ḡgBLv

2 cos(2β)
)

tan(2β′) . (4.32)

Omitting kinetic mixing in eq. (4.12), the Z ′ mass would, as stated above, have
the simple form MZ′ = gBLx. Using this approximate equality, we can roughly relate
the Z ′ mass to the soft breaking parameter µ′ [16]:

M2
Z′ ≈ −2|µ′|2 +

4(m2
η̄ −m2

η tan2 β′)− v2ḡgBL cos β(1 + tan β′)

2(tan2 β′ − 1)
. (4.33)

Obviously, tan β′ needs to be close to 1 in order to obtain high Z ′ masses. Apparently,
the tadpole equations have the power to restrict the allowed parameter space severely.

4.8 GUT scale boundary conditions

Similar to the CMSSM, we assume GUT scale boundary conditions for our model.
Thus, we force all new soft SUSY-breaking masses to unify to either m0 or M1/2

and the trilinear couplings to A0Y . Analogously to the CMSSM, we impose the
additional conditions

MB′ =M1/2 (4.34)

M2
ν̃ =m2

01 and m2
η = m2

η̄ = m2
0 (4.35)

Tx =A0Yx and Tν = A0Yν . (4.36)
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The energy value for the GUT scale is found by the assumption that the gauge
couplings unify at this point. So, according to eq. (4.6), this is where

g2 =
gYYgBB − gYBgBY√

g2
BB + g2

BY

. (4.37)

Since the BLSSM gauge group can be accommodated in the intermediate breaking
scenario of a product group like E8 × E8, the U(1)B−L should be orthogonal to the
SM gauge group at the GUT scale. Hence, we further assume that all off-diagonal
couplings and soft masses to vanish at this scale:

gYB =gBY = 0 (4.38)

MBB′ =0 . (4.39)

This in turn means that the U(1) coupling matrix is diagonal, such that gYY = g1

and gBB = gBL which, of course, also has to unify with g1 and g2.
Note that ḡ will always be driven negative with RGE running if it is zero at the

GUT scale. This is a consequence of the fact that the β-functions of gYB and gBY

are always positive [16].
The parameters µ, µ′, Bµ and Bµ′ can be evaluated from the tadpole equations

such that the free parameters of the model are:

m0, M1/2, A0, tan β, tan β′, sign µ, sign µ′, MZ′ , Yx and Yν . (4.40)

We always have the freedom to choose a basis where one of the neutrino Yukawa
coupling matrices is diagonal. Consequently, we take Yx diagonal. Thus, there are
altogether two signs and eighteen parameters that determine the whole spectrum.
Nine of them, namely Y ij

ν , are heavily constrained by neutrino data: the numbers
have to be very small (at most |Y ij

ν | . 10−5 [40]) in order to explain the light neutrino
masses. Thus, they do not affect our numerical calculations and the spectrum is
effectively provided by only nine parameters and two signs.
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Chapter 5

Production and supersymmetric
decays of the Z ′B−L

In our analysis, we have focussed on the additional neutral gauge boson arising
from the B − L symmetry and in especially on its production at the LHC and
its supersymmetric decay modes. For this purpose, parameter points with large
branching fractions into supersymmetric particles are preferred.

5.1 Calculation chain

In order to do numerical calculations starting from the Lagrangian of chapter 4, a
chain of tools was used. The basis for all calculations is provided by the Mathematica
package SARAH [46–48], in which the model is implemented and which is able to
derive the vertices, mass matrices, RGEs and loop corrections as well as the model
output for various other tools out of a given particle content and Lagrangian. As a
second step, the complete mass spectrum with mixing matrices and branching ratios
has to be generated, which is done by SPheno [49, 50]. We further used WHIZARD

[51] for the calculation of cross sections and event generation, whereas CalcHep [52]
and MadGraph [53] served for numerical cross-checks with SPheno and WHIZARD. The
scans in parameter space were done by SSP, which combines these tools to work
together. All the mentioned tools have recently been combined to form the SUSY

Toolbox for supersymmetric studies [54].

5.2 Study of the parameter space

In order to find parameter points which potentially give interesting and measurable
signatures at the LHC and are allowed by both experiment and theory, the parameter
space had to be scanned in the quantities which determine the Z ′ properties and
decays. The Z ′ mass as well as the GUT scale masses m0 and M1/2 have the biggest
impact to the decays as the couplings to the Z ′ are mostly fixed by baryon and
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Figure 5.1: Study of the allowed (= calculable) GUT scale input parameter space in
the m0 −M1/2 plane for MZ′ = 2.5 TeV, tan β′ = 1.15 (left) and in the
MZ′−tan β′ plane for m0 = 1 TeV and M1/2 = 1.5 TeV (right). The other
parameters have been fixed to tanβ = 20, A0 = −1.5 TeV, sign µ =
sign µ′ = +. The grey dot indicates the selected benchmark point (BLV).

lepton number, i.e. the allowed phase space and thus the sparticle masses are the
quantities which are the most interesting and which can be addressed by GUT scale
input. The trilinear coupling parameter, A0, is found to play a negligible role and is
simply fixed to values which give a calculable spectrum.

Selected parameter scans are shown in figs. 5.2 - 5.1. White space is where no
valid spectrum could be calculated due to scalar masses squared which ran negative
with RGE evolution or non-existent solutions to the tadpole equations. As can be
seen from eq. (4.33), tan β′ has to be small (close to 1) in order to get high Z ′ masses,
thus the parameter space in the MZ′ − tan β′ plane is very restricted (see right plots
in figs. 5.2 and 5.1). For a closer look on how tanβ′ affects especially the Z ′ and
Higgs masses, we refer to [16].

By exploring the allowed parameter space of the neutrino mass coefficients YX of
the superpotential (see fig. 5.3), one can see that these have to be approximately
equal and bigger than around 0.4 to obtain a calculable spectrum. Note that the
size of YX is crucial for the question of whether R-parity is conserved or not if one
allows for sneutrino vevs. Only if the entries of YX and thus also the masses of the
right-handed neutrinos are nearly degenerate, an R-parity conserving vacuum can
occur [42], otherwise R-parity will be broken by the RGE running of the sneutrino
masses. Hence, the constrained parameter space in fig. 5.3, which is in accordance
with ref. [42], is a consequence of demanding an unbroken R-symmetry and thus in
most cases of the parameter space a stable lightest neutralino or, in some scenarios,
a stable sneutrino.
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Figure 5.2: Study of the allowed GUT scale input parameter space in the m0 −M1/2

plane for MZ′ = 2 TeV, tan β′ = 1.07 (left) and in the MZ′− tan β′ plane
for m0 = 0.6 TeV and M1/2 = 0.6 TeV (right). The other parameters
have been fixed to tanβ = 10, A0 = 0, sign µ = sign µ′ = +. The grey
dot indicates the selected benchmark point (BLVI).
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Figure 5.3: Study of the available parameter space in Y ii
x for the parameter

choices (left) m0 = 1 TeV, M1/2 = 1.5 TeV, tanβ = 20, A0 =
−1.5 TeV, tanβ′ = 1.15, MZ′ = 2.5 TeV and (right) m0 =
0.6 TeV,M1/2 = 0.6 TeV, tanβ = 10, A0 = 0, tanβ′ = 1.07, MZ′ =
2 TeV. The signs of the µ parameters were chosen equally in both cases:
sign µ = sign µ′ = +.
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We chose two representative benchmark points out of the parameter study: the
first of which was selected due to the nature of the LSP, which is bileptino-like with
this parameter set and thus allows for enhanced branching fractions of Z ′ → χ̃0

1χ̃
0
1.

The dark matter aspects of this possible LSP nature are discussed in [45]. The second
benchmark point has as light as possible GUT scale masses (still consistent with the
recent LHC bounds on the CMSSM-parameters [55, 56]) in order to achieve as light as
possible sfermions for large partial decay widths Γ(Z ′ → f̃ f̃ ∗). The LSP in this case is
a bino-like neutralino. In accordance with [16] and [40], we label the points BLV and
BLVI, respectively. A summary with the total GUT scale input of the two benchmark
points as well as the neutralino and sfermion masses is given in table 5.1. As stated
above, the neutrino Yukawa couplings Yν are negligible for our purposes. Hence, we
chose some arbitrary values that qualitatively respect the hierarchy obtained from
solar and atmospheric neutrino experiments: Y 11

ν = 10−7, Y 22
ν = 10−6, Y 33

ν = 10−5.

5.3 Z ′ decay modes on tree level

A vector boson can, at tree level, in general decay in four different ways: into a pair
of fermions, scalars and vector bosons, or into one vector boson and one scalar. The
partial widths may depend on the masses, coupling constants and mixing angles of
the particles involved. The tree level partial width is given by

ΓZ′ =
|M|2

16πMZ′

√(
(mi −mj)2 −M2

Z′

)(
(mi +mj)2 −M2

Z′

)

M2
Z′

, (5.1)

where M is the matrix element of the underlying process and mi/j are the masses of
the particles the Z ′ decays into. We list here the partial decay widths into the four
different final states as well as distinct vertex factors. A summary of all relevant Z ′

vertices can be found in appendix A.

5.3.1 Decay into a pair of scalars

The most interesting case for our purposes, as it leads to the production of sfermions,
is the decay into a pair of scalars. The general vertex structure is simply given by
ic(p− q)µ with the momenta q and p of the decay products and the vertex factor c,
which is, e.g. for two sleptons i and j

cµ̃µ̃ = −1

2

((
(ḡ + gBL)c′W −

(
g2cW − g1sW

)
s′W

) 3∑

a=1

ZE∗
i,a Z

E
j,a+

+
((
gBL + 2ḡ

)
c′W + 2g1sW s

′
W

) 3∑

a=1

ZE∗
i,3+aZ

E
j,3+a

)
. (5.2)
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BLV BLVI

GUT scale input
m0 [TeV] 1 0.6
M1/2 [TeV] 1.5 0.6
A0 [TeV] -1.5 0
tan β 20 10
sign µ + +
tan β′ 1.15 1.07
sign µ′ + +
MZ′ [TeV] 2.5 2
Y 11
X 0.37 0.42
Y 22
X 0.4 0.43
Y 33
X 0.4 0.44

Masses [GeV]
mχ̃0

1
678.0 280.7

mχ̃0
2

735.2 475.4

mχ̃0
3

1241.9 719.1

mχ̃0
4

1827.0 733.9

mχ̃0
5

1867.5 798.2

mχ̃0
6

1871.5 1488.7

mχ̃0
7

3131.4 2530.6

mχ̃±1
1242.0 475.4

mχ̃±2
1872.0 733.9

mτ̃1 1002.0 603.7
mτ̃2 1446.5 759.9
mµ̃R 1094.2 610.8
mµ̃L 1477.4 761.9
mẽR 1094.5 610.8
mẽL 1477.5 761.9

BLV BLVI

mν̃S1
811.3 754.9

mν̃P1
1442.4 754.9

mν̃S2
1027.0 757.5

mν̃P2
1474.9 757.5

mν̃S3
1027.0 757.5

mν̃P3
1475.0 757.5

mν̃S4
1442.4 1105.5

mν̃P4
2439.9 1969.3

mν̃S5
1474.9 1141.2

mν̃P5
2532.3 2003.5

mν̃S6
1475.0 1177.0

mν̃P6
2532.3 2037.8

mt̃1 2180.8 1020.5
mt̃2 2664.0 1257.5
ms̃R 2892.4 1324.0
ms̃L 2998.0 1357.1
mũR 2892.4 1324.0
mũL 2998.0 1357.1
mb̃1

2642.8 1224.0
mb̃2

2830.0 1326.4
mc̃R 2900.7 1332.8
mc̃L 2999.0 1359.3
md̃R

2900.7 1332.8
md̃L

2999.1 1359.3

mg̃ 3181.5 1378.8

Table 5.1: Parameters of the study points and corresponding masses.

ZE
k,l indicates the slepton mixing matrix and we use the notation sW = sin θW

as well as cW = cos θW , same with θ′W . A special feature which can be seen in
all Z ′−(s)fermion couplings is the impact of gauge kinetic mixing. As highlighted
in chapter 4, the off-diagonal coupling ḡ will be negative from running down from
the GUT to the SUSY scale. It is of the order (O(10−1)) and thus definitely non-
negligible. Hence, it will have effect on the couplings and thus the signatures of the
Z ′, depending on what relative sign with respect to gBL it receives in the vertex. The
coupling to charged sleptons in eq. (5.2) thus is weakened.
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The matrix element squared is given by

|M|2ss =
1

3
|c|2
(
M2

Z′ − 2(m2
i +m2

j) +
(m2

i −m2
j)

2

M2
Z′

)
. (5.3)

5.3.2 Decay into a pair of fermions

The second most interesting decay mode is the one resulting in a pair of fermions,
e.g. two electrons. The vertex structure is of the form iγµ (aPL + bPR) where PL and
PR are the left- and right projection operators. In case of a decay Z ′ → e+e−/νiν̄j,
the coefficients read

aee =
1

2

(
(ḡ + gBL) c′W − (g2cW − g1sW ) s′W

)

bee =
1

2

(
(2ḡ + gBL) c′W + 2g1sW s

′
W

)
(5.4)

aνiνj =
1

2

(((
ḡ + gBL

)
c′W +

(
g1sW + g2cW

)
s′W

) 3∑

a=1

UV,∗
i,a U

V
j,a

− gBLc
′
W

3∑

a=1

UV,∗
i,3+aU

V
j,3+a

)

bνiνj = −1

2

(((
ḡ + gBL

)
c′W +

(
g1sW + g2cW

)
s′W

) 3∑

a=1

UV,∗
j,a U

V
i,a

− gBLc
′
W

3∑

a=1

UV,∗
j,3+aU

V
i,3+a

)
, (5.5)

where UV
k,l is the 6× 6 neutrino mixing matrix.

One can again see from the structure above that gauge kinetic mixing plays an
important role in the process p, p→ Z ′+X → e+e−+X, which is used to set bounds
on MZ′ . Since θ′W is a small quantity, the main Z ′ discovery channel may thus be
reduced sizeably.

We also list here the couplings to quarks as they will influence the Z ′ production
in Drell-Yan processes and can also be used as indicators for the Z ′ nature.

auu = −1

6

(
(ḡ + gBL)c′W − (3g2cW − g1sW )s′W

)

buu = −1

6

(
(4ḡ + gBL)c′W + 4g1sW s

′
W

)
(5.6)

add = −1

6

(
(ḡ + gBL)c′W + (3g2cW + g1sW )s′W

)

bdd =
1

6

(
(2ḡ − gBL)c′W + 2g1sW s

′
W

)
. (5.7)
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Obviously, the coupling to up-type quarks will be reduced when taking into
account U(1) mixing, while it will be enhanced in the case of down-type quarks. One
may thus already expect a small reduction of Z ′ production in a proton machine.

The matrix element squared reads

|M|2ff =
2

3

( |a|2 + |b|2
2

(
2M2

Z′ −m2
i −m2

j −
(m2

i −m2
j)

2

M2
Z′

)
+ 3(a∗b+ b∗a)mimj

)
.

(5.8)

5.3.3 Decay into a scalar and a vector boson

The vertex structure for the third possibility is of the form icgµν with, e.g. in the
case of Z ′ → Zh,

cZh =− 1

8

((
4ḡg2cW c

′
2W + 4ḡg1sW c

′
2W + (g2

2 − g2
1)c2W s

′
2W + 2g1g2s2W s

′
2W

+ (g2
1 + g2

2 − 2ḡ2)s′2W

)(
vdZ

H
1,1 + vuZ

H
1,2

)
− 8g2

BLs
′
2W

(
vηZ

H
1,3 + vη̄Z

H
1,4

))
,

(5.9)

where ZH
i,j is the neutral Higgs mixing matrix and

|M|2V s =
1

3
|c|2
(

2 +
(m2

S −M2
Z′ −M2

V )2

4M2
Z′M

2
V

)
. (5.10)

5.3.4 Decay into a pair of vector bosons

In this case, the interaction is of the form ic (gρσ(q − p)µ + gµσ(k − q)ρ + gµρ(p− k)σ)
while for two final state W bosons, which embodies the only three-vector coupling
including a Z ′, the coefficient reads

cWW = g2cW s
′
W (5.11)

and

|M|2V V =
1

3
|c|2
[ (
M2

Z′ − (mi −mj)
2
) (
M2

Z′ − (mi +mj)
2
)
×

× M4
Z′ + 10m2

jm
2
i +m4

i + 10M2
Z′m

2
i +m4

j + 10M2
Z′m

2
j

4m2
im

2
jM

2
Z′

]
. (5.12)

5.4 Branching ratios

We have calculated the branching ratios of the Z ′ decaying into various final states
for the two selected benchmark points while taking care of the influence of kinetic
mixing.
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ḡ

B
ra
n
ch
in
g
ra
ti
os

l+l−

νν

qdq̄d

quq̄u

W+W−

Zh

l̃l̃∗

χ̃0
i χ̃

0
j

-0.20 -0.15 -0.10 -0.05 0.00
0.001

0.005

0.010

0.050

0.100

0.500

ḡ
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Figure 5.4: Branching ratios of the Z ′ at the considered parameter points BLV (above)
and BLVI (below) as a function of the off-diagonal coupling parameter.

In fig. 5.4 we show the branching ratios of the Z ′ as a response to the variation
of the off-diagonal gauge coupling for both benchmark points. It can be seen that
the impact of ḡ can be quite drastic. The strongest dependence on ḡ arises in the
quark sector where up-type and down-type quarks split with ḡ growing negative.
This influences the Z ′ production at a hadron collider, which we will see in sec.
5.6. Moreover, as already seen in the vertex structure for the Z ′ decay into charged
(s)leptons (see eqns. (5.2), (5.4)), these channels get reduced by the impact of kinetic
mixing, which has some phenomenological consequences. So, gauge kinetic mixing
largely influences the Z ′ decay properties as it changes the magnitude of distinct
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5.4. Branching ratios

channels at the per-cent level while e.g. decays into charginos or W pairs are only
possible due to a non-zero ḡ.

We will now have a closer look at the different decay channels as a function of
the Z ′ mass with their respective features. As fig. 5.2 as well as eq. 4.33 show, a
scan over the mass range can not be done by just varying the input parameter MZ′

since only a very restricted parameter space is available. Thus, other parameters also
have to be adjusted to be in the right range in order to be able to solve the tadpole
equations and to be in a true minimum of the scalar potential. For that reason, all
mass scans imply a variation of tan β′ along the allowed range of fig. 5.2.
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Figure 5.5: Branching ratios of the Z ′ to selected final states for BLV with consider-
ation of gauge kinetic mixing (left) and without (right).
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Figure 5.6: Branching ratios of the Z ′ to selected final states for BLVI with consider-
ation of gauge kinetic mixing (left) and without (right).

An overview of different decay channels as a function of MZ′ is given in figs.
5.5 and 5.6. Here again we distinguish between cases with and without gauge
kinetic mixing but taking the value for ḡ we obtain from our GUT-inspired approach
(ḡ ≈ −0.11). In the following, we discuss the decay channels into the various final
states as a function of the Z ′ mass, leaving the other parameters as obtained from
the two benchmark points.
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5.4.1 Leptons
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Figure 5.7: Branching ratios of Z ′ → e+e− (left) and Z ′ → νν (right) at benchmark
points BLV (above) and BLVI (below). We summed over all neutrino
generations for the plots on the right-hand side. The dotted curves
represent the case neglecting U(1) mixing.

The charged lepton and neutrino branching ratios are shown in fig. 5.7 for the
considered parameter points. The kinks in the curves are obviously the mass values
where decays into heavier particles become kinematically allowed and so lower the
other branching fractions. As already discussed above, the off-diagonal coupling ḡ
in eq. (5.4) reduces the Z ′ coupling to charged leptons if it is taken into account
correctly. In contrast, the neutrino decays are slightly pushed up by ḡ due to the
relative minus sign between the two vertex contributions in eq. (5.5).

5.4.2 Quarks

In fig. 5.8 we show the decay modes Z ′ → tt̄/bb̄ for both benchmark points. Since the
third-generation quarks are the only ones that can be distinguished from the other
jets in a detector, these channels may be tested in order to gain information about
the couplings and thus the nature of a Z ′. It is quite obvious that the off-diagonal
coupling ḡ will have sizeable effect on the signatures of the Z ′. The hypercharge
doublet would be produced equally (with slight deviations because of the mass
differences), if the Z ′ would solely couple to B − L (compare the values at ḡ = 0 in
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Figure 5.8: Branching ratios of Z ′ → bb̄ (left plots) and Z ′ → tt̄ (right plots) for the
parameter choices BLV (above) and BLVI (below). The dotted curve
stands for ḡ = 0.

fig. 5.4). Yet, they get split enormously as the hypercharge information plays a role
at the Z ′ vertices where a mixture of right- and left-handed quarks are produced.
The hypercharge of right-handed quarks differs in both sign and value. Thus there
are huge differences between the branching ratios into up-type and down-type quarks
which disappear with ḡ → 0.

5.4.3 Gauge and Higgs bosons

Let us now consider the decays into gauge and Higgs bosons. These are possible
through the mixing of the gauge eigenstates to the physical states, by which the Z ′

gets some amount of the W 3 and B boson proportional to sin θ′W . Thus, e.g. the
vertex Z ′−W+−W− exists, but is small compared to vertices which include baryon
or lepton charge. The decay into a pair of charged Higgs bosons (see fig. 5.9) is only
observed at BLVI, which is just due to the high masses at BLV (mH± = 2.2 TeV).
The reason for the incidence that the decay into Z plus Higgs is different at the two
benchmark points (h2Z for BLVI and h1Z for BLV) can be found in the admixture
of the Higgs bosons. While at point BLVI the lightest Higgs is bilepton-like, which
does not couple at all to the (pure) Z, the second-lightest Higgs, h2, is MSSM-like
and so corresponds to h1 at BLV.
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Figure 5.9: Branching ratios of the Z ′ to gauge and Higgs bosons for BLV (left) and
BLVI (right). For ḡ → 0 these decays do not exist.

5.4.4 Neutralinos and charginos

As expected, this sector is where the Z ′ decays in the two benchmark points differ
the most. Recall that the lightest neutralino is bileptino-like at BLV and bino-like at
BLVI. While the Z ′ can only couple to electroweak gauginos and Higgsinos through
the off-diagonal coupling ḡ, it couples directly to bileptinos with the strength of gBL,
which is about four times the value of ḡ. The decay rate into neutralinos is thus at
the percent level at BLV, while it ranges about a per mille at BLVI (see fig. 5.10).
This is also the reason why there are neutralino final states for the case ḡ = 0 at
BLV while they only occur as a small bump at the right-hand side of fig. 5.10. This
is the mass range where the decay into a pair of χ̃0

5, which is bileptino-like at point
BLVI, becomes kinematically accessible.
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Figure 5.10: Branching ratios of Z ′ → χ̃±i χ̃
±
j and Z ′ → χ̃0

i χ̃
0
j for BLV (left) and BLVI

(right). The dashed curves are the neutralino BRs for ḡ = 0, while
decays into charginos cannot occur in that case.

The channel Z ′ → χ̃±χ̃± is not available for BLV just due to the heavy charginos:
they have masses of 1.2 TeV and 1.9 TeV.
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5.4.5 Squarks
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Figure 5.11: Branching ratios of Z ′ → b̃b̃∗ (left) and Z ′ → t̃t̃∗ (right) at benchmark

point BLVI. The dotted curve represents the case neglecting U(1) mixing.
Black lines are the lighter squark mass eigenstates, grey curves are the
heavy states.

The squark masses are around 1 TeV at BLVI, which is why the decays into them
are disfavoured kinematically at low Z ′ masses. At benchmark point BLV, due to
the high input values for m0 and M1/2, the lightest squark is the stop with 2.2 TeV,
so squark decays are not possible in the considered mass range.

Fig. 5.11 summarizes the decays into the lightest, i.e. the third-generation
squarks. The black lines are the light stops/sbottoms while the grey ones are the
heavier states. By comparison with the case ḡ = 0 (dashed lines), one can already
get an idea of the admixture of the light and heavy states: the lightest top squark is
mainly a right stop, so it has a high hypercharge of Y = 2/3 and thus also a huge
discrepancy between the cases with and without kinetic mixing (the stop line in the
case of ḡ 6= 0 can only be seen as a small extract at around 3.4 TeV in the right
plot of fig. 5.11). The orders of magnitude of difference are the result of a nearly
exact cancellation in the Z ′ − t̃R − t̃∗R vertex. The light sbottom, however, is mainly
left-handed, thus big differences occur only in the decay into the heavy sbottoms.

5.4.6 Sleptons

The Z ′ decay into charged sleptons is potentially the most interesting channel as
it contains charged particles which are produced at the percent level (each; the
summed-up channels receive about 10% of the total decay width) and decay mostly
to clean detector signals. Of course, as parameter point BLVI was chosen to give
light sfermions and in especially light sleptons, the decays have a more important
fraction there than in BLV, which can be seen in fig. 5.12.
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Figure 5.12: Branching ratios of Z ′ → µ̃µ̃∗ (left) where the black curve is the light
(R-) and the grey one the heavy (L-) smuon and

∑6
i,j=1 Z

′ → ν̃Si ν̃
P
j

(right) at the parameter points BLV (above) and BLVI (below). The
dotted curve represents the case where ḡ = 0.

5.5 LHC limits on the Z ′B−L production

The current bounds on the mass of a Z ′ are reviewed in section 2.3. As the LEP-II
limits read MZ′/(gBLQ

B-L
e ) > 6.7 TeV and gBL ≈ 0.55 in our CMSSM-like calculations,

these results would imply lower limits to our model of MZ′ & 1.84 TeV. This, however,
is only true in the limit of no gauge kinetic mixing and no mass mixing. As outlined
before, mass mixing can indeed be neglected, whereas kinetic mixing can not. Thus,
we have to take into account the form of the Z ′ − l+ − l− vertex, which reads in the
limit sin θ′W → 0 (see eq. (5.4))

i

2
γµ ((gBL + ḡ)PL + (gBL + 2ḡ)PR) (5.13)

instead of simply i
2
γµgBL. Thus, we have to redefine the formula of the LEP limits.

The vertex structure with ḡ 6= 0 is more complicated due to the different coefficients
of the left and right projection operators. A derivation of the exact LEP II bounds
on our model would require a full re-analysis of the electroweak observables, which
we will not do here. Instead, we take the more conservative coefficient and thus make
the substitution

gBL → gBL + ḡ , (5.14)
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ḡ = 0ḡ = −0.11

Figure 5.13: Current limits on MZ′ for benchmark point BLV: the red curve shows
the recent experimental ATLAS limits. The black and grey bands are
the dilepton production cross sections on the Z ′ peak for the case of
U(1) mixing, ḡ = −0.11 (black) and without (grey). The grey shaded
area shows the mass range forbidden by LEP II, while the black dotted
line shows the LEP limits without taking into account gauge kinetic
mixing. Upper-left: limits on electron production, upper-right: limits
on muon production. Below: combined limits on lepton production.

so that the LEP II limits read

MZ′

(gBL + ḡ)QB-L
e

> 6.7 TeV . (5.15)

With ḡ = −0.11, this results in upper limits of MZ′ > 1.47 TeV.

The mass limits from LHC data [25, 26] range in the same order of magnitude
(see fig. 2.1). However, the bounds derived there for selected models do not apply to
ours for three reasons: First, the supersymmetric decay modes broaden the Z ′ width
and so push down the dilepton cross section as the branching fraction into leptons
gets lowered. Second, the coupling structure is different to the models considered
there due to different U(1) charges and third, as it has been shown in section 5.4,
the possibility of gauge kinetic mixing reduces the dilepton production rate.
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ḡ = 0ḡ = −0.11

Figure 5.14: Current limits on MZ′ for BLVI: the red curve shows the recent ex-
perimental ATLAS limits. The black and grey bands are the dilepton
production cross sections on the Z ′ peak for the case of U(1) mixing,
ḡ = −0.11 (black) and without (grey). The grey shaded area shows the
mass range forbidden by LEP II, while the black dotted line shows the
LEP limits without taking into account gauge kinetic mixing. Upper-left:
limits on electron production, upper-right: limits on muon production.
Down: combined limits on lepton production.

For our calculation of the up-to-date bounds on the Z ′B−L, we derived the lepton
production cross section at

√
s = 7 TeV using WHIZARD. For this purpose we collected

electrons and muons with an invariant mass of ±50 GeV around the Z ′ peak. The
experimental limit was extracted from the ATLAS data. The minimal theoretical
uncertainty was estimated using different sets of parton distribution functions as
the main theoretical error sources are due to QCD effects, in particular in the value
of αs. Loop effects and thus K-factors have not been included here, although we
are aware of the fact that they may change the results by a non-negligible amount.
K-factors of around 1.3 are used in most non-supersymmetric Z ′ models [37, 57, 58]
for the Z ′ production, whereas the ATLAS collaboration used a considerably smaller
factor of 0.91 (at MZ′ = 2 TeV) [25] for their derivations. Accordingly, since there is
no obvious choice and also the modification due to the inclusion of supersymmetric
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ḡ = −0.11 ḡ = 0

BLV 1770 GeV 1965 GeV
BLVI 1730 GeV 1900 GeV

Table 5.2: Current bounds on MZ′ in the supersymmetric B −L model derived from
5 fb−1 of ATLAS data [25] for both benchmark points.

particles is uncertain, we will use tree level results here and also in what follows.
Fig. 5.13 shows the exclusion curves for benchmark point BLV. The shaded area

shows the region already excluded by LEP II, taking into account gauge kinetic
mixing and thus applying eq. (5.15). The bound obtained by the negligence of ḡ is
shown as a black dashed line.

Fig. 5.14 shows for comparison the limits for benchmark point BLVI. As the
sparticles are lighter in this scenario, there are more Z ′ decays into supersymmetric
particles in the low MZ′ regime and thus the diboson production is reduced with
respect to the first case.

For a case where the Z ′ decays into only SM particles, we find as a lower limit
MZ′ < 1970 GeV if we set ḡ to zero, or MZ′ < 1790 GeV for ḡ = −0.1. The limits
for the two considered benchmark points are even less severe due to the open SUSY
channels. The current bounds from the ATLAS data for both points are summarized
in table 5.2. Accordingly, we restrict ourselves to cases with MZ′ > 1.7 TeV in the
further analysis.

While for ḡ = 0 the ATLAS limits give approximately the same value as for LEP
II, this isn’t the case anymore for ḡ 6= 0 where the ATLAS bounds are already more
restrictive by an amount of about 200 GeV. The experimental bounds from the CMS
collaboration, which are very new at that moment, are somewhat stronger than the
ATLAS limits (see ref. [26]). Since they have only recently been made available as a
preprint, they have not been included in this work. A combined analysis of course
would be preferable.

5.6 Z ′ production and SUSY cascade decays

We saw in the last section that the production of a Z ′ is reduced by taking into
account a non-zero ḡ. We now explore this behaviour in some more detail by varying
the off-diagonal coupling on the analogy of fig. 5.4. In fig. 5.15, we show the response
of the Z ′ production cross section by such a variation. The minimum in the plots at
around ḡ ≈ −0.14 corresponds to the one seen in the decays into up-type quarks in
fig. 5.4. It can be identified with the term proportional to (4ḡ+ gBL) in the Z ′ vertex
with up-quarks, which in that case vanishes (see eq. 5.6). Hence, σ decreases at a
proton-proton collider. In our GUT-inspired approach which results in ḡ ≈ −0.11,
we happen to be close to that production minimum. As expected, the qualitative
behaviour does not depend on the center-of mass energy

√
s.
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Figure 5.15: LHC production cross sections of the Z ′ at the considered parameter
points BLV (left) and BLVI (right) and three different center-of-mass
energies as a function of the off-diagonal coupling parameter.

Since we are interested in the LHC phenomenology of the supersymmetric Z ′

decays, which have relatively low branching ratios and, as it was shown before,
the cross section in the multi-TeV range is low, we decided to do our calculations
assuming a center-of-mass energy of

√
s = 14 TeV. For this purpose we used WHIZARD

with the parton distribution set CTEQ6L1 [59] and scanned over the interesting Z ′

mass range. Fig. 5.16 shows the evolution of the production cross section with
growing MZ′ and the corresponding fraction of supersymmetric particles that will
be produced by subsequent Z ′ decays. With the Z ′ cross section being reduced by
gauge kinetic mixing, the production of sparticles on the Z ′ resonance is also reduced
in most cases. This, however, depends on the chosen SUSY parameter point. At
BLV, for instance, the production of supersymmetric particles is enhanced at low
MZ′ . This can be identified with the decay into neutralinos which dominates in this
mass region and receives positive contributions from kinetic mixing (see fig. 5.4).

In order to work out which supersymmetric decay channels are the most interesting,
we calculated all possible decay channels of the on-shell Z ′ into SM particles plus the
LSP using narrow width approximation [60, 61]; i.e., the decay cascade was regarded
as a chain of on-shell particles decaying into lighter ones (with ma > mb +mc) while
neglecting all off-shell and interference effects. Thus, we simplified

σ(i, j → Z ′ → k, l→ ...) ≈ σ(i, j → Z ′)×BR(Z ′ → k, l)×BR(k → ...)×BR(l→ ...) .
(5.16)

The inaccuracy we produce by approximating the propagator of a particle by an
on-shell leg times its branching ratio into the particular final state is of the order
Γ/M [60], i.e. about 1 % in case of the Z ′.

All SUSY particles (except the LSP) were regarded as unstable as well as the
massive gauge bosons, scalars and the top quark. The rest of the matter particles,
including the bottom quark, were treated as a stable (i.e. detectable) final state.
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Figure 5.16: Production cross sections of the Z ′ at LHC-14 as a function of MZ′ for
the benchmark points BLV (left) and BLVI (right). The upper lines
show the total cross section while the lower two show the cross section of
produced SUSY particles stemming from an on-shell Z ′. The solid lines
represent the cases where we included gauge kinetic mixing whereas the
dashed lines are the results if we neglected it.

5.6.1 BLVI

With cross sections of the order of some femtobarns for supersymmetric channels
(see fig. 5.16), this benchmark point could potentially give interesting signatures at
the LHC. In fig. 5.17, we summarize the final states which occur the most after the
decay of a Z ′ into two supersymmetric particles.
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Figure 5.17: Summary of the dominant supersymmetric final states following after
a Z ′ decay at BLVI. The abbreviations denote: χ =̂ χ̃0

1, l =̂ (anti-)
lepton (e, µ), b =̂ (anti-) bottom quark, ν =̂ neutrino, j =̂ jet (up, down,
strange and charm quarks)

Naturally, as R-parity is assumed to be conserved, the only remaining supersym-
metric particle in the final state is the LSP, which is the lightest neutralino in all
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Figure 5.18: Feynman diagram for the production of l̃l̃∗ via an s-channel Z ′ exchange
and the subsequent decay into l+l−χ̃0

1χ̃
0
1 .

considered cases. Most of the channels contain a high jet rate, which is due to the
decays of squarks, Higgs and W/Z bosons which occur as intermediate states in the
cascade. The final state with the highest cross section over the whole interesting
mass range, however, is the one with two leptons and two neutralinos which occur
at the direct decay of a slepton into lepton plus neutralino. Taus are regarded as
a separate final state here since their mostly hadronic decays make them look like
hadrons in a detector.

Consider smuon production: the decays of the two smuon mass eigenstates at
this parameter point are, according to SPheno,

µ̃R → µχ̃0
1 100 % (5.17)

µ̃L → µχ̃0
1 17.6 %

→ µχ̃0
2 28.7 %

→ νµχ̃
±
1 53.7 % . (5.18)

Hence, the majority of all produced smuon pairs decay directly into two muons
and two lightest neutralinos. This behaviour is displayed in fig. 5.19. Since the cross
section will be high enough to be tested at the LHC and the final state gives a rather
clean detector signal of two muons plus missing energy, we will study this process in
more detail in chapter 6.

5.6.2 BLV

As was already clear in sec. 5.4, this parameter point will not give very rich LHC
phenomenology due to the high masses of the sparticles. What could be interesting,
however, are the invisible Z ′ decays, i.e. the direct production of two LSPs. This
behaviour can just be seen at low enough Z ′ masses as the LSP nature alters from
bileptino-like to bino-like with higher mass so that the channel Z ′ → χ̃0

1χ̃
0
1 changes

to Z ′ → χ̃0
2χ̃

0
2.

The 2-muon, 2-neutralino final state, which is among the most interesting at
BLVI, is not expected to play a big role here. It will be produced by Z ′ → χ̃0

1χ̃
0
2

with a subsequent decay of the second-lightest neutralino to χ̃0
1Z/h or the three-body
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Figure 5.19: Production cross section of smuon pairs on the Z ′ resonance (solid line)
and of the subsequent final state µ+µ−χ̃0
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1 at BLVI.
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Figure 5.20: Resonant χ̃0
i χ̃

0
j production on the Z ′ peak at BLV. The solid lines

represent the cases with inclusion of gauge kinetic mixing, while the
dashed lines show the case neglecting ḡ. The green curves show the
LSP production.

decay χ̃0
2 → χ̃0

1µ
+µ− below the µ̃Rµ̃

∗
R threshold. The direct production via smuons

such as at benchmark point BLVI can only occur at high enough Z ′ masses. This
behaviour is illustrated in fig. 5.21. At about 3 TeV, the decay into µ̃Lµ̃

∗
L becomes

kinematically accessible. They themselves decay into muon plus neutralino only in a
small fraction, which causes the separation of the two lines in fig. 5.21. Obviously,
the cross section is much too small to be tested at the LHC for this parameter point.
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Figure 5.21: Production of the final state µµχ̃0
1χ̃

0
1 (dashed line) as a function of the

Z ′ mass at BLV. The solid line shows the channel Z ′ → µ̃µ̃∗.
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Chapter 6

Monte Carlo study: Dimuon
production

The examined parameter points (as well as the experimentally allowed CMSSM-like
points) all have sfermion masses of at least some hundred GeV, up to a few TeV.
A direct discovery at the LHC via Drell-Yan processes and intermediate Standard
Model or MSSM particles is unlikely for these high masses. Just considering particles
from the MSSM, the LHC is only sensitive to sfermions with masses up to about
200 GeV. With an intermediate on-shell Z ′ decaying into sfermions, things look
different as the production cross section peaks at the Z ′ mass and thus presents a
smoking gun for sparticle production. In the last section we have shown that the
decay Z ′ → l̃l̃∗ → ll̄χ̃0

1χ̃
0
1 is the most important SUSY channel for a given parameter

set. In addition, we expect it to be the cleanest of all possible Z ′ →SUSY final states
since two hard leptons plus a lot of missing energy can be distinguished from the
Standard Model background. In the following section we examine how the existence
of a Z ′ could affect smuon production and discovery at the LHC via this channel.

6.1 Simulation of signal and background

The analysis has been done for benchmark point BLVI as this is the one where
LHC phenomenology of a Z ′ decaying into sfermions seems promising. We assumed
proton-proton collisions at

√
s = 14 TeV and 100 fb−1 of integrated luminosity.

In order to classify the results we get for the signal process, we have to take into
account all processes which give the same or similar final states in the detector.
For example, the LSP can not be distinguished from a neutrino in the detector
as both particles are electrically neutral and will escape the detector. Hence they
both appear as missing transverse energy (E/T ) in the detector. Furthermore, we
cannot restrict ourselves to processes which result in two muons plus E/T only as
there will be a lot of hadronic background in a proton machine which can not
be prevented. Consequently, processes which may give low-energy jets in the de-
tector have to be regarded, too. We considered the following processes as background:
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SM background:

• Diboson production, with the vector bosons decaying into two muons and two
neutrinos: q, q′ → W+W−/ZZ → µµνν

• Triple boson production, resulting in two muons, neutrinos and optionally jets:
q, q′ → WWW/ZZZ/WWZ/WZZ → µµνννν/µµννjj (j =̂jet)

• tt̄ production with the top quark decaying into a low-energy b-quark and a W
boson, with the W then decaying into a muon and a neutrino.

• tt̄Z production, with the Z boson decaying invisibly or into two low-energy
jets.

SUSY background:

• neutralino production: χ̃0
i χ̃

0
1 → W±χ̃∓1 χ

0
1 → W+W−χ0

1χ
0
1 → µ+µ−χ̃0

1χ̃
0
1νν or

χ̃0
i χ̃

0
1 → Zχ̃0

1χ̃
0
1/hχ̃

0
1χ̃

0
1 → µ+µ−χ̃0

1χ̃
0
1

• chargino production, i.e. χ̃+
i χ̃
−
j → W+W−χ̃0

1χ̃
0
1 → µ+µ−χ̃0

1χ̃
0
1νν

Other SUSY backgrounds, such as squark and gluino production, can safely be
ignored due to the high masses and the small branching fractions into neutralino
plus SM fermion. Additionally, they can be distinguished from the signal quite well
due to the hard jets they usually produce in their cascade decays.
As signal, we just demanded two opposite-sign muons plus two lightest neutralinos.

In order to proceed with the simulation description, we have to define some
kinematical observables which are important for the analysis:

• the invariant mass of the muons: Mµµ =
√
p2(µ+) + p2(µ−) where p denotes

the 4-vector of of the particular particle momentum.

• the transverse momentum pT =
√
p2
x + p2

y if the beam points towards the z
direction and pi is the momentum component in direction i.
The pT of the particles which escape the detector without being measured,
the missing transverse energy, can experimentally just be determined as the

transverse momentum of the sum of these particles: p2
T (E/T ) =

(∑
E/T
px

)2

+
(∑

E/T
py

)2

.

• the cluster transverse mass combines the transverse momentum of the lepton
pair as well their invariant mass and the missing transverse energy. It is given
by [62]

MT =

√(√
p2
T (µ+µ−) +M2

µµ + pT (E/T )
)2

− (pT (µ+µ−) + pT (E/T ))2 , (6.1)
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6.2. Background reduction

Set of cuts Signal Diboson Tripleboson tt̄ tt̄Z SUSY

no further cuts 84 18632 141 16836 6 20
cut set No. 1, no MT cut 53 44 5 52 0 3
cut set No. 1 with MT cut 48 25 2 16 0 2
cut set No. 2 46 20 2 12 0 2

Table 6.1: Number of generated events for p, p→ µ+µ− + E/T +X from the distinct
channels. The first row (no further cuts) implies pT (µ±) > 20 GeV, Mµµ >
100 GeV and |η| < 2.7. The other rows correspond to the two sets of cuts
introduced in section 6.2.

with pT being the 2D vector of the transverse momentum and pT (µ+µ−) =
pT (µ+) + pT (µ−). Using pT (µ+µ−) = −pT (E/T ), which is approximately true
in case of proton collisions and the considered final state, the formula can be
simplified and yields

MT = pT (µ+µ−) +
√
p2
T (µ+µ−) +M2

µµ . (6.2)

• the pseudorapidity η = −ln tan(θ/2) is a useful quantity to determine the angle
of the particle line with respect to the beam axis. The advantage of this angle
definition is the boost invariance of η in the beam direction.

The events were simulated with WHIZARD, where we demanded from beginning that
the invariant mass of the muons is above 100 GeV and the transverse momentum of
the quarks is smaller than 40 GeV. Additionally the pseudorapidity was set |η| < 2.7
to take into account the direction of the beam pipe at the LHC where detection is not
possible. Fig. 6.1 shows the invariant mass, missing energy and cluster transverse
mass distribution without any further cuts applied.

The total number of events that give a signal µ+µ−+E/T for the distinct channels
are summarized in table 6.1.

6.2 Background reduction

To reduce background, cuts on the kinematical observables were applied. The muons
in the signal originate from high-energy and high-mass smuons, which themselves were
mainly pair-produced by a Z ′ decay. Thus, the invariant muon mass is expected to be
much higher than in the case of, say, a Z boson decaying into µ+µ−, which produces
high cross sections in the invariant mass regime close to the Z, but then rapidly
decreases with higher masses. This behaviour can be observed quite nicely in fig. 6.1
where an exponential decrease of the background can be observed. Additionally, the
transverse mass of the missing energy is expected to be high since highly boosted
massive particles with masses of a few hundred GeV escape. At least an equal
reduction power can be attributed to the cluster transverse mass.

51



Chapter 6. Monte Carlo study: Dimuon production

0 200 400 600 800 1000 1200

1.

10.

100

1000

10 000

Diboson

Triple boson

t t

Z t t

SUSY BG

Signal

pT (E/T ) [GeV]

N
o.

E
ve
n
ts

(1
00

fb
−
1
,
50

G
eV

/b
in
)

500 1000 1500 2000 2500

1.

10.

100

1000

10 000

Diboson

Triple boson

t t

Z t t

SUSY BG

Signal

Mµµ [GeV]

N
o.

E
ve
n
ts

(1
00

fb
−
1
,
10
0
G
eV

/b
in
)

500 1000 1500 2000 2500 3000

1.

10.

100

1000

10 000

Diboson

Triple boson

t t

Z t t

SUSY BG

Signal

MT [GeV]

N
o.

E
ve
n
ts

(1
00

fb
−
1
,
10
0
G
eV

/b
in
)

Figure 6.1: Histograms of the µ+µ− + E/T production with Mµµ > 100 GeV as a
function of the missing transverse energy (above), the invariant mass
Mµµ (middle) and the transverse cluster mass MT (below).
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6.2. Background reduction

The cuts have been chosen to be applicable to a wide range of Z ′ and µ̃ masses
and thus are looser than they could have been applied to the example presented
exclusively. We demand (cut set No. 1)

pT (µ) > 20 GeV

pT (E/T ) > 200 GeV

Mµµ > 200 GeV (6.3)

and, in addition, we add a cut on the transverse cluster mass MT , as we see a great
reduction power of this variable (see fig. 6.2)

MT > 800 GeV , (6.4)

or, in a second, tighter approach, where we do not make use of the combined quantity
MT (cut set No. 2)

pT (µ) > 20 GeV

pT (E/T ) > 250 GeV

Mµµ > 300 GeV . (6.5)
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Figure 6.2: Histograms of the µ+µ− + E/T production with the cuts of eq. (6.3) as a
function of the transverse cluster mass.

Fig. 6.2 shows the transverse cluster mass distribution of fig. 6.1 with the first
set of cuts applied, but still without the MT cut. The irregular structure of the
background is just the expected fluctuation because of the small number of events.
The already small tt̄Z background does not survive the cuts.

A further background reduction which does not cut event by event, but that relies
on statistics, could also be considered here: a large portion of the SM background
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contains intermediate W+W− states which subsequently decay into µ+µ−νν. It is
clear that for the final states produced by W pairs, the relation

σ(µ+µ−νν) + σ(e+e−νν) ≈ σ(e+µ−νν) + σ(µ+e−νν) (6.6)

must hold since the branching ratios of W → eν and W → µν are essentially the
same. Accordingly, one can expect that for the number of produced events by these
channels the equality

N(µµνν) ≈ 1

2
N(eµνν) (6.7)

is approximately fulfilled and thus most of the diboson and tt̄ background could be
erased. Naively subtracting N(eµνν) fom the data would, however, not work since
we have to account for statistical fluctuations ∆N =

√
N such that for the remaining

number of background events, we would have to write

NBG left = N(µµνν)− 1

2
N(eµνν)±∆N

= N(µµνν)− 1

2
N(eµνν)±

√
N(µµνν) +

1

2
N(eµνν) , (6.8)

so that effectively, we do not cut away very much background as the rates are small
anyhow (see table 6.1). For this reason, we decided to only apply our event-by event
cuts defined in eqns. (6.3)-(6.5) and not this method.

6.3 Significance of the signal

In order to analyse whether smuon production can be discovered at the LHC with
the help of a Z ′ resonance, the significance level of the signal has to be determined.
The significance is defined as

s =
NSignal

∆NBG

, (6.9)

while ∆NBG is the standard deviation of the number NBG of the background events.
From Poisson statistics,

∆NBG =
√
NBG . (6.10)

Thus, the significance of the signal is given by

s =
NSignal√
NBG

. (6.11)
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Figure 6.3: Expected evolution of the significance level with growing integrated
luminosity. The discussed significance at 100 fb−1 fixes the curve. The
borders for 3 and 5 σ are shown as dotted and dashed lines.

We have always checked that NSignal is high enough in our simulations such that
the formula is applicable. We can calculate the significance with these definitions
and the number of events from table 6.1, resulting in

s = 7.5 σ , (6.12)

i.e., the smuon signal would be high enough to claim discovery at LHC-14 with
100 fb−1. Based on eq. (6.11), an estimate of how much luminosity is needed
to discover such a smuon signal is shown in fig. 6.3. Accordingly, an integrated
luminosity of about 45 fb−1 is required to discover the signal for the simulated
parameters at 5 σ.

A similar significance can be achieved with the second set of cuts such that they
perform equally well at this parameter point.

6.4 Significance reach for variable Z ′ and µ̃ masses

We showed in the last section how smuon production can be enhanced by effects of
an on-shell Z ′ for one specific parameter point. Motivated by this fact, we repeat
the analysis for variable smuon and Z ′ masses. Thereby we aim to determine mass
regions in which discovery of smuons is possible, enabled by the Z ′ resonance. In
particular, we want to check if sleptons with low (i.e. O(few hundred GeV)) masses
can be discovered with the help of the Z ′. In order to perform the simulation, we
did the following: we abandoned the CMSSM boundary conditions as the analysis is
simply based on the Z ′ and µ̃ properties. Hence, we took the EWSB-scale Lagrangian
parameters of BLVI as a starting point and varied the masses of the smuons and the
Z ′ freely while leaving the other parameters fixed. We distinguished three different
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mass ratios between the R- and L-sleptons of 1.2, 1 and 1/1.2. These ratios can for
instance be obtained by different values for tanβ [40] or the soft SUSY-breaking
masses ML̃ and Mẽ, see eqns. (4.27) and (4.28). The latter case, mµ̃L = 1.2mµ̃R is
the standard hierarchy arising from mSUGRA-like boundary conditions.

Furthermore, we repeated the whole analysis with reduced neutralino masses
and thus reduced mass of the LSP. For this case, we fixed mχ̃0

1
= 140 GeV and

mχ̃0
2

= mχ̃±1
= 2mχ̃0

1
in order to guarantee that decays µ̃→ µχ̃0

1 are possible even for

low slepton masses and to make sure that the χ̃0
1 is the LSP.

With these conditions, we simulated the signal and SUSY background events for
each parameter point, applying both sets of kinematical cuts described in section 6.2.
The significance was in each case calculated using eq. (6.11). The simulations were
done for both 100 fb−1 and 300 fb−1 of data.

6.4.1
∫
Ldt = 100 fb−1

The significances of the smuon signal over a mass range of 1.7 TeV < MZ′ < 3.5 TeV
and 150 GeV < mµ̃R/L < 850 GeV with a 140 GeV LSP are shown in fig. 6.4 for the
three different L/R smuon mass relations and with the two mentioned sets of cuts.

As expected, the significance rises as the Z ′ mass decreases, simply because of
the higher Z ′ cross section. Accordingly, the signal gets weaker as the smuon mass
approaches a TeV due to decay kinematics. With the smuon mass going below
200 GeV, however, the signal becomes more and more SM-like, i.e. mainly the
invariant mass of the muons drops. Thus, the cuts meant to reduce background also
cut away a huge amount of signal and the significance shrinks.

Obviously, the two applied cut scenarios have a different performance. While
the two sets perform equally well in the example point presented above, we see that
the consideration of the variable MT helps identifying the smuon signal in a broader
area.

The regions of a potential 5 σ discovery lie in the range of about mµ̃1 ≈
200 ... 800 GeV and MZ′ < 2.8 TeV. The tail in the plots at smuon masses
smaller than about 300 GeV indicates the region where the L-smuons are still light
enough with respect to the lightest chargino such that their dominant decay channel
is the same as for R-smuons. Hence, the discovery probability is enhanced in this area.
The irregular structures in fig. 6.4 can be explained if one takes into consideration
that the signal was generated by a Monte-Carlo generator using a relatively low
number of events (O(100) at 100 fb−1). Thus, fluctuations are quite normal and
appear as somewhat strange contours in the plots.

In the case of heavier neutralino masses, where we fixed mχ̃0
1

to the value it has
at BLVI (mχ̃0

1
≈ 280 GeV), no qualitative change with respect to the cases with

reduced χ̃0
1 mass occurs. In fig. 6.5 we show the resulting significance plot for the

smuon mass relations mµ̃L = 1.2mµ̃R . Obviously, the region of 5 σ discovery shrinks
compared to the cases above since the mass difference between the smuons and the
LSP is smaller. Hence, kinematics just allow for smaller Mµµ and thus a sizeable
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Figure 6.4: Significance of the smuon production at 100 fb−1 for two different sets
of cuts and three different ratios of the slepton masses: (left column)
first set of cuts, see eqns. (6.3), (6.4) and (right column) second cut set,
see eq. (6.5). The smuon mass relations are (first row) mµ̃R = 1.2mµ̃L ,
(second row) mµ̃L = mµ̃R and (last row) mµ̃L = 1.2mµ̃R .
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part of the signal events do not survive the applied cuts. Similar results are obtained
for the other smuon mass ratios.
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Figure 6.5: Significance level of the smuon production at 100 fb−1 for (left column)
cut set 1, see eqns. (6.3), (6.4) and (right column) cut set 2, see eq. (6.5).
The mass of the LSP is about 280 GeV and the smuon mass ratio is
mµ̃L = 1.2mµ̃R .

6.4.2
∫
Ldt = 300 fb−1

The same as in 6.4.1 has been done here for an integrated luminosity of 300 fb−1.
Naturally, the area of (at least) 5 σ significance broadens, while even significances
of considerably more than 10 σ could potentially be achieved. Exemplary plots are
shown in fig. 6.6 for the case mµ̃L = 1.2mµ̃R .

Summarizing, if a Z ′B−L exists in the considered mass range, its resonant produc-
tion and decays will make the detection of light sleptons possible in the mass range
of some hundred GeV. Thus, the Z ′ could provide the first signals of supersymmetric
particles at the LHC.
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Figure 6.6: Significance level of the smuon production at 300 fb−1 for (left column)
cut set 1, see eqns. (6.3), (6.4) and (right column) cut set 2, see eq. (6.5.
The mass of the LSP is about 140 GeV and the smuon mass ratio was
fixed to mµ̃L = 1.2mµ̃R .
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Chapter 7

Summary

In this work we studied the R-parity conserving minimal supersymmetric model,
extended by a local U(1)B−L symmetry, where B − L stands for baryon number
minus lepton number. We embedded the model in mSUGRA-inspired boundary
conditions similar to the CMSSM, unifying the gauge couplings as well as the soft
SUSY breaking parameters at the GUT scale.

Due to the extra U(1) group there are new fields present in the model. First, in
order to avoid anomalies, right-handed neutrinos have to be introduced which are
singlets under the Standard Model gauge group. Secondly, due to gauged B − L, an
extra neutral vector boson – the Z ′ – as well as fields responsible for the spontaneous
breaking of the B − L symmetry appear. A peculiarity here is the possibility of
gauge kinetic mixing which is a mixing term between the field strength tensors of the
two Abelian symmetry groups. This results in an off-diagonal coupling ḡ connecting
the Z ′ vertices with hypercharge and leading to various tree level mixings between
the new fields and the ones already present in the MSSM.

We have calculated the partial decay widths and branching ratios of the Z ′

while taking care of gauge kinetic mixing. We found that ḡ can have sizeable effect
on the couplings and thus on the production and decay properties of the Z ′. In
particular, the couplings to leptons and up-type quarks are found to be reduced by
gauge kinetic mixing which both has the effect that the lower bounds on the Z ′ mass
get reduced considerably. Using the latest ATLAS results on dilepton production,
we demonstrated that taking into account ḡ results in a reduction of the limits by
around 200 GeV.

For analysing decays of the Z ′ into supersymmetric particles, we have calculated
the respective cross sections via an on-shell Z ′ at

√
s = 14 TeV as well as the

subsequent SUSY cascade decays. Despite a suppression by means of ḡ, the channel
Z ′ → l̃l̃∗ can have cross sections of a few fb. Depending on the underlying SUSY
parameters, also sneutrino, chargino and neutralino production may be amplified by
a Z ′ resonance. We found that a likely final state after the decays of the sparticles
down to the LSP, as well as probably one of the most accessible, is the one containing
two leptons and two lightest neutralinos stemming from Z ′ decays into slepton pairs.

Moreover, we have performed a Monte Carlo study searching for a final state
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containing two muons plus missing transverse energy in order to discuss the impact
of a Z ′ peak on the production and discovery of smuons. We found that smuons
up to masses of 800 GeV (900 GeV) can be detected at LHC-14 for an integrated
luminosity of 100 fb−1 (300 fb−1) with Z ′ masses up to 2.8 TeV (3.1 TeV). Thus, the
Z ′ could possibly provide the first hints to supersymmetry.
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Appendix A

Z ′ couplings

In this chapter we show the Z ′ vertices responsible for the various two-body decays
discussed in this work.

A.1 Couplings to fermions

The vertex structure is given by

if̄iγ
µ(cLf,ijPL + cRf,ijPR)fjZ

′
µ . (A.1)

• charged leptons: Z ′ − ēi − ej

cLe,ij =
1

2
δij

((
g1 sin ΘW − g2 cos ΘW

)
sin Θ′W +

(
ḡ + gBL

)
cos Θ′W

)
(A.2)

cRe,ij =
1

2
δij

(
2g1 sin ΘW sin Θ′W +

(
2ḡ + gBL

)
cos Θ′W

)
. (A.3)

• neutrinos: Z ′ − νi − νj

cLν,ij =
1

2

(((
g1 sin θW + g2 cos θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

UV,∗
ja U

V
ia

− gBL cos θ′W

3∑

a=1

UV,∗
j3+aU

V
i3+a

)
(A.4)

cRν,ij = − 1

2

(((
g1 sin θW + g2 cos θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

UV,∗
ia U

V
ja

− gBL cos θ′W

3∑

a=1

UV,∗
i3+aU

V
j3+a

)
. (A.5)

UV
kl is the unitary 6× 6 matrix that diagonalizes the neutrino mass matrix.
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A.1. Couplings to fermions

• up-type quarks: Z ′ − ūiα − ujβ

cLu,ij =− 1

6
δαβδij

((
− 3g2 cos θW + g1 sin θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

)

(A.6)

cRu,ij = − 1

6
δαβδij

(
4g1 sin θW sin θ′W +

(
4ḡ + gBL

)
cos θ′W

)
. (A.7)

• down-type quarks: Z ′ − d̄iα − djβ

cLd,ij =− 1

6
δαβδij

((
3g2 cos θW + g1 sin θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

)

(A.8)

cRd,ij =
1

6
δαβδij

(
2g1 sin θW sin θ′W +

(
2ḡ − gBL

)
cos θ′W

)
. (A.9)

• neutralinos: Z ′ − χ̃0
i − χ̃0

j

cLχ̃0,ij =
1

2

(
N∗j3

((
g1 sin θW + g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
Ni3

−N∗j4
(
g1 sin θW sin θ′W + g2 cos θW sin θ′W + ḡ cos θ′W

)
Ni4

+ 2gBL cos θ′W
(
N∗j6Ni6 −N∗j7Ni7

))
(A.10)

cRχ̃0,ij = − 1

2

(
N∗i3

((
g1 sin θW + g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
Nj3

−N∗i4
(
g1 sin θW sin θ′W + g2 cos θW sin θ′W + ḡ cos θ′W

)
Nj4

+ 2gBL cos θ′W
(
N∗i6Nj6 −N∗i7Nj7

))
. (A.11)

Nkl is the unitary 7× 7 matrix that diagonalizes the neutralino mass matrix.

• charginos: Z ′ − χ̃+
i − χ̃−j

cLχ̃±,ij = − 1

2

(
2g2U

∗
j1 cos θW sin θ′WUi1

− U∗j2
((
g1 sin θW − g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
Ui2

)
(A.12)

cRχ̃±,ij = − 1

2

(
2g2V

∗
i1 cos θW sin θ′WVj1

− V ∗i2
((
g1 sin θW − g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
Vj2

)
. (A.13)

Ukl and Vkl are the unitary 2× 2 matrices needed to diagonalize chargino mass
matrix.
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A.2 Couplings to scalars

The vertex structure is given by

cs,ij s̃is̃
∗
j

(
pµsi − p

µ
s∗j

)
Z ′µ , (A.14)

where psi and ps∗j are the four-momenta of the scalars. In the following, Zp
kl denote

the matrices needed to diagonalize the respective underlying mass matrix of the
particles p.

• charged sleptons: Z ′ − ẽi − ẽ∗j

ce,ij =− i

2

(((
g1 sin θW − g2 cos θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZE,∗
ia ZE

ja

+
(

2g1 sin θW sin θ′W +
(

2ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZE,∗
i3+aZ

E
j3+a

)
. (A.15)

• sneutrinos: Z ′ − ν̃Pi − ν̃Sj

cν,ij =− 1

2

(
−
((
g1 sin θW + g2 cos θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZP,∗
ia Z

S,∗
ja

− gBL cos θ′W

3∑

a=1

ZP,∗
i3+aZ

S,∗
j3+a

)
. (A.16)

• up-type squarks: Z ′ − ũiα − ũ∗jβ

cqu,ij =
i

6
δαβ

(((
− 3g2 cos θW + g1 sin θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZU,∗
ia Z

U
ja

+
(

4g1 sin θW sin θ′W +
(

4ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZU,∗
i3+aZ

U
j3+a

)
. (A.17)

• down-type squarks: Z ′ − d̃iα − d̃∗jβ

cqd,ij =
i

6
δαβ

(((
3g2 cos θW + g1 sin θW

)
sin θ′W +

(
ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZD,∗
ia ZD

ja

+
(
− 2g1 sin θW sin θ′W +

(
− 2ḡ + gBL

)
cos θ′W

) 3∑

a=1

ZD,∗
i3+aZ

D
j3+a

)
.

(A.18)
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• charged Higgs: Z ′ −H−i −H+
j

cH±,ij =
i

2
δij

((
g1 sin θW − g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
. (A.19)

• CP -odd and CP -even Higgs: Z ′ − A0
i − hj

cAh,ij =
1

2

(
−
((
g1 sin θW + g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
ZA
i1Z

H
j1

+
((
g1 sin θW + g2 cos θW

)
sin θ′W + ḡ cos θ′W

)
ZA
i2Z

H
j2

− 2gBL cos θ′W
(
ZA
i3Z

H
j3 − ZA

i4Z
H
j4

))
. (A.20)

A.3 Coupling to vector bosons

The only three-vector-boson vertex containing a Z ′ is the coupling Z ′µ −W+
ρ −W−

σ .
It is parametrized as follows:

icViVj

(
gρµ

(
− pZ′µσ + pW

+
ρ

σ

)
+ gρσ

(
− pW+

ρ
µ + pW

−
σ

µ

)
+ gσµ

(
− pW−σρ + pZ

′
µ

ρ

))
Z ′µV ρ

i V
σ
j ,

(A.21)
with

cWW = g2 cos θW sin θ′W . (A.22)

A.4 Coupling to one vector boson and one scalar

The vertices are parametrized as follows

icV s,isigσµZ
′µV σ . (A.23)

• Z and Higgs: Z ′µ − Zσ − hi

cZh,i =
1

2

(
− vd

(
g1ḡ cos θ′

2
W sin θW + g2

2 cos θ2
W cos θ′W sin θ′W

+ cos θ′W
(
g2

1 sin θ2
W − ḡ2

)
sin θ′W − g1ḡ sin θW sin θ′

2
W

+ g2 cos θW

(
g1 sin θW sin 2θ′W + ḡ cos θ′

2
W − ḡ sin θ′

2
W

))
ZH
i1

− vu
(
g1ḡ cos θ′

2
W sin θW + g2

2 cos θ2
W cos θ′W sin θ′W

+ cos θ′W
(
g2

1 sin θ2
W − ḡ2

)
sin θ′W − g1ḡ sin θW sin θ′

2
W

+ g2 cos θW

(
g1 sin θW sin 2θ′W + ḡ cos θ′

2
W − ḡ sin θ′

2
W

))
ZH
i2

+ 2gBL sin 2θ′W
(
vηZ

H
i3 + vη̄Z

H
i4

))
. (A.24)
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• W and charged Higgs: Z ′µ −W±
σ −H∓i

cW+H−,i =− 1

2
g2

(
vdZ

+,∗
i1 − vuZ+,∗

i2

)(
g1 sin θW sin θ′W + ḡ cos θ′W

)
. (A.25)

cW−H+,i =− 1

2
g2

(
vdZ

+
i1 − vuZ+

i2

)(
g1 sin θW sin θ′W + ḡ cos θ′W

)
. (A.26)
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Appendix B

Z ′ decays at BLV and BLVI

B.1 BLV

Width of the Z ′: ΓZ′ = 22.1 GeV

BR(Z ′ → e+e−) = 11.87 % (B.1)

BR(Z ′ → µ+µ−) = 11.87 % (B.2)

BR(Z ′ → τ+τ−) = 11.87 % (B.3)

BR(Z ′ → dd̄) = 9.93 % (B.4)

BR(Z ′ → ss̄) = 9.93 % (B.5)

BR(Z ′ → bb̄) = 9.93 % (B.6)

BR(Z ′ → νeνe) = 7.52 % (B.7)

BR(Z ′ → νµνµ) = 7.52 % (B.8)

BR(Z ′ → ντντ ) = 7.52 % (B.9)

BR(Z ′ → uū) = 2.71 % (B.10)

BR(Z ′ → cc̄) = 2.71 % (B.11)

BR(Z ′ → tt̄) = 2.69 % (B.12)

BR(Z ′ → χ̃0
1χ̃

0
1) = 1.11 % (B.13)

BR(Z ′ → τ̃1τ̃
∗
1 ) = 0.98 % (B.14)

BR(Z ′ → µ̃Rµ̃
∗
R) = 0.54 % (B.15)

BR(Z ′ → ẽRẽ
∗
R) = 0.54 % (B.16)

BR(Z ′ → W+W−) = 0.40 % (B.17)

BR(Z ′ → Zh1) = 0.21 % (B.18)

BR(Z ′ → χ̃0
1χ̃

0
2) = 0.07 % (B.19)

BR(Z ′ → χ̃0
1χ̃

0
4) = 0.04 % (B.20)

BR(Z ′ → h2A
0) = 0.03 % (B.21)
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B.2 BLVI

Width of the Z ′: ΓZ′ = 19.6 GeV

BR(Z ′ → e+e−) = 10.27 % (B.22)

BR(Z ′ → µ+µ−) = 10.27 % (B.23)

BR(Z ′ → τ+τ−) = 10.27 % (B.24)

BR(Z ′ → dd̄) = 8.95 % (B.25)

BR(Z ′ → ss̄) = 8.95 % (B.26)

BR(Z ′ → bb̄) = 8.95 % (B.27)

BR(Z ′ → νeνe) = 6.57 % (B.28)

BR(Z ′ → νµνµ) = 6.57 % (B.29)

BR(Z ′ → ντντ ) = 6.57 % (B.30)

BR(Z ′ → uū) = 2.33 % (B.31)

BR(Z ′ → cc̄) = 2.33 % (B.32)

BR(Z ′ → tt̄) = 2.30 % (B.33)

BR(Z ′ → τ̃1τ̃
∗
1 ) = 1.89 % (B.34)

BR(Z ′ → µ̃Rµ̃
∗
R) = 1.85 % (B.35)

BR(Z ′ → ẽRẽ
∗
R) = 1.85 % (B.36)

BR(Z ′ → τ̃2τ̃
∗
2 ) = 1.84 % (B.37)

BR(Z ′ → µ̃Lµ̃
∗
L) = 1.83 % (B.38)

BR(Z ′ → ẽLẽ
∗
L) = 1.83 % (B.39)

BR(Z ′ → ν̃S1 ν̃
P
1 ) = 0.95 % (B.40)

BR(Z ′ → ν̃S2 ν̃
P
2 ) = 0.93 % (B.41)

BR(Z ′ → ν̃S3 ν̃
P
3 ) = 0.93 % (B.42)

BR(Z ′ → χ̃+
2 χ̃
−
2 ) = 0.64 % (B.43)

BR(Z ′ → W+W−) = 0.39 % (B.44)

BR(Z ′ → χ̃0
3χ̃

0
4) = 0.34 % (B.45)

BR(Z ′ → Zh2) = 0.20 % (B.46)

BR(Z ′ → χ̃0
5χ̃

0
5) = 0.12 % (B.47)

BR(Z ′ → χ̃±1 χ̃
∓
2 ) = 0.04 % (B.48)

BR(Z ′ → χ̃0
2χ̃

0
3) = 0.02 % (B.49)

BR(Z ′ → χ̃0
1χ̃

0
5) = 0.01 % (B.50)
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Appendix C

Mass matrices

Here we show the mass matrices for the sfermions not given in chapter 4.

C.1 Sneutrinos

We decompose the sneutrinos into the scalar and the pseudoscalar states

ν̃iL =
1√
2

(φiL + iχiL) and ν̃iR =
1√
2

(φiR + iχiR) . (C.1)

In the basis (φL, φR) respectively (χL, χR) the mass matrices for the CP -even
and CP -odd sneutrinos read [40]

m2
ν̃S = <

(
mR
LL mR,T

RL

mR
RL mR

RR

)
, m2

ν̃P = <
(
mI
LL mI,T

RL

mI
RL mI

RR

)
, (C.2)

with mI
LL = mR

LL = mLL and

mLL = M2
L̃

+
v2
u

2
Y †ν Yν +

1

8

(
(g2

1 + g2
2 + ḡ2 + ḡgBL)(v2

d − v2
u) + 2(g2

BL + ḡgBL)(v2
η − v2

η̄)
)
1

(C.3)

mR,I
RL =

1√
2

(
vuT

∗
ν − vdµY ∗ν

)
± vuvηYxY ∗ν (C.4)

mR,I
RR = M2

ν̃ +
v2
u

2
YνY

†
ν + 2v2

ηYxY
∗
x ±
√

2vηTx ∓
√

2Yxvη̄µ
′∗

+
1

8

(
2g2

BL(v2
η̄ − v2

η) + ḡgBL(v2
u − v2

d)
)
1 . (C.5)
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Appendix C. Mass matrices

C.2 Squarks

C.2.1 Up-type squarks

The mass matrix in the basis (ũL, ũR) reads [16]

m2
q̃ =


 MLL

1√
2

(
vuTu − vdµ∗Yu

)

1√
2

(
vuT

†
u − vdµY †u

)
MRR


 (C.6)

MLL =M2
Q̃

+
v2
u

2
Y †uYu +

1

24

(
(g2

1 − 3g2
2 + ḡ2 + ḡgBL)(v2

u − v2
d) + 2(g2

BL + ḡgBL)(v2
η̄ − v2

η)
)
1

(C.7)

MRR =M2
ũ +

v2
u

2
YuY

†
u +

1

24

(
− (4g2

1 + 4ḡ2 + ḡgBL)(v2
u − v2

d)− 2(g2
BL + 4ḡgBL)(v2

η̄ − v2
η)
)
1 .

(C.8)

C.2.2 Down-type squarks

The mass matrix in the basis (d̃L, d̃R) reads [16]

m2
q̃ =


 MLL

1√
2

(
vdTd − vuµ∗Yd

)

1√
2

(
vdT

†
d − vuµY †d

)
MRR


 (C.9)

MLL =M2
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v2
d

2
Y †d Yd +

1

24

(
(g2

1 + 3g2
2 + ḡ2 + ḡgBL)(v2

u − v2
d) + 2(g2
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η̄ − v2

η)
)
1

(C.10)

MRR =M2
d̃

+
v2
d

2
YdY

†
d +

1

24

(
(2g2

1 + 2ḡ2 − ḡgBL)(v2
u − v2

d)− 2(g2
BL − 2ḡgBL)(v2

η̄ − v2
η)
)
1 .

(C.11)
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5.13 Current limits on MZ′ for benchmark point BLV: the red curve shows
the recent experimental ATLAS limits. The black and grey bands are
the dilepton production cross sections on the Z ′ peak for the case of
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dass ich diese Arbeit selbstständig verfasst, keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe und diese Arbeit bisher keiner anderen Prüfungsbehörde
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