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Kurzzusammenfassung

In dieser Masterarbeit wird der γtt und Ztt Vertex einschließlich anomaler Kopplungen,
hervorgerufen durch eichinvariante Dimension-6 Operatoren, in den Prozessen GG→ tt̄γ
und GG → tt̄Z untersucht. Zwei wesentliche Ziele werden in dieser Arbeit verfolgt: Zum
einen wird die Frage untersucht, welchen Einfluss die anomalen Kopplungen auf den
Wirkungsquerschnitt haben und ob durch Messungen auf die unbekannten Kopplungs-
parameter zurückgeschlossen werden kann. Zum anderen werden die Ergebnisse der semi-
analytischen Rechnung mit denen des WHIZARD Programmpaketes verglichen.

Für die semi-analytische Rechnung wird zunächst die Phasenraumintegration für End-
zustände mit drei Teilchen besprochen. Die für die numerische Integration problemati-
sche Struktur der Propagatorennenner der Feynmanamplituden und die damit verbunde-
ne mangelnde Konvergenz des Phasenraumintegrals erfordert den Einsatz von Mehrkanal
Monte Carlo Integrationstechniken.

Die Analyse der anomalen Top Quark-Photon Kopplungen zeigt, dass eine Bestimmung
dieser Kopplungsparameter durch die Untersuchung des Prozesses GG → tt̄γ bei einer
Schwerpunktsenergie von 7 TeV am LHC eine große Herausforderung darstellt. Zwar kann
auf Partonlevel eine Strategie formuliert werden, die es erlaubt, durch Messung der Abwei-
chung des totalen Wirkungsquerschnittes mit anomalen Kopplungen von dem des Stan-
dardmodells bei verschiedenen Schwerpunktsenergien die Kopplungen zu bestimmen. Je-
doch ist die festgestellte Abweichung zu klein, als dass sie nach der Faltung mit den PDFs
noch feststellbar wäre. Weitere Untersuchungen von differentiellen Wirkungsquerschnit-
ten, mit dem Ziel geeignetere Observablen zu finden, sind folglich wünschenswert.
Für den Ztt Vertex ist die Situation aussichtsreicher. Es werden zwei unabhängige Me-
thoden vorgestellt, mit denen grundsätzlich zwei der vier anomalen Top Quark-Z-Boson
Kopplungen ermittelt werden können. Einschränkend muss jedoch angemerkt werden, dass
die zu erwartende experimentelle Unsicherheit bestenfalls die Angabe von recht hohen obe-
ren Schranken für die Parameter erwarten lässt.

Der Vergleich der semi-analytischen Rechnung mit WHIZARD zeigt gute Übereinstimmung
der Ergebnisse für den Wirkungsquerschnitt. Diese weichen maximal um wenige Stan-
dardabweichungen voneinander ab. Eine genaue quantitative Analyse offenbart leichte
Konvergenzprobleme der semi-analytischen Rechnung, weshalb bei einem Vergleich der
Mittelwerte von Stichproben mit häufig wiederholter Berechnung mit denselben Parame-
tern eine signifikante Abweichung feststellbar ist. Überdies zeigt sich, dass der Fehler der
numerischen Integration von WHIZARD leicht unterschätzt wird.
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1 Introduction

The Large Hadron Collider (LHC) circulated its first beams after the maintenance and
repair period on 20 November 2009 [1]. Three days later the first proton-proton collision
was reported at a center-of-mass energy of

√
s = 900 GeV [2]. After the winter shutdown,

the beam energy was gradually increased, until on 19 March 2010 the CERN (European
Organization for Nuclear Research) Press Office announced an alltime record with a center-
of-mass energy of

√
s = 7 TeV [3]. It is planned to run at this beam energy continuously,

except for a short technical stop at the end of 2010, until the shutdown in 2012, which is
forseen to further upgrade the accelerator.

With a circumference of 27 km and a center-of-mass energy up to 14 TeV the LHC is the
largest and highest energetic particle collider world-wide. Its luminosity is designed to be
1034 cm−2s−1. The high luminosity and most of all the high center-of-mass energy open
up completely new perspectives in the field of particle physics. Among the primary goals
of the LHC experiments are the search for the Higgs boson, the exploration of new physics
beyond the Standard Model (SM) at the scale of TeV, such as supersymmetry signals,
as well as the investigation of the origin of the electroweak symmetry breaking (EWSB)
[4–6]. The study of the top quark, being the heaviest fundamental fermion known, plays
a central role in all of these goals:

• High-precision measurements of top quark properties significantly facilitate the search
for the Higgs boson. Firstly, the top quark is involved in two possible production
channels of the Higgs boson. The gluon-gluon fusion channel comes with a top
quark loop, in the second channel the Higgs boson is produced via associated pro-
duction (see figure 1.1(a)). Since both channels require high energetic gluons in the
final state, a precise knowledge of the gluon distribution function at high energies
is desired. As will be stated later on, the main channel for top-antitop quark pair
production involves high energetic gluons as well. The precise measurement of the
top-antitop quark pair production cross-section allows to draw a conclusion on the
gluon distribution functions and thus constrains the prediction of these two Higgs
production channels. Secondly, one can derive correlations between the mass of the
W -boson, the mass of the top quark and the mass of the Higgs boson due to virtual
loop corrections. Figure 1.1(b) illustrates the prediction of the mass of the Higgs
boson based on current experimental estimates.

• As numerous particles originating from new physics are expected to decay into top
quarks, high advanced techniques of the reconstruction of top quark events are in-
evitable. Furthermore, SM top quark events will be the dominant background for
these processes.

• Moreover, the top quark being the only known fundamental fermion with a mass on
the electroweak scale, its study may provide a very good probe of the sector of the
EWSB [4, 5].
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1 Introduction
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Figure 1.1: (a) Feynman graphs for the Higgs production processes involving top quarks to
leading order. (b) Prediction of the Higgs boson mass MH based on current
experimental estimates of the top quark mass mt and of the mass of the W -
boson MW . The concentrical ellipses indicate the region in the mt-MW -plane
where both masses are expected to be found at different confidence levels (CL).
Along the sloping lines a mt-MW -pair results in the same value for the Higgs
boson mass. E. g. a Higgs boson with a mass below 114 GeV is excluded at a CL
of 68%.

The precise knowledge of the interactions of the top quark with the gauge bosons is
compulsory in order to accomplish the above mentioned studies. Any deviation from the
Standard Model expectations is either an indication of an anomaly in the SM or of new
physics on a higher energy scale. While considerable effort has already been made on
the determination of the Wtb interaction [7–9], the Gtt, Ztt and γtt couplings have been
rarely considered [10–12].

Particle physics analyzes usually require the use of Monte Carlo event generators. Par-
ticularly in the early stage of the LHC Monte Carlo studies are inevitable for a full un-
derstanding of the detector components [5]. Moreover, the phenomenology of modified
theoretical physics models can be investigated with simulated events. In this way, the
question how new model parameters, such as anomalous couplings, could be measured
is addressed inter alia. Among the principal general-purpose Monte Carlo generators
employed in LHC studies are PYTHIA [13] and HERWIG [14]. These tools provide the gen-
eration of events for processes of the SM and several models beyond the SM making use
of hard-coded libraries of leading order on-shell matrix elements. The hard-coding makes
them somewhat impractical in view of the large number of proposed new-physics models.
Furthermore, the above mentioned programs are rather limited regarding multi-particle
elementary processes and the handling of off-shell amplitudes. Hence, in the last few years
considerable effort has been made to develop automated general-purpose event generators,
such as MadGraph/MadEvent [15], CompHEP/CalcHEP [16, 17] and Sherpa [18]. Following a
similar approach, the new event generation package WHIZARD [19] comes with the necessary
techniques to deal with the problems mentioned before in a fully automated way. Thus, it
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may be considered as a worthy competitor in the family of Monte Carlo event generators
for hadron colliders like the LHC and, additionally, for future linear colliders, such as the
International Linear Collider (ILC).

The major aim of this thesis is twofold: On the one hand, the general γtt and Ztt
vertices including anomalous top quark interactions generated by dimension-six gauge-
invariant effective operators (see section 3.3) are analyzed. The possibility of determin-
ing the involved anomalous coupling parameters is discussed for the process GG → tt̄
with additional photon or Z boson radiation, respectively. On the other hand, the re-
sults obtained by semi-analytical calculations are compared to the ones produced by
WHIZARD.

This document is structured as follows: The next chapter introduces some experimental
aspects of top quark physics, such as top quark production and decay. Chapter 3 then
outlines the theoretical framework of top quark physics putting special emphasis on top
quark anomalous couplings in section 3.3. After that, the WHIZARD program package is
presented in chapter 4. Having discussed the procedure of calculating total reaction cross-
sections in chapter 5, the subsequent chapter 6 deals with the three particle phase space.
The general γtt and Ztt vertices are finally analyzed in chapters 7 and 8, respectively.
The rather qualitative comparison of the results of the semi-analytical calculation with
WHIZARD therein is eventually supplemented with a more quantitative one in chapter 9
before coming to a conclusion in chapter 10.
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2 The top quark

This chapter deals with experimental aspects of top quark physics. In the first section
properties of the top quark, that is its mass, charge, spin and lifetime, as known from
measurements are described briefly. Subsequently, the top quark production (section 2.2)
and decay (section 2.3) are discussed. Finally, potential ways of determining the top quark
pair production cross-section is presented in section 2.4.

2.1 Top quark properties

The top quark was discovered at Fermilab in 1995 [20, 21]. It is the heaviest quark known
with a mass of (172.0 ± 0.9(statistics)± 1.3(systematics)) GeV [22], which is comparable
to the mass of the atomic nucleus of gold. It is hoped to determine the top quark mass
with an accuracy of about 1 GeV combining results of the two general purpose particle
detectors of LHC, the ATLAS and the CMS detector [23].

In the SM the top quark has electric charge +2/3 e. However, some exotic models [24]
predict a different type of quark in this mass range with electric charge -4/3 e. In order to
reconstruct the top quark charge in the semi-leptonic top quark pair channel one has to,
firstly, find the correct pairing of the bottom quark and the charged lepton originating from
the same top quark, secondly, reconstruct the bottom quark charge and, thirdly, determine
the charge of the involved lepton. Recent Tevatron measurements [25, 26] strongly favor
the 2/3 charged top quark of the SM at confidence levels above 90%.

Though not yet verified directly, measurements at Tevatron strongly indicate a spin-1/2
top quark [27], compatible with the SM. Since the spin of the decay products is known,
the conservation of total momentum allows to draw the conclusion that the top quark is a
fermion. A half-integral spin value of 3/2 or larger is excluded because the measured top
quark pair production cross-section at Tevatron is not compatible with this assumption.
The direct determination of the top quark spin is foreseen at LHC experiments making
use of polarization and spin correlation effects [4, 6].

2.2 Top quark production

In principal there are two mechanisms of producing a top quark: The production of top-
antitop quark pairs via strong interaction is presented in the following subsection, the
electroweak single top quark production in subsection 2.2.2.

4



2.3 Top quark decay

2.2.1 Top quark pair production

Top-antitop quark pairs can be produced via two different reactions: The gluon-gluon
fusion contributes the main part (∼ 90 %) of the top quark pair production at the center-
of-mass energies reached at the LHC. The Feynman graphs to leading order are shown in
figure 2.1. In the s-channel (diagram A) two initial state gluons merge to a virtual gluon,
in the t- and u-channel (diagram B and C, respectively) they exchange a top quark. The
quark-antiquark annihilation (diagram D), which dominates at Tevatron, only accounts
for approximately 10% of the total production at the LHC.

A�
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G t

G t̄
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q̄

q
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t

Figure 2.1: Feynman graphs to leading order contributing to the top quark pair production at
hadron colliders. The diagrams involved in the gluon-gluon fusion are shown on the left
(A-C), whereas the diagram on the right (D) refers to the quark-antiquark annihilation.

The LHC is often called a top quark factory because of its immense top quark production.
The cross-section of the top-antitop quark pair production is predicted to be σ(tt̄) =
(833 ± 100) pb by the next-to-leading order (NLO) calculation including NLL soft gluon
resumation at a center-of-mass energy of

√
s = 14 TeV [28]. This is approximately 100

times as large as the value of Tevatron. The reason for that is mainly the higher center-of-
mass energy at the LHC. Already at low luminosity in the early years of the LHC millions
of tt̄ pairs will thus be produced.

2.2.2 Single top quark production

Single top quarks are generated in electroweak processes, in which the top quark couples
with a W -boson and a b-quark. In leading order (LO) a categorization into three different
mechanisms is possible [4, 23]: The t-channel processes, qG → q′ + tb̄ and qb → q′t, have
the largest contribution of approximately 76% at the LHC. The Wt-associated production,
Gb→Wt, accounts for about 20%, whereas the s-channel, qq̄′ →W → tb̄ only contributes
about 3% of the total single top quark production at the LHC. In spite of the small cross-
section of the s-channel graph, this is still an particularly interesting channel because it
is directly sensitive to additional heavy W ′ bosons, which would lead to further s-channel
diagrams. In general the analysis of single top quark events is of special interest because
their cross-sections are proportional to the square of the CKM matrix element |Vtb|. Hence
no assumptions neither on the number of generations in the SM (see also section 3.1) nor
on the unitarity are needed to determine |Vtb| [22].

2.3 Top quark decay

Referring to the SM the lifetime of the top quark is only ∼ 10−25 s because of its huge mass.
As this is about one magnitude shorter than the timescale for strong interactions, the top
quark decays as a “bare quark” without hadronization. The dominant decay channel is
t→Wb (branching ratio 0.99+0.09

−0.08 [22]). The W -boson itself can either decay hadronically
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2 The top quark

(W → qq̄, branching ratio ≈ 68%) or leptonically (W → eν̄e, W → µν̄µ or W → τ ν̄τ ,
branching ratio each ≈ 11%) [22]. Therefore there are three decay channels of top-antitop
quark pairs [5]:

• Fully hadronic: Both W -bosons decay hadronically (tt̄ → qqq̄q̄bb̄). Two jets from
b-quark and four light jets, which arise from the two W -bosons, are generated. How-
ever, there is a lot of background from QCD events with similar signature as well
as combinatorial background, which makes the analysis of this decay channel very
challenging. The fully hadronic decays amount to about 46% of the tt̄ decays.

• Semi-leptonic: One of the W -bosons decays hadronically and one into a lepton-
neutrino pair (tt̄→ lνqq̄bb̄). This channel is often called the“golden channel”because
of its characteristic signature: The high energetic and isolated lepton can be used
both to trigger the event and to select the event by defining efficient cuts to suppress
the background. Moreover, if b-tagging abilities are available to distinguish between
the b-jets and the light jets from the W -boson decay, the combinatorial background
may be reduced significantly as well. About 44% of the tt̄ events are represented by
the semi-leptonic channel. The background is discussed beneath.

• Fully leptonic: Both W -bosons decay leptonically (tt̄ → llννbb̄). As there are two
neutrinos in the final state, the possibility of reconstructing this event is limited.
The fully leptonic channel totals up to about 10% of the tt̄ decays.

The background of the semi-leptonic channel is dominated by QCD multi-jet events if at
least one of the jets is misidentified as an isolated lepton [5]. The remaining background
mostly arises from W -boson+jets and Z-boson+jets events. B-tagging could efficiently
suppress the greater part of these events. However, in the early years of the LHC b-
tagging-abilities will not be available. Finally, the background coming from fully hadronic
and fully leptonic events should be mentioned.

2.4 Determination of top quark pair production
cross-section

As lots of tt̄ events are expected to be produced at the LHC, the measurement of the top
quark pair production cross-section will be accomplished with the first data samples avail-
able. In this section two complementary prospects for measuring the total tt̄ cross-section
[5], which are most promising in the early stage of the LHC, are presented. Although these
methods address the determination of the cross-section in the semi-leptonic channel for tt̄
events, the general approach is similar for related events.

Likelihood fit method
In the likelihood fit method the invariant mass of the three jets of the hadronically decaying
top quark, denoted as three-jet invariant mass Mjjj , is considered. Firstly, the three-jet
invariant mass distribution is determined by calculating Mjjj for all events that pass the
selection criteria. For the event selection criteria is referred to Ref. [5]. The number
of signal as well as background events is then determined by a maximum likelihood fit
with a Gaussian signal on top of the background modeled by a Chebychev polynomial
(see figure 2.2). Eventually, the cross-section can be estimated from the ratio of signal
to background events taking into account the event selection efficiency and the hadronic
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2.4 Determination of top quark pair production cross-section

Figure 2.2: Distribution of the three-jet invariant mass Mjjj (Monte Carlo simulation). The back-
ground is modeled by a Chebychev polynomial (dotted line), the signal events by a
Gaussian on top of it (full line). [5]

top reconstruction efficiency. Whereas the likelihood fit method is rather insensitive to
background normalization and efficiencies, the shape of the three-jet invariant mass has
to be fairly well understood.

Counting method
If the background events of the process are well known, the cross-section σ can be calcu-
lated using the equation:

σ =
Nobs −Nbg

L · ε =
Nsig

L · ε (2.1)

Herein L denotes the integrated luminosity, Nobs the number of observed events passed
the selection cuts of tt̄ events, Nbg the number of background events estimated from
Monte Carlo or data samples. The difference Nobs − Nbg is the number of events of
the actual signal Nsig. The total efficiency ε includes the geometrical acceptance, the
trigger efficiency and the event selection efficiency. Therefore it can be expressed as ε =
εtrig εsel, the product of the trigger efficiency and the event selection efficiency. One
of the biggest uncertainties of this method is the required precise understanding of all
backgrounds and their normalization. On the other hand, it does not rely on the knowledge
of the top mass distribution nor is it dependent on the reconstruction of parts of the tt̄
event.
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3 Theoretical framework of top quark
physics

3.1 The top quark in the Standard Model

The Standard Model of particle physics (SM) is the theory of the fundamental dynam-
ics of elementary particles in the framework of a relativistic quantum field theory. The
interactions are described by a SU(3)×SU(2)×U(1) gauge theory, where the SU(3) compo-
nent refers to the strong interaction, detailed in the theory of quantum chromodynamics
(QCD), and the SU(2)×U(1) part to the electroweak interactions. The corresponding
conserved quantum numbers are color charge, weak isospin IW and weak hypercharge YW,
respectively. The latter ones are related to electric charge Q by

Q = T3 + YW, (3.1)

where T3 is the third component of weak isospin. The fundamental fermionic constituents
of the SM are quarks and leptons. Being spin-1/2 particles, they respect the Fermi-
Dirac statistics. Each particle has a corresponding antiparticle. One distinguishes up-type
quarks with electric charge +2/3 and down-type quarks with electric charge -1/3. The
leptons have either electric charge -1 (electron-like) or 0 (neutrinos). Whereas quarks are
color charged SU(3) triplets and thus participate in the strong interaction, leptons are
SU(3) singlets and do not interact via the strong interaction. Left-handed fermion fields
transform as doublets under SU(2), right-handed fields are SU(2) singlets. One set of up-
and down-type quark together with one pair of leptons are grouped together to form a
generation, of which three redundant copies exist in the SM, the only difference being the
greater mass in higher generations. The properties of the left-handed fermions of the SM
are summarized in table 3.1. The top quark being an up-type quark, has electric charge
+2/3 and +1/6 weak hypercharge. It is the member of the weak isospin doublet containing
the bottom quark with T3 = +1/2.

Besides of the fermions, the SM includes spin-1 gauge bosons, which act as force mediat-
ing particles. There are eight massless gluons mediating the strong interaction. The Z-
and W+/W−-boson are the mediators of the weak interaction and are massive. Whereas
the Z-boson carries no electric charge and couples to left- and right-handed particles and
antiparticles, the W±-bosons have electric charge ±1, respectively, and only interact with
left-handed particles or right-handed antiparticles. Finally, the mediator of the electro-
magnetic force is the massless photon A, sometimes also denoted by the symbol γ. As
will shortly be pointed out in the next paragraph, the W±/Z-bosons do not represent the
originally degrees of freedom of the SU(2)×U(1) gauge group. Table 3.2 lists the properties
of the bosons contained in the SM.

Moreover, the SM contains one spin-0 boson, the Higgs boson, which plays a unique role.
In the minimal model there is a single complex Higgs doublet φ. The Higgs field acquiring

8



3.1 The top quark in the Standard Model

Name (symbol) Electric charge Weak isospin Weak hypercharge
leptons (l)
electron (e−)

−1 −1
2 −1

2muon (µ−)
tau (τ−)
positron (e+)

+1 0 +1anti-muon (µ+)
anti-tau (τ+)
electron neutrino (νe)

0 +1
2 −1

2muon neutrino (νµ)
tau neutrino (ντ )
quarks (q)
up quark (u)

+2
3 +1

2 +1
6charm quark (c)

top quark (t)
up antiquark (ū)

−2
3 0 −2

3charm antiquark (c̄)
top antiquark (t̄)
down quark (d)

−1
3 −1

2 +1
6strange quark (s)

bottom quark (b)
down antiquark (d̄)

+1
3 0 +1

3strange antiquark (s̄)
bottom antiquark (b̄)

Table 3.1: Quantum numbers of the left-handed fermions of the SM.

boson interaction spin mass (GeV)
photon γ electromagnetic 1 0
Z-boson Z weak 1 91.1876± 0.0021

W±-boson W± weak 1 80.399± 0.023
gluon G strong 1 0

Higgs-boson H 0 >114.4

Table 3.2: Properties of the bosons of the SM. The values for the masses are adopted from Ref.
[22].
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3 Theoretical framework of top quark physics

a non-vanishing vacuum expectation value

〈φ〉 =
1√
2

(
0
v

)
(3.2)

with v = 246 GeV, the electroweak SU(2)×U(1) symmetry is spontaneously broken down
to the U(1) symmetry of electromagnetism. As a result, three massless Goldstone bosons
are created, which are integrated in three of the gauge fields of the electroweak sector
through the Higgs mechanism. The upshot is that these fields become the massive W±/Z-
bosons of the weak interaction, while the photon A stays massless. In terms of the original
massless gauge fields of the unbroken SU(2)×U(1) symmetry, W 1, W 2, W 3 and B, the
boson fields after spontaneous symmetry breaking are defined as

A ≡ B cos θW +W 3 sin θW (3.3)

Z ≡ −B sin θW +W 3 cos θW (3.4)

W± ≡ 1√
2

(
W 1 ∓ iW 2

)
, (3.5)

with θW being the weak mixing angle. Additionally, the coupling of the Higgs field to
fermions, the so-called Yukawa coupling, also gives rise to the masses of the fermions. The
masses of the fermions are thus proportional to the Yukawa coupling strength.

After electroweak symmetry breaking the Lagrangian of the electroweak section for the
fermion fields reads [22]

Lfermion =
∑
i

ψi

(
i /∂ −mi − g miH

2MW

)
ψi

− g

2
√

2

∑
i

ψi γ
µ
(
1− γ5

) (
T+W+

µ + T−W−µ
)
ψi

− e
∑
i

qiψiγ
µψiAµ

− g

2 cos θW

∑
i

ψiγ
µ
(
giV − giAγ5

)
ψiZµ,

(3.6)

with the weak mixing angle θW ≡ arctan(g′/g) and the positron electric charge e =
g sin θW. g and g′ are the gauge coupling constants of the SU(2) and U(1) group, respec-
tively. The sum over i runs over all fermions. Moreover, T+ and T− refer to the weak
isospin raising and lowering operators. The last term in (3.6) includes the vector and
axial-vector couplings

giV ≡ Ti 3 − 2qi (sin θW)2 , (3.7a)

giA ≡ Ti 3. (3.7b)

The Lagrangian of the QCD part is [22]

LQCD =
∑
q

ψq,a
(
iγµ∂µδab − gsγµtCabGCµ −mqδab

)
ψq,b − 1

4
GAµνG

A µν , (3.8)

with the strong coupling constant gs and the quark masses mq, the index q being the
quark flavor. The quark field spinors ψq,a carry an additional color index a, running over
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3.2 Dependence of the coupling constant on the energy scale

the three colors. The sum over repeated indices is understood. The tCab are the generators
of the SU(3) group. Eventually, the field tensor GAµν reads

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCν , (3.9a)

with
[
tA, tB

]
= ifABC tC , (3.9b)

where GCµ refer to the gluon fields, with C running from 1 to 8 over all kinds of gluons,
and fABC correspond to the structure constants of the SU(3) group.

3.2 Dependence of the coupling constant on the energy
scale

Demanding that physical results must be independent of the chosen renormalization scale
µ, a differential equation, the so-called renormalization group equation,

µ2 dg(µ)
dµ2

= β g(µ)2 (3.10)

is obtained. Its solution describes the dependence of the coupling constant g on µ:

g(µ) =
g(µ0)

1 + g(µ0)β ln µ2
0
µ2

(3.11)

Herein g(µ0) is the given coupling constant at a scale µ0. The behavior of the cou-
pling thus depends on the sign of the β-function: If β is positive (like e. g. in QED),
the coupling is weak at low energy scales but strong at high scales. However, in QCD
having β < 0, the coupling strength is weak in the ultraviolet and becomes strong in
the infrared. Consequently, particles participating in the strong interaction may be con-
sidered as non-interacting particles at a high energy scale. Such behavior is referred to
as asymptotic freedom. On the other hand, the coupling becomes strong for long dis-
tances.

3.3 Top quark anomalous couplings

As motivated in chapter 1, high-precision measurements of the interactions of the top
quark with the gauge bosons may provide hints on physics beyond the SM. Such analyzes
require an adequate parameterization of the most general top quark couplings. Emphasis
should particularly be put on the avoidance of redundant parameters, as these would lead
to an unnecessary complication of the analysis. The aim of this section is to sketch the
procedure of obtaining most general expressions for top quark vertices without redundant
coupling parameters.

Effects that arise from interactions of new physics at a high scale Λ can be described by
a low energy effective Lagrangian as an expansion in 1/Λ [29]

Leff =
∞∑
n=0

1
Λn
Ln = L0 +

1
Λ
L1 +

1
Λ2
L2 + . . . , (3.12)

11



3 Theoretical framework of top quark physics

where L0 denotes the standard Lagrangian unaffected by high energy contributions. The
Lagrangians Ln contain operators of dimension (4 + n) and are composed of only low-
energy fields. As the higher order terms are suppressed by powers of Λ, it is sufficient to
consider only a small number of these. Assuming that the SM describes physics well in the
energy range below Λ, all Ln must respect the symmetries and conservation laws of the
SM, that is, in particular, they are SU(3)×SU(2)×U(1) invariant. If one further imposes
conservation of baryon and lepton number as in the SM, no dimension-five operator can
be constructed [29]. Furthermore, neglecting terms of order 1/Λ3 and higher, we are left
with the effective Lagrangian

Leff = L0 +
1

Λ2
L2. (3.13)

Hence, the problem of finding the most general but non-redundant expression for the top
quark couplings has reduced to, firstly, writing down all dimension-six gauge-invariant
operators and, secondly, removing all the redundant ones. A list of all these operators
can be found in Ref. [29], where some of the operators related by the equation of motion
are already skipped. In fact, gauge symmetry is the fundamental principle to further
remove excessive terms. As was shown [30–32], in the end only those terms that would
also be present in an on-shell interaction remain, provided that all new couplings arise
from dimension-six gauge-invariant operators. In other words, the interaction between
two off-shell fermions and an off-shell gauge boson can be parameterized in full generality
by an effective Lagrangian with all involved particles being on-shell. In order to clarify
this phenomenon, which might seem somewhat curious, the basic idea of constructing this
on-shell effective Lagrangian is outlined in the following. For this purpose, consider an
effective Lagrangian involving a scalar Klein-Gordon field φ with mass mφ, a Dirac field ψ
and its conjugate ψ. In particular, look at the terms with ∂2 acting on the φ field, which
in nth order take the form

εnf(ψ, φ)∂2φ. (3.14)

Herein ε is a small parameter, such as the couplings, and f(ψ, φ) some function of the fields
ψ, φ and derivatives. Performing a non-linear redefinition of the φ field

φ→ φ′ = φ+ ∆φ (3.15a)
∆φ = −εnf(ψ, φ) (3.15b)

such a term can be replaced order by order in ε by a term with a −m2
φ in favor of the

∂2 plus additional terms with more φ fields and a higher power in ε. The way how this
works can most easily be seen in the path integral formalism considering the generating
functional

Z(η, η, j) =

∫ DψDψDφ exp
[
iS(ψ, φ) + i

∫
d4x

(
ψ(x)η(x) + η(x)ψ(x) + φ(x)j(x)

)]∫ DψDψDφ exp[iS(ψ, φ)]
(3.16)

with the source fields j(x) and η(x), the latter being Grassmann-valued. For example the 3-
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3.3 Top quark anomalous couplings

point correlation function of the fields ψ(x1)φ(x2)ψ(x3) is then given by

〈
0
∣∣Tψ(x1)φ(x2)ψ(x3)

∣∣0〉 = lim
j,η,η→0

δ

iδη(x1)
δ

iδj(x2)
δ

iδη(x3)
Z(η, η, j)

=
∫ DψDψDφ ψ(x1)φ(x2)ψ(x3) exp[iS(ψ, φ)]∫ DψDψDφ exp[iS(ψ, φ)]

.

(3.17)

Applying the field-redefinition (3.15) the altered generating functional Z ′ reads

Z ′(η, η, j) =

∫ DψDψDφ′ exp
[
iS(ψ, φ′) + i

∫
d4x

(
ψ(x)η(x) + η(x)ψ(x) + φ′(x)j(x)

)]∫ DψDψDφ′ exp[iS(ψ, φ′)]

=

∫ DψDψDφ exp
[
iS(ψ, φ+ ∆φ) + i

∫
d4x

(
ψ(x)η(x) + η(x)ψ(x) + (φ(x) + ∆φ(x))j(x)

)]∫ DψDψDφ exp[iS(ψ, φ+ ∆φ)]
.

(3.18)

Note the change Dφ′ → Dφ from the first to the second line in expression (3.18). Naively
one might expect the integration measure Dφ′ to be affected by the field-redefinition, too,
as the change of variables (3.15) produces a Jacobian

D = det
δφ′(x)
δφ(y)

= det
(
δ(x− y) + ε

δ∆φ(x)
δφ(y)

)
. (3.19)

However, a more rigorous treatment of the integration measure of generating functionals
is necessary. For that reason consider the path integral in the Hamiltonian (canonical)
representation. As the transformation (3.15) is canonical, the integration measure of the
canonical representation is invariant under this transformation. However, when switching
to the Lagrangian representation of the path integral, one collects an additional factor, a
functional g(φ) [33]. This suggests the integration measure of the Lagrangian representa-
tion to be rather understood as Dφ ·g(φ), where g(φ) is supposed to transform under a
change in variables such a way that it cancels the invoked Jacobian (3.19) and the invari-
ance of the integration measure under field redefinition is guaranteed.
Moving the attention back to the expression of Z ′ in the second line of (3.18), the 3-point
function in terms of the new variables is obtained in analogy to (3.17)

〈
0
∣∣Tψ(x1)φ′(x2)ψ(x3)

∣∣0〉 = lim
j,η,η→0

δ

iδη(x1)
δ

iδj(x2)
δ

iδη(x3)
Z ′(η, η, j)

=
∫ DψDψDφ ψ(x1) (φ(x2) + ∆φ(x2))ψ(x3) exp[iS(ψ, φ+ ∆φ)]∫ DψDψDφ exp[iS(ψ, φ+ ∆φ)]

.

(3.20)

Employing the linearity of the integral the expression is transformed into

〈
0
∣∣Tψ(x1)φ′(x2)ψ(x3)

∣∣0〉 =
∫ DψDψDφ ψ(x1)φ(x2)ψ(x3) exp[iS(ψ, φ+ ∆φ)]∫ DψDψDφ exp[iS(ψ, φ+ ∆φ)]

+
∫ DψDψDφ ψ(x1)∆φ(x2)ψ(x3) exp[iS(ψ, φ+ ∆φ)]∫ DψDψDφ exp[iS(ψ, φ+ ∆φ)]

=
〈
0
∣∣Tψ(x1)φ(x2)ψ(x3)

∣∣0〉+
〈
0
∣∣Tψ(x1)∆φ(x2)ψ(x3)

∣∣0〉.
(3.21)
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3 Theoretical framework of top quark physics

The first term in the last line is just the new 3-point interaction. To interpret the second
term, it is now time to take a closer look at the function f(ψ, φ) in expression (3.15b) of
∆φ. Without loss of generality, f(ψ, φ) can be factorized into f(ψ, φ) = φkf̃(∂)ψlψ̄l, where
f̃(∂) is some function only depending on derivatives and k, l ∈ N. Then the correlation
function

〈
0
∣∣Tψ(x1)∆φ(x2)ψ(x3)

∣∣0〉 can be associated with the graph

�

p1

p2

pk

p ...
...

.

Thus, this term will be proportional to〈
0
∣∣Tψ(x1)∆φ(x2)ψ(x3)

∣∣0〉 ∝ [(p2
1 −m2

φ

) (
p2

2 −m2
φ

) · · · (p2
k −m2

φ

)]−1
, (3.22)

with p = p1 + p2 + · · · + pk. To see if such a term changes the physics, it is straight-
forward to calculate the S-matrix elements by use of the Lehmann-Symanzik-Zimmermann
(LSZ)-reduction formula〈

q1,φ, . . . ,qa,φ; q1,ψ, . . . ,qb,ψ; out
∣∣p1,φ, . . . ,pc,φ; p1,ψ, . . . ,pb,ψ; in

〉
= disconnected +

(
i√
Zφ

)a+c(
i√
Zψ

)2b ∫ ( c∏
i=1

d4xj,φe
−i pj,φ xj,φ

)
 b∏
j=1

d4xi,ψe
−i pj,ψ xj,ψ

 a∏
j=1

d4yj,φe
+i qj,φ yj,φ

 b∏
j=1

d4yj,ψe
+i qj,ψ yj,ψ


 c∏
j=1

(�xj,φ +m2
φ)

 b∏
j=1

(i∂xj,ψ −mψ)

 a∏
j=1

(�yj,φ +m2
φ)

 b∏
j=1

(i∂yj,ψ +mψ)


〈
0; out

∣∣Tφ(x1,φ) · · ·φ(xc,φ)φ(y1,φ) · · ·φ(ya,φ)ψ(x1,ψ) · · ·ψ(xb,ψ)ψ(y1,ψ) · · ·ψ(xb,ψ)
∣∣0; in

〉
.

(3.23)

It is then easily seen that the corresponding S-matrix element to the graph sketched above
is proportional to

∝ p2 −m2
φ(

p2
1 −m2

φ

)(
p2

2 −m2
φ

)
· · ·
(
p2
k −m2

φ

) (3.24)

Taking then additionally the limit p2 → m2
φ, i. e. going on-shell, the vanishing numerator

causes the change of the S-matrix elements to be absent in the case k ≥ 2 because all the
factors in the denominator stay finite. The S-matrix elements are thus not affected by the
field-redefinition if f(ψ, φ) is quadratic or higher degree in φ. Hence, the original term in
the Lagrangian (3.14) can be replaced with

−εnf(ψ, φ)m2
φφ (3.25)

without changing the physics. However, for k = 1, i. e. if f(ψ, φ) is linear in φ, the
denominator of the propagator is canceled exactly by the factor in the numerator. The
change in the S-matrix elements stays finite after taking the limit p2 → m2

φ. So a separate
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3.3 Top quark anomalous couplings

treatment of these terms in the effective Lagrangian is required [30]. Nevertheless, we are
allowed to perform a transformation (3.15a) with

∆φ = ε h(−∂2)(∂2 +m2)φ, (3.26)

where h is some matrix function. The S-matrix elements are not affected by this change
of variables because the factor (∂2 +m2) cancels the denominator and thus the change in
the S-matrix elements vanishes in the LSZ reduction.

Consider now a term in the original Lagrangian of the form

ε̃nf(ψ, φ)∂ψ. (3.27)

It follows analogously that such a term can be replaced by the nonlinear field-redefinition
[32]

ψ → ψ
′ = ψ + ∆ψ (3.28a)

∆ψ = −ε̃nf(ψ, φ). (3.28b)

in favor of the term

−ε̃nf(ψ, φ)mψψ. (3.29)

In conclusion, the interaction of two off-shell fermions with an off-shell gauge boson can
be described in full generality by an on-shell effective Lagrangian.

In the following the general γtt and Ztt Lagrangians including anomalous couplings origi-
nating from dimension-six gauge-invariant operators are reproduced [31]:

Lγtt = −eQtt̄
[
γµfA

V +
v

Λ2
iσµνkν

(
dA

V + i dA
Aγ5

)]
tAµ (3.30)

LZtt =
g

2 cos θW
t̄

[
γµ
(
gV − gAγ5

)
− υ2

Λ2

[
γµ
(
XZ

LPL +XZ
RPR

)
+

iσµνkν
mZ

(
dZ

V + i dZ
Aγ5

)]]
tZµ (3.31)

Note that the expressions above differ slightly from Ref. [31] regarding the factor Qt in Lγtt
and the SM term in LZtt. The top quark photon interaction in (3.30) additionally involves
the parameter fA

V , which should not be understood as an anomalous coupling in the sense
of the other parameters but rather as a rescaling of the top quark charge with fA

V = 1 in the
SM. All the other anomalous coupling parameters vanish in the SM.
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4 WHIZARD

4.1 The WHIZARD program package

WHIZARD [19] is a generic Monte Carlo integration and event generation package for multi-
particle processes. Three main features are provided: The generation of tree level matrix
elements accomplished by the built-in programme O’Mega [34], the phase space integration
using the adaptive multi-channel Monte Carlo integrator VAMP [35] and the generation
of weighted as well as unweighted events. Since the matrix elements are calculated as
helicity amplitudes, analyzes of spin and color correlations are possible. Additionally,
for hadronic processes an interface to the LHAPDF library [36] for convoluting the partonic
cross-section with PDFs as well as interfaces to PYTHIA [13] and HERWIG [14] for showering,
fragmenting and hadronizing the final state are available. Moreover, the analysis of linear
collider physics is supported by the inclusion of beamstrahlung (CIRCE [37]) and initial
state radiation spectra for electrons and photons.

Among the currently supported physics models are the SM, optionally including anoma-
lous couplings for gauge bosons or the top quark, the (Next-to-)Minimal Supersymmetric
Standard Model, Little Higgs models and Z ′ models. Further models can be added. The
new version 2.0 of WHIZARD was released in April 2010. The latest distribution can be
downloaded at http://projects.hepforge.org/whizard/.

The overall architecture of WHIZARD is shown diagrammatically in figure 4.1. WHIZARD,
O’Mega and VAMP were developed independently, each implemented in a programming
language that was considered most suited for its purpose. The components are described
separately in the following sections.

4.2 O’Mega (Optimized Matrix Element
Generator)

The Optimized Matrix Element Generator O’Mega [34] constructs an optimized algebraic
expression for a given scattering amplitude in a given model. O’Mega is implemented
in the functional programming language O’CAML. Provided that a description of a target
programming language is given, the amplitude can be computed in any language. Start-
ing from a model description and a set of external particles the corresponding scattering
amplitude is computed as a function of external momenta, spins and other quantum num-
bers.

As the complexity of a tree level scattering amplitude grows rapidly for processes with
many particles in the final state due to the combinatorial explosion of the number of con-
tributing Feynman diagrams, it is necessary to employ sophisticated methods in order to
be able to calculate the amplitudes efficiently, though. In particular, in gauge theories the
crucial point is to group terms efficiently in order to employ large numerical cancellations
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Figure 4.1: The overall architecture of WHIZARD. [19]

among terms from individual Feynman diagrams which are gauge dependent. O’Mega sat-
isfies these requirements by computing helicity amplitudes by internally representing the
scattering matrix element as a directed acyclical graph, where each subexpression appears
only once. As a result the calculation effort does not grow with the factorial of the num-
ber of particles but only with an exponential. The implemented algorithm is presented in
detail in [34].

4.3 VAMP

VAMP [35] is an acronym for VEGAS AMPlified: Anisotropy, Multi-channel sampling and
Parallelization. As the name suggests, VAMP is an adaptive multi-dimensional Monte Carlo
implementation in Fortran95 based on the classic VEGAS algorithm [38, 39]. Its main
features are the support for stratified sampling in higher dimensions and for multi-channel
sampling with individual adaptive grids. As a result, VAMP performs better than VEGAS for
a class of integrals with nonfactorizable singularities as frequently appearing in particle
physics. Furthermore, by separating the state from the function with a Fortran95 abstract
type it is possible to run multiple instances of VEGAS in parallel. To better understand
the advantages of the VAMP integrator the basic concepts of the adaptive Monte Carlo
multi-channel sampling is outlined in the following.

The Monte Carlo method is the integration technique of choice for high dimensional inte-
grals (dimension d & 3) [35]. The integral

I(f) =
∫
M

d~x f(~x) (4.1)
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4 WHIZARD

of a function f on a manifold M with a set of integration variables ~x can be estimated
by

E(f) =
〈
f

g

〉
g

=
1
N

N∑
i=1

f(~xi)
g(~xi)

. (4.2)

Herein g(~x) is the probability density of the randomly distributed ~xi and N refers to the
number of sampling points. Moreover, the standard derivation

σV (f) =
√
V (f) with V (f) =

1
N − 1

〈(f
g

)2
〉
g

−
〈
f

g

〉2

g

 (4.3)

gives an estimate of the error of E(f), which is, in particular, proportional to ∼ 1/
√
N

for a large number of sampling points. The aim of an adaptive Monte Carlo algorithm
is to optimize the probability density g(~x) such that the variance V (f) is minimal. One
possibility of doing so is the so-called importance sampling, which the VEGAS algorithm is
based on [38]. In this method the sampling points are concentrated in the regions of f that
mostly contribute to the integral. Another approach is the stratified sampling technique,
which is used by VAMP. The goal of this approach is to partition the integration region such
that the variation of function values within each region is small [40].

In contrast to the classic VEGAS algorithm, VAMP comes additionally with a multi-channel
sampling strategy. The use of this advanced technique is briefly motivated in the following.
In general, the Monte Carlo integration technique works well for rather smooth integrands.
However, difficulties are encountered if the integrand fluctuates wildly over the integration
domain. This is usually the case for the phase space integration of differential cross-sections
in particle physics due to the involved propagators, which may have almost vanishing
denominators in specific phase space regions. These sharp peaks in the integrand will be
called quasi-singularities in the following. If the quasi-singularities factorize, it is straight-
forward to find substitutions that ”flatten” the integrand. As a simple example may serve
the integral

Iex. =

b∫
ε

dx
f(x)
x

, (4.4)

with ε ∼ 0, b > ε > 0. Assuming that the pole at x = 0 is not killed by f(x), the integrand
obviously has a singularity at this point. This will give rise to difficulties in sampling.
To overcome this problem one can perform the substitution x → x′ = lnx, by which the
integral (4.4) is transformed into

Iex. =

ln b∫
ln ε

dx
∣∣∣∣∂x′∂x

∣∣∣∣ f(x(x′)
)

=

ln b∫
ln ε

dx′ f
(
ex

′)
. (4.5)

In this way the quasi-singularity is removed from the integrand. Thus the Monte Carlo
integration of (4.5) will perform significantly better than that of (4.4).
Of course, it is not convenient to manually tune the integrand by searching for favorable
substitutions as in the example above. Instead, VEGAS is able to find a suitable probability
density g through an iterative adaptive phase such that the variance V (f) is minimized.
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4.3 VAMP

The crucial point now is that the VEGAS algorithm works only efficiently for integrands
with factorizable quasi-singularities, that is to say with integrands whose characteristic
structures are aligned with the coordinate axis [41]. However, if the integrand is a sum
of terms, each with factorizable quasi-singularities that factorize in a different coordinate
system, this algorithm will fail. This is because it is not possible to find one single substi-
tution for which the quasi-singularities of all terms factorize at the same time. Consider
for example the functions

f1(x, y) =
1

(x− y)2 + ε
(4.6a)

f2(x, y) =
1

(
√
x2 + y2 − r)2 + ε

, (4.6b)

where ε is a small parameter. Each function is factorizable in a specific coordinate system
and can then be sampled by VEGAS efficiently. However, this is not the case for the sum
f1(x, y) + f2(x, y) because there is no parameterization where both terms factorize simul-
taneously. A way out of this difficulty may provide the multi-channel sampling approach
[42]. This method makes use of the fact that there are more distinct ways of mapping
random numbers into ~x, that is to say there are different channels. Each of the Nc channels
comes with a different probability density gi(~x), which is non-negative and normalized to
unity ∫

M
d~x gi(~x) = 1. (4.7)

The total probability density g(~x) can then be written as the linear combination

g(~x) =
Nc∑
i=1

αigi(~x), (4.8)

where the probabilities αi for channel i obey the conditions

0 ≤ αi ≤ 1 (4.9a)
Nc∑
i=1

αi = 1 (4.9b)

and thus guarantee the normalization of g(~x) to unity, too. With the total probability
density (4.8) the original integral (4.1) can be rewritten as

I(f) =
∫

d~x f(~x) =
Nc∑
i=1

αi

∫
d~x gi(~x)︸ ︷︷ ︸

=d~ξi

f(~x)
Nc∑
j=1

αjgj(~x)
=

Nc∑
i=1

αi

1∫
0

d~ξi
f(~x(~ξi))

Nc∑
j=1

αjgj(~x(~ξi))
(4.10)

It is convenient to use the same integration domain for all ξi, which is chosen to be the
d-dimensional (d: dimension of the integral) unit hypercube. That is why the integration
limits are stated explicitly for the last integral in (4.10). The estimate of the integral is
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found to be [35]

E(f) =
Nc∑
i=1

αi

〈
f(~x(~ξi))

Nc∑
j=1

αjgj(~x(~ξi))

〉
gi

. (4.11)

To minimize the variance of this estimate the single probability densities gi(~x) as well as
the probabilities αi are optimized in the subsequent adaption process. For the latter VAMP
employs the numerical procedure suggested in [42], the optimization of the gi(~x) for each
parameter set is accomplished by the original VEGAS algorithm.

Although the multi-channel approach involves additional computational effort compared
to the classic VEGAS algorithm for the calculation of all the distinct mappings as well as for
the optimization of the αi, the VAMP algorithm shows significant performance enhancements
for a large class of integrals [35].
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5 Calculation of total reaction cross-sections

5.1 The factorization theorem

In the parton model the constituents of hadrons are partons, that is gluons and quarks,
which form an extended object by their mutual interaction. In general, proton-proton
scattering cannot be calculated by perturbative QCD in a series in the strong coupling
constant αs because it is not an expansion in a small parameter at a low energy scale
or long distances. However, at high energies or short distances αs becomes small and
parton-parton interaction may be neglected (cf. section 3.2). The idea of separating the
short distance from the long distance dynamics is employed in the factorization theorem
[43] of perturbative QCD. This theorem’s statement is that the parton model cross-section
σ̂ for deeply inelastic scattering is given by:

σ̂(s) =
∑
i,j︸︷︷︸

sum over types of partons

1∫
0

1∫
0

dx1dx2fi(x1, µ)fj(x2, µ)

︸ ︷︷ ︸
soft interaction

σ
(
pi(x1)pj(x2)→ X;µ

)
︸ ︷︷ ︸

hard interaction

(5.1)

Equation (5.1) can be interpreted as follows [43, 44]:
Consider the reaction of two protons moving rapidly towards each other at a very high
center-of-mass energy

√
s compared to the proton mass, as in a proton-proton collision at

the LHC. In the center-of-mass frame the protons are Lorentz contracted in the direction
of the collision axis and the internal interactions are lengthened by time dilation. Thus,
the lifetime of the virtual partonic state becomes much longer than the time it takes
the protons to traverse each other. During this time each can be described by a single
virtual state of a certain number of constituents, which do not interact. The protons are
”frozen”. As a consequence, each parton can be associated with a definite momentum.
As hard interactions inside each proton are suppressed at large momentum scales, the
momentum of the constituents cannot acquire a large transverse component but is almost
collinear with the momentum of the proton. Hence, to leading order the momentum
of each constituent is a certain longitudinal fraction x of the momentum of the proton,
where 0 ≤ x ≤ 1. As a further implication of time dilation there is no interference
between the soft interactions before and after the hard scattering process. Taking all this
into consideration, the factorization of soft and hard interactions of equation (5.1) may be
read the following way: The hard scattering cross-section σ calculated for free initial state
partons pi and pj with definite longitudinal momentum fractions x1 and x2, respectively,
multiplies the probabilities fi(x1, µ) and fj(x2, µ) for finding a parton with fraction x1/2

inside the proton, is finally integrated over all values of x1/2 and, if applicable, summed over
all possible types (i. e. gluon, (anti-)up quark, . . . ) of initial partons.

The functions fi(x, µ) are referred to as parton distribution functions (PDFs). As they
involve the long-distance dynamics, the PDFs are not calculable and have to be deter-
mined from experiment. Nevertheless, once measured, predictions for other processes
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5 Calculation of total reaction cross-sections

can be made because, being insensitive to short-distance interactions, they are universal
[45]. The calculation of the hard scattering cross-section σ is discussed in the following
section.

The hard scattering cross-section σ and the PDFs depend on the renormalization scale µR
and the factorization scale µF . The latter is introduced by the factorization ansatz. In
practice of using, both quantities are often set to the same relevant scale µ = µF = µR,
which is usually taken to be the top quark mass in top quark studies [46]. The cross-section
would be independent of µ for the complete perturbation series. As such a calculation
cannot be accomplished, a µ-dependence remains in the results, which has to be tested by
varying the scale in a certain range.

5.2 The hard scattering cross-section

The total reaction cross-section of a hard scattering 2 → n process can be calculated in
perturbation theory according to the formula

σ =
1
F︸︷︷︸

flux factor

∫ n∏
i=1

d3pi
2Ei

δ(4)

(
pa + pb −

n∑
j=1

pj

)
︸ ︷︷ ︸

phase space integral

|M|2︸ ︷︷ ︸
squared matrix element

. (5.2)

Herein pa and pb denote the definite four-momenta of the incoming, pi (i = 1, . . . , n)
those of the outgoing particles. |M|2 is the absolute squared value of the Feynman ampli-
tude, where averaging over polarizations of the initial state particles and summation over
polarizations of the final state particles is implied.

In detail the calculation of the hard scattering cross-section includes the following technical
steps:

• Determination of all Feynman graphs that contribute to the process of interest

• Applying the Feynman rules to translate the graphs into an analytical expression for
all amplitudes Mi

• Calculation of the squared amplitude |M|2 = |∑iMi|2, including:

– Average over the polarization of incoming particles; average over color of in-
coming particles if applicable

– Summation over polarization and, if applicable, color of the outgoing particles
– Calculation of the color factor to the square of each individual diagram if ap-

plicable
– Calculation of the traces of the Dirac matrices. In this work, this step is done

with the FeynCalc package (version 5.1) [47] for the computer algebra system
Mathematica [48].

– Contraction of all Lorentz indices and analytical simplification of the obtained
expression. This is done with FeynCalc / Mathematica as well in this work.

• Insert scalar products in terms of parameters of the phase space parameterization

• Perform the phase space integral. Whereas for processes with a final state with two
particles the phase space integration can be performed analytically, the integral for
a three-particle final state is more involved and is thus replaced by an numerical
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5.3 Matrix element for processes with photon / gluon radiation

estimate employing the adaptive Monte Carlo algorithm VEGAS, which is part of the
CUBA library (version 1.7) [41]. For performance reasons the numerical integration is
implemented in the programming language C.

• Multiply with the flux-factor

The general structure of a matrix element M for processes with photon or gluon ra-
diation and its peculiarities is considered in section 5.3. The expression for the flux
factor is given in section 5.4. Finally, the treatment of the phase space of a three-
particle final state deserves particular attention and is thus discussed separately in chapter
6.

5.3 Matrix element for processes with photon / gluon
radiation

The general form of the Feynman amplitude for processes with final state photon or gluon
radiation will be discussed in this section. For this purpose, first of all the amplitude of a
general process x → ff̄ with two fermions in the final state with momenta pf and pf is
considered.

�
pf

pf

f

f

M0(pf ,pf )

The Feynman-amplitude of this process takes the simple form

M = ur(pf )M0(pf ,pf )vs(pf ). (5.3)

How does this amplitude change for the same process but with additional final state photon
radiation x → ff̄γ ? In the following discussion it is assumed that the photon can only
be radiated either by the fermion or the anti-fermion. Therefore, there are the two graphs

A�pf
pf

k

f

γ

f

M0

B�pf

pf

k

f

γ

f

M0

.

Obeying the Feynman rules the corresponding amplitude reads

M = ε∗µ(k)Mµ(k) = −i eQf ur(pf )
[
Γµi

/pf + /k +mf

(pf + k)2 −m2
f

M0(pf + k,pf )︸ ︷︷ ︸
A

+

+M0(pf ,pf + k)i
−/pf − /k +mf

(pf + k)2 −m2
f

Γµ︸ ︷︷ ︸
B

]
ε∗µ(k)vs(pf )

(5.4)
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5 Calculation of total reaction cross-sections

with the general ff̄γ vertex (−i eQf Γµ) and the charge of the fermion Qf in units of the
electron charge. Note the minus signs at the momenta in the numerator of the second prop-
agator, which respect the opposite direction of momentum and fermion line.

Structure of propagators in bremsstrahlung diagrams
As seen in expression (5.4), the propagators involved in amplitudes with photon / gluon
radiation have the generic structure

/pf + /k +mf

(pf + k)2 −m2
f

. (5.5)

For on-shell particles in the final state, i. e. p2
f = m2

f and k2 = 0, the form (5.5) reduces
to

/pf + /k +mf

2 pf · k =
/pf + /k +mf

2EfEk(1− vf cos θp,k)
(5.6)

with vf =
|~pf |
Ef

=

√√√√1− m2
f

E2
f

. (5.7)

In the transformation done in 5.6 the dot product of the four-vectors in the denomi-
nator is written out explicitly. From the latter expression in 5.6 the divergent behav-
ior can easily be extracted. It shows that the cross-section of bremsstrahlung diagrams
is . . .

infrared-divergent. As will be discussed in chapter 6, the cross-section σ has the propor-
tionality σ ∝ lim

a→0

∫ Emax

a
dEk
Ek
∝
(

const.− lim
a→0

ln a
)

. Hence, σ is logarithmic divergent

in the soft photon / gluon limit, that is to say in the limit where the energy of the
radiated particle tends to zero. In this study we are only interested in physically
measurable particles. Therefore, we demand the radiated particle to have a mini-
mal energy Ek > Emin > 0 and thereby circumvent this problem. However, it is
noted for completeness that, if the amplitude was considered including all radiative
corrections, additional IR-divergent terms originating from vertex corrections would
contribute. These counterterms have the same asymptotic behavior and thus cancel
the divergent terms [44].

collinear divergent for massless fermions (mf → 0). The fermion mass vanishing, the
velocity vf (5.7) approaches 1. Thus, the denominator tends to 0 for | cos θp,k| → 1;
the cross-section is collinear divergent. As in this work the bremsstrahlung of the
top quark is discussed, the fermion mass mf = mt is fairly greater than 0. Yet, this
divergent behavior makes an impact on the convergence of the numerical integration
when studying the limit

√
s� mf .

If the decay width of the fermion is considered, the extra term imfΓf is added in the
denominator of the propagator. In this work the convention is followed that this term is
only added if the momentum p involved in the propagator is spacelike (p2 > 0) with the
objective of keeping unitarity. This means that the extra term reads rather imfΓfθ(p2).
It is important to mention that this additional term violates gauge invariance. To see
this, it is useful to check the Ward identity [49] for the amplitude Mµ(k) of the example
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5.4 Flux factor

calculation (5.4) explicitly for Γµ = γµ:

kµMµ(k) ∝ u(pf )/k
/pf + /k +mf

2 pf · k + i mfΓf
M0 v(pf ) + u(pf )M0

−/pf − /k +mf

2 pf · k + i mfΓf
/k v(pf )

(5.8)

Employing the anticommutation relation of Dirac matrices, {γµ, γν} = 2gµν , equation
(5.8) transforms into

kµMµ(k) ∝ u(pf )
(−/pf +mf )/k + /k2 + 2 pf · k

2 pf · k + i mfΓf
M0 v(pf )+

+ u(pf )M0

−/k2 − 2 pf · k + /k(/pf +mf )

2 pf · k + i mfΓf
v(pf ). (5.9)

As the four-vectors pf and pf satisfy the Dirac equations 0 = u(pf )(−/pf +mf ) and (/pf +

mf )v(pf ) = 0, respectively, and by use of /k2 = k2 = 0, one obtains

kµMµ(k) ∝ u(pf )
2 pf · k

2 pf · k + i mfΓf
M0 v(pf )− u(pf )M0

2 pf · k
2 pf · k + i mfΓf

v(pf ).

(5.10)

Without considering the decay width, the numerator and denominator in the first and
second term cancel each and the expression on the right hand side of expression (5.10) van-
ishes. However, for non-vanishing decay width it does not. Hence, one has

kµMµ(k) 6= 0 for Γf > 0, (5.11)

that is to say the Ward identity does not hold; gauge invariance is violated. As a conse-
quence, the simple photon / gluon polarization sum

∑
pol.

εµ∗εν → −gµν must be replaced

with the physical polarization sum∑
pol.

εµ∗εν → −gµν − kµkν − (k · n)(kµnν + kνnµ)
(k · n)2

(5.12)

with nµ = (1,~0) to substract the contributions of unphysical polarizations.

5.4 Flux factor

The flux factor F in equation (5.2) is given by

F = 2
√
λ(s,m2

a,m
2
b) (2π)3n−4 = 4

√
(pa · pb)2 −m2

am
2
b (2π)3n−4, (5.13)

wherema andmb is the mass of the initial state particle pa and pb, respectively, and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (5.14)

the kinematical function.
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6 Three particle phase space

6.1 Prerequisites

The momentum space of a n-particle final state is 3n-dimensional. Due to constraints
such as conservation laws the number of independent parameters is reduced to 3n− 4 (see
section 6.2). This lower dimensional sub-space of the momentum space, which in general
may have a rather complicated shape, is referred to as the n-particle phase space (see
figure 6.1). The phase space parameterization maps these two spaces to each other. Such
a parameterization should meet the following requirements:

• Coverage of the whole phase space: Due to the usually complicated shape of the phase
space this requirement is of particular importance. In addition, double counting of
phase space regions must be avoided.

• Possibility to apply cuts on parameters of interest: For comparison of the theoretical
results with experimental data cuts on specific parameters are required. In this study
a cut on the energy of the radiated photon is used in particular.

• Allowing convenient integration: Eventually, the phase space integration has to be
performed to obtain the total reaction cross-section. Therefore, the parameterization
of the phase space should ideally provide the possibility of performing the integration
analytically. However, an analytical integration cannot be done in general for the
matrix elements considered and is replaced by a numeric estimate instead. Yet, the
parameterization should allow a highly performant numerical integration.

6.2 Determination of the number of independent
parameters

Before writing down a phase space parameterization, the dimension of the phase space,
i. e. the number of independent final state parameters, has to be known (see also Ref. [50]).
As there are 4 degrees of freedom per particle, namely its energy and components of the

momentum space

R3n

phase space

R3n−4

Figure 6.1: The phase space is the lower dimensional sub-space of the momentum space. Due to
constraints the phase space may have a rather complicated shape. The two spaces are
mapped to each other by the phase space parameterization.
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6.3 Parameterization of the 3-particle phase space

n = 3 n = 2
4 degrees of freedom per particle (E,px,py,pz) n · 4 12 8

- relation energy - momentum (for each particle) −n · 1 − 3 − 2
- conservation of energy / momentum − 4 − 4 − 4
- rotational symmetry around beam axis − 1 − 1 − 1
= essential final state variables 3n− 5 4 1

Table 6.1: Determination of the number of independent parameters for a n-particle, 3-particle and
2-particle final state, respectively. As shown, the phase space is 3n− 5-dimensional for
a final state with rotational symmetry around the beam axis and on-shell particles.

three-dimensional momentum vector, altogether 4n parameters of the n-particle final state
have to be determined. For on-shell final state particles the energy of each particle can
be expressed in terms of the corresponding three-momentum. Thus 3n degrees of freedom
remain to span the 3n-dimensional momentum space. Exploiting the total conservation of
energy and three-momentum this number can be reduced by 4, so that 3n−4 independent
essential phase space parameters are left. For collider experiments one can further get rid
of one additional degree of freedom taking into account the rotational symmetry around
the beam axis. Therefore, in the end there are 3n − 5 essential final state variables for
a n-particle final state or, in concrete terms, 4 essential final state variables for a 3-
particle final state. Table 6.1 sums up the determination of the number of independent
parameters.

6.3 Parameterization of the 3-particle phase
space

In general there are different ways of writing down an explicit parameterization of the
phase space. As will be seen in section 7.2, a highly performant numerical phase space
integration requires different parameterizations for a single process. In this paragraph the
explicit parameterizations of a 3-particle final state that are employed in this work are
presented.

For this purpose the generic process papb → p1p2p3

�
pb

pa

p3

p2

p1

is considered. The corresponding four-vectors are denoted by

pa =
(
Ea
~pa

)
, pb =

(
Eb
~pb

)
, p1 =

(
E1

~p1

)
, p2 =

(
E2

~p2

)
and p3 =

(
E3

~p3

)
,

respectively. As determined in the previous section, 4 parameters are sufficient to span
the phase space of a final state with 3 on-shell particles. Three different parameterizations
are used throughout this work.

27



6 Three particle phase space

Parameterization 1 utilizes the following parameters:

E3 energy of particle p3

θ angle between ~pa and ~p1

θ′ angle between ~p1 and ~p3

φ angle between the planes spaned by (~pa,~p1) and (~p1,~p3)

y

z

x

~p1

~pa ~p3

θ′θ
φ

Throughout this work all quantities are defined in the center-of-momentum system (COM)
if not stated otherwise. Parameterization 2 involves E1, the energy of particle p1, rather
than E3. The other three parameters are the same as in parameterization 1. Parame-
terization 3 is obtained out of parameterization 2 by replacing all indices 1 with 2, i. e.
involves the parameters:

E2 energy of particle p2
∼
θ angle between ~pa and ~p2
∼
θ′ angle between ~p2 and ~p3
∼
φ angle between the planes spaned by (~pa,~p2) and (~p2,~p3)

y

z

x

~p2

~pa ~p3

θ̃′θ̃

φ̃

In order to see that the above stated sets of parameters are maps of the full 3-particle
phase space, it is shown in the following that the four parameters of each set are sufficient
to express all the involved four-vectors. For parameterization 1 and 2 the coordinate
system is chosen, without loss of generality, such that the three-vector of particle p1 is
parallel to the z-axis and ~pa is located in the x-z-plane requiring one parameter θ (see
graphic above). Furthermore, the orientation of the three-vector of particle p3 relative to
~p1 and ~pa is described by three-dimensional spherical coordinates, i. e. θ′ and φ as defined
above come into play. Since all the particles are assumed to be on-shell, the norm of the
three-vectors |~p1| and |~p3| can be determined employing the energy-momentum-relation
|~pi|2 = E2

i − m2
i (i = 1, 3). Finally, respecting the total conservation of energy and

momentum

pa + pb = p1 + p2 + p3, (6.1)

the remaining four-vector of particle p2 is determined. Therefore, the four-vectors of all
the particles read:

p1 =


E1

0
0
|~p1|

 ; |~p1| =
√
E2

1 −m2
1 (6.2a)

pa/b =


Ea/b

± |~p| sin θ
0

± |~p| cos θ

 ; |~p| = Ea/b =
√
s

2
(6.2b)

p3 =


E3

|~p3| sin θ′ cosφ
|~p3| sin θ′ sinφ
|~p3| cos θ′

 ; |~p3| =
√
E2

3 −m2
3 (6.2c)

p2 = pa + pb − p1 − p3 =
(√

s− E1 − E3

−~p1 − ~p3

)
(6.2d)
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6.3 Parameterization of the 3-particle phase space

As is obvious from equations (6.2), E1 or E3 has to be eliminated to be left only with the
four parameters of parameterization 1 or 2, respectively. This is achieved be demanding
particle p2 to be on-shell, too, i. e.

p2
2

!= m2
2. (6.3)

It shows, however, that solving equation (6.3) for E1 or E3, respectively, is not as straight-
forward as one might expect. Actually, this is the point where the non-trivial shape of
the phase space originates from. The solution depends on the masses of the final state
particles. It is particularly important if they are massive or massless. Thus, solving
equation (6.3) is discussed in great detail in the following subsections, starting with the
most general case, in which all the final state particles may have different masses. After
that, relevant special cases of actual occurring physical processes are taken into consider-
ation.

The expressions of the four-vectors in terms of variables of parameterization 3 are ob-
tained out of parameterization 2 by replacing the variables of particle p1 by the cor-
responding ones of particle p2 and vice versa. The formulas are therefore not stated
explicitly.

6.3.1 Three particles with different masses

As mentioned above, the excess variable in expressions (6.2) can be eliminated employing
the on-shell condition (6.3). In the most general case of three final state particles with
masses m1, m2, m3 > 0, this equation reads for parameterization 1

p2
2 −m2

2 = (pa + pb − p1 − p3)2 −m2
2 =

= s− 2
√
sE1 − 2

√
sE3 + 2E1E3 − 2

√
E2

1 −m2
1

√
E2

3 −m2
3 cos θ′+

+m2
1 +m2

3 −m2
2 = 0. (6.4)

With the aim of solving for E1, equation (6.4) is transformed into

s− 2
√
sE1 − 2

√
sE3 + 2E1E3 +m2

1 +m2
3 −m2

2 = 2
√
E2

1 −m2
1

√
E2

3 −m2
3 cos θ′, (6.5)

and after squaring this expression into(
s− 2

√
sE1 − 2

√
sE3 + 2E1E3 +m2

1 +m2
3 −m2

2

)2 = 4
(
E2

1 −m2
1

) (
E2

3 −m2
3

)
cos θ′2.

(6.6)

The former step is of particular importance because by raising the cosine to the second
power the information of the sign of this term is lost. Additional solutions, which do not
satisfy the original equation (6.4), are created thereby. Since (6.6) is a quadratic equation
in E1, two solutions, namely

E1,1 =
A+
√

∆ | cos θ′|
B

(6.7a)

E1,2 =
A−√∆ | cos θ′|

B
, (6.7b)

29



6 Three particle phase space

are obtained, with

A = − (E3 −
√
s
) (−m2

1 +m2
2 −m2

3 + 2E3

√
s− s) , (6.8a)

B = −2
(
E3 −

√
s
)2 + 2(E2

3 −m2
3) cos θ′2, (6.8b)

∆ =
(
E2

3 −m2
3

)[
m4

1 + 4E3

(
m2

1 +m2
2 −m2

3 − s
)√

s+
(−m2

2 +m2
3 + s

)2 +

4E2
3

(
s+m2

1

(
−1 + cos θ′2

))
− 2m2

1

(
m2

2 + s+m2
3

(−1 + 2 cos θ′2
))]

.
(6.8c)

Both solutions are real valued only if the discriminant ∆ is not negative:

∆
!≥ 0 (6.9)

This condition implies automatically the physically maximal possible energy of particle p3

dependend on cos θ′ and on the masses m1 to m3. This specific maximal energy will be
denoted by E3,max and is, according to condition (6.9), given by

E3,max(cos θ′) = − 1
2
(
s+m2

1

(−1 + cos θ′2
))[(m2

1 +m2
2 −m2

3 − s
)√

s +

+
((
m2

1 +m2
2 −m2

3 − s
)2
s− (s+m2

1

(−1 + cos θ′2
))

(
m4

1 +
(−m2

2 +m2
3 + s

)2 − 2m2
1

(
m2

2 + s+m2
3

(−1 + 2 cos θ′2
)))) 1

2

]
.

(6.10)

As argued before, E1,1 and E1,2 do not fulfill the on-shell condition (6.3) over the whole
range of cos θ′ but only in particular regions. Plugging the solutions (6.7) into equation
(6.3), it shows that E1,2 is valid in the range

cos θ′ < 0 ∧ E3 ∈ [m3;E3,max], (6.11)

whereas solution E1,1 has the scope of validity(
cos θ′ > 0 ∧ E3 ∈ [m3 ;E′3,max]

) ∨(
cos θ′ < 0 ∧ E3 ∈ [E′3,max;E3,max]

)
.

(6.12)

E′3,max herein is defined as

E′3,max := E3,max(cos θ′ = 0) =
−m2

2 +m2
3 + (m1 −

√
s)2

2 (
√
s−m1)

. (6.13)

The scope of validity (6.11-6.12) is graphically shown in figure 6.2. Its physical interpre-
tation is given in the following paragraph.

Once again, the results of parameterization 2 and 3 need not be treated separately. For
parameterization 2 the scope of validity and the specific energies E1,max and E′1,max therein
are found by exchanging m1 ↔ m3 and E1 ↔ E3. Moreover, starting from parameteriza-

tion 2, applying the replacements m1 → m2, m2 → m1 and cos θ′ → cos
∼
θ′, the results for

parameterization 3 are obtained.

30



6.3 Parameterization of the 3-particle phase space

0 Emin E' max

-1

0

1
0 Emin

E' max

-1

0

1

EK

C
os
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'L

E1,1

E1,2

m3

m3

E′
3,max

E′
3,max

E3

Figure 6.2: In the lower gray shaded area (cos θ′ < 0 ∧ E3 < E′3,max) the on-shell condition (6.3)
is only fulfilled by solution E1,2, in the upper area (cos θ′ > 0 ∧ E3 < E′3,max) only by
E1,1. The orange region with the curvy shape indicates the region where both solutions
satisfy this condition.

Physical interpretation
The calculation before has shown that the 3-particle phase space is naturally divided into
subregions in the E3-cos θ′-plane (for parameterization 1). To understand this from the
physics point of view, the kinematical constellations of the involved final state particles
are discussed in the following, starting from small energies E3:

• case E3 = m3: Particle p3 carries no momentum (|~p3| = 0). Due to conservation
of momentum particles p1 and p2 have momenta with the same norm |~p1| = |~p2| =√
−m2

1 +

“
m2

1−m2
2+(m3−

√
s)2
”2

4(m3−
√
s)2 but with opposite sign ~p1 = −~p2. The two solutions

E1,1 and E1,2 are degenerated in this scenario.

• case m3 < E3 < E′3,max: In this case the energy of particle p3 is below the specific
threshold E′3,max. The value E′3,max has the property that for any given pair of values
(E3 < E′3,max, cos θ′) a phase space configuration that respects the conservation of
energy and momentum can be found. That is to say for all energies E3 in this range
and all angles θ′ (](~p1, ~p3)) appropriate four-vectors p1 and p2, which are compatible
with the phase space constraints, can be chosen. Solution E1,1 corresponds to the
scenario in which the three-momenta of particle p1 and p3 lie in the same half-space
and particle p2 goes into the opposite direction. Consequently, one finds 0 ≤ cos θ′ ≤
1 and |~p2| > |~p1| , |~p3|. In contrast, the scenario with ~p1 and ~p3 being in different
half-spaces and thus having −1 ≤ cos θ′< 0 is related to solution E1,2.

• case E3 = E′3,max: The special meaning of energy E′3,max becomes evident when
looking at solution E1,1. For this solution and E3 = E′3,max particle p1 carries no
momentum (|~p1| = 0), i. e. E1 = m1. Particles p2 and p3 have momenta with the same

norm |~p2| = |~p3| =
q

(m1−m2−m3−
√
s)(m1+m2−m3−

√
s)(m1−m2+m3−

√
s)(m1+m2+m3−

√
s)

2(√s−m1)
but with opposite sign ~p2 = −~p3. As can easily be checked, E′3,max, as defined in
equation (6.13), is equivalent to the energy of particle p3 of this constellation.

• case E′3,max < E3 < E3,max: The energy of particle p3 exceeds above the threshold
E′3,max. ~p1 and ~p2 are situated in one half-space and ~p3 in the other. For a given value
of E3 only specific values of cos θ′ in the range −1 ≤ cos θ′ ≤ cos θ′max ≤ 0 are allowed.
In other words, conservation of energy and momentum constrains the three-momenta
of particles p1 and p2 to lie within a cone that points into the opposite direction of

31



6 Three particle phase space

~p3. The higher the energy E3 is, the narrower the cone must be. Consequently,
E3,max must be a function of cos θ′, as stated in equation 6.10.

• case E3 = E3,max: Particle p3 has maximal energy E3,max, which depends on cos θ′.
E3,max(cos θ′) takes its maximum at cos θ′ = −1:

E3,max(cos θ′ = −1) =
−(m1 +m2)2 +m2

3 + s

2
√
s

(6.14)

To which physical constellation does energy 6.14 of particle p3 belong to? To answer
this question, an independent derivation of the kinematic variables of the scenario in
which particle p3 has maximum energy will be given in the following. E3 taking its
maximum value, all the three-vectors are located in one line and thus |~p3| = |~p1|+|~p2|.
As |~p1| and |~p2| are a priori not known, neither is |~p3|. To obtain an expression for |~p3|
out of physical considerations, it is convenient to start with the ansatz |~p1| = a · |~p3|
and |~p2| = (1 − a) · |~p3| with 0 ≤ a ≤ 1. Thereby the problem has reduced to
finding an expression of a that maximizes |~p3|. Employing this ansatz, the equation
of conservation of energy reads

√
s = E1 + E2 + E3 =

√
a2 · |~p3|2 +m2

1 +
√

(a− 1)2 · |~p3|2 +m2
2 +

√
|~p3|2 +m2

3.

(6.15)

Solving this equation for |~p3| and maximizing this expression with respect to a is
straight-forward in principal but still challenging because of the lengthy expressions.
Eventually, the calculation shows that |~p3| and thus E3 take its maximum value for

a =
m1

m1 +m2
. (6.16)

The idea why this may be considered as the correct solution can easily be understood:
Inserting solution 6.16 into equation 6.15, one obtains:

√
s =

√
|~p3|2 + (m1 +m2)2 +

√
|~p3|2 +m2

3 (6.17)

This, however, can be interpreted as the equation of conservation of energy of a
three-particle final state with one massless particle at rest and two massive particles
with masses m1 +m2 and m3, respectively, both having momentum with the norm
|~p3|. This scenario is illustrated schematically in figure 6.3. It is evident that in this
kinematic constellation E3 is maximal and indeed is equivalent to expression 6.14.

m3

m1

m2

~p3

~p1 = − m1
m1+m2

~p3

~p2 = − m2
m1+m2

~p3 m3

m̃1 = 0
|~p1| = 0

m̃2 = m1 +m2

~p3
~p2 = −~p3

Figure 6.3: Determination of the maximal momentum / energy of particle p3. The sketch
of the kinematical situation on the left corresponds to the scenario with three
massive particles. |~p3| is maximal when ~p1 = a ~p3 and ~p1 = (a − 1) ~p3, where
a = m1

m2+m3
as defined in (6.16). The same value for the maximal energy is

obtained much easier in the corresponding scenario illustrated on the right. Here
particle p1 is massless and particle p2 has mass m̃2 = m1 +m2.
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6.3 Parameterization of the 3-particle phase space

6.3.2 Three massive particles, two particles having identical
masses

The special case of a final state with three massive particles of which two have identical
masses is considered separately in this paragraph, as this is the relevant kinematic scenario
for the process GG → tt̄Z. Without loss of generality, particles p1 and p2 are chosen to
have equal masses m := m1 = m2. The procedure of determining an expression for E1

(for parameterization 1) in terms of the parameters of the phase space parameterization
is of course similar to the one of the most general case and so are the obtained formulas.
The corresponding terms of the two solutions E1/2 6.7 simplify to

A = − (E3 −
√
s
) (−m2

3 + 2E3

√
s− s) , (6.18a)

B = −2
(
E3 −

√
s
)2 + 2(E2

3 −m2
3) cos θ′2, (6.18b)

∆ =
(
E2

3 −m2
3

)[
−4m2s+

(
m2

3 + s
)2 − 4E3

√
s
(−2m2 +m2

3 + s
)−

4m2m2
3 cos θ′2 + 4E2

3

(
s+m2

(−1 + cos θ′2
))]

.
(6.18c)

Consequently, the specific energies E3,max and E′3,max read

E3,max(cos θ′) =
1

2
(
s+m2

1

(−1 + cos θ′2
))[m2

3

√
s+
√
s
(−2m2 + s

)−
−m

√(
m2

3 − s
)2 − (m2

3 − s
) (

4m2 +m2
3 − s

)
cos θ′2 + 4m2m2

3 cos θ′4
]

(6.19)

and

E′3,max := E3,max(cos θ′ = 0) =
m2

3 − 2m
√
s+ s

2 (
√
s−m1)

, (6.20)

respectively. For the physical interpretation is referred to the preceding subsection.

6.3.3 Two massive particles with identical masses and one massless
particle

The case considered in this paragraph appears for example in the process GG→ tt̄γ. Its
feature is a final state with one massless particle, which in the above notation is chosen to
be p3, and the remaining two having identical massesm := m1 = m2. For parameterization
1 the structure of the phase space stays the same as in the most general case, i. e. the phase
space is still divided into subregions as depicted in figure 6.2. There are two solutions for
E1 having the structure of equations (6.7) with

A = −2E2
3

√
s+ 3E3s− s3/2, (6.21a)

B = 4E3

√
s− 2s+ 2E2

3

(
−1 + cos θ′2

)
, (6.21b)

∆ = E2
3

[
s
(−4m2 + s

)− 4E3

√
s
(−2m2 + s

)
+ 4E2

3

(
s+m2

(−1 + cos θ′2
))]

. (6.21c)
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6 Three particle phase space

E3,max and E′3,max reduce to

E3,max(cos θ′) =

√
s

(
s−m

(
2m+

√
s+ (4m2 − s) cos θ′2

))
2
(
s+m2

(−1 + cos θ′2
)) (6.22)

E′3,max:= E3,max(cos θ′ = 0) =
(
√
s− 2m)

√
s

2 (
√
s−m)

. (6.23)

However, m3 vanishing simplifies parameterizations 2 and 3 significantly. As mentioned
above, the results for parameterization 2 are obtained by exchanging E1 ↔ E3 and m1 ↔
m3, the latter meaning setting m = 0 in this special case. From equation (6.22) one
immediately sees, that E1,max =

√
s/2, independent of cos θ′. This means that in this

parameterization the phase space does not decompose into separate regions. This matches
with the fact that the on-shell condition (6.3) (or more easily seen in the explicit form
(6.4)) is not a quadratic but a linear equation in E3 for m3 = 0. Hence, only one solution
exists, namely

E3 =
2E1
√
s− s

2
(
E1 −

√
s−

√
E2

1 −m2 cos θ′
) , (6.24)

which satisfies equation (6.3) over the whole parameter space.

6.3.4 Three massless particles

For completeness also the case of a final state with three massless particles m1 = m2 =
m3 = 0 is mentioned in this subsection. All the three parameterizations show a simple
structure. The only solution of the mass shell condition (6.3) for parameterization 1, which
is now linear in E1, takes the form

E1 =
2E3
√
s− s

2 (E3 −
√
s− E3 cos θ′)

, (6.25)

which is valid in the whole parameter space (0 ≤ E3 <
√
s/2). Similar results are obtained

for parameterization 2 and 3.

6.4 Phase space integral

With the knowledge gathered in the previous section it is straight-forward to write down
the actual phase space integral

Rn=3(s) ≡
∫ 3∏

i=1

d3pi
2Ei

δ(4)

(
pa + pb −

3∑
j=1

pj

)
(6.26)

for a three-particle final state in concrete terms. Employing the identity

d3pi
2Ei

= d4pi δ
(
p2
i −m2

i

)
θ(Ei) (6.27)
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6.4 Phase space integral

the phase space integral (6.26) can be transformed into

R3(s) =
∫

d3p1d3p3

4E1E3
θ
(√
s− E1 − E3

)
δ
(
p2

2 −m2
2

)
(6.28)

and by switching to three-dimensional spherical coordinates

d3pi = |~pi|EidEidΩi (6.29)

further into

R3(s) =
∫

dE1dΩ1dE3dΩ3
1
4
|~p1||~p3| θ

(√
s− E1 − E3

)
δ
(
p2

2 −m2
2

)
. (6.30)

Of course, for parameterization 3 one would rather eliminate the variables of particle p3

than those of particle p2 in step (6.28). One additional integration can be performed by
making use of the property∫

dx f(x) δ(g(x)) =
∑
i

f(xi)
|g′(xi)| with g(xi) = 0; g′(xi) :=

∂g(x)
∂x

∣∣∣∣
x=xi

(6.31)

of the Dirac delta distribution. In order to do this one has however to solve the equation
p2

2 −m2
2 = 0, which is of course exactly the on-shell condition (6.3). As the solution of

this equation was already discussed in section 6.3, we can directly go to the presentation
of the phase space integral for each of the introduced parameterizations. Once again, at
first the general case of a final state with three massive particles, all with different masses,
is shown. After that, the special cases that are of interest for the physical analyzes in this
thesis follow.

6.4.1 Three particles with different masses

The actual phase space integral for a three-particle final state with different masses in
parameterization 1 (see section 6.3) reads

Rpar 1
3 (s;m1,m2,m3) =

− π

2

1∫
−1

dcos θ

2π∫
0

dφ

1∫
0

dcos θ′
E′3,max∫
m3

dE3
1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,1

+
π

2

1∫
−1

dcos θ

2π∫
0

dφ

0∫
−1

dcos θ′
E3,max∫
E′3,max

dE3
1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,1

− π

2

1∫
−1

dcos θ

2π∫
0

dφ

0∫
−1

dcos θ′
E3,max∫
m3

dE3
1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,2

,

(6.32)
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6 Three particle phase space

where E1,1 and E1,1 are defined in equations (6.7) and (6.8), E3,max in equation (6.10),
E′3,max in equation (6.13) and D takes the form

D :=
∂(p2

2 −m2
2)

∂E1
= 2

(
E3 −

√
s− E1

√
E2

3 −m2
3 cos θ′√

E2
1 −m2

1

)
. (6.33)

Note the relative signs in the phase space integral (6.32), which originate from the ex-
plicitly taken absolute value of D for the specific integrals. The explicit θ-function is
dropped in (6.32), as the on-shell condition guarantees a positive energy of particle p2

anyway. Furthermore, recall that E1,1/2 is a function of (E3, cos θ′) and the integration
limit E3,max depends on cos θ′. Exchanging m1 ↔ m3 and E1 ↔ E3 yields the phase space
integrals for parameterization 2, while the integral for parameterization 3 is obtained by

replacing m1 → m2, m2 → m1 and cos θ′ → cos
∼
θ′ in the formulas of parameterization

2.

As the phase space integral has to be performed by means of numerical Monte Carlo
techniques finally, it is more convenient and most of all more efficient to write the three
separate integrals of (6.32) as only one integral of a sum of three terms introducing appro-
priate θ-step-functions to respect the original integration range. The phase space integral
(6.32) then takes the form

R̃par 1
3 (s;m1,m2,m3) = −π

2

1∫
−1

dcos θ

2π∫
0

dφ

1∫
−1

dcos θ′
E3,max∫
m3

dE3

[
θ(E′3,max − E3)θ(+ cos θ′)

1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,1

−θ(E3 − E′3,max)θ(− cos θ′)
1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,1

+ θ(− cos θ′)
1
D

√
E2

1 −m2
1

√
E2

3 −m2
3

∣∣∣∣
E1=E1,2

]
.

(6.34)

6.4.2 Three massive particles, two particles having identical
masses

For the casem := m1 = m2 the generic structure of the phase space integralsR3(s;m,m,m3)
is the same as given in equation (6.32) for the general case but with inserting the definitions
(6.18) for E1,1/2, (6.19) for E3,max and (6.20) for E′3,max.

6.4.3 Two massive particles with identical masses and one massless
particle

Particle p3 being massless, the phase space integral for parameterization 1 still takes the
form (6.32), where the formulas for E1,1/2 are given in (6.21), those for E3,max and E′3,max

in (6.22) and (6.23), respectively. However, the integrals for parameterization 2 reduces
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6.4 Phase space integral

to

Rpar 2
3 (s;m,m, 0) = −π

2

1∫
−1

dcos θ

2π∫
0

dφ

1∫
−1

dcos θ′

√
s/2∫

0

dE1
1
D′

√
E2

1 −m2
1 E3

∣∣∣∣
E3=E3(E1)

,

(6.35)

where E3(E1) is defined in equation (6.24) and

D′ :=
∂(p2

1 −m2)
∂E3

= 2
(
E1 −

√
s−

√
E2

1 −m2 cos θ′
)
. (6.36)

Parameterization 3 is obtained out of parameterization 2 as explained in subsection 6.4.1.

6.4.4 Three massless particles

All the particles being massless, the phase space integral simplifies to

Rpar 1
3 (s; 0, 0, 0) = −π

2

1∫
−1

dcos θ

2π∫
0

dφ

1∫
−1

dcos θ′

√
s/2∫

0

dE3
1
D
E1E3

∣∣∣∣
E1=E1(E3)

. (6.37)

Herein the expression of E1(E3) is given in equation (6.25) and

D :=
∂(p2

2)
∂E1

= 2
(
E1 −

√
s− E1 cos θ′

)
. (6.38)
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7 Analysis of the general γtt vertex in the
process GG→ tt̄γ

The aim of this chapter is the examination of the general γtt vertex looking at the top
quark pair production via gluon-gluon fusion plus additional photon radiation. However,
before doing that, the process GG→ tt̄, i. e. the same process without additional radiated
photon in the final state, is considered in section 7.1.

7.1 Process GG→ tt̄

In this section the calculation of the total reaction cross-section of the process GG→ tt̄ is
considered. The following Feynman-diagrams contribute to this process:

A�
p1

ptp2

ps
pt

Gν,b

Gµ,a

t̄f

te

ρ, c κ, c̃

B�
p1

pt

pt

p2

pt

Gµ,a te

Gν,b t̄f

c

c̃
C�p2

pt

pt

p1 pu

Gµ,a te

Gν,b t̄f

c

c̃

Figure 7.1: Feynman graphs for the process GG → tt̄. Greek indices at external particles and
vertices refer to the Dirac structure, the color structure is denoted by Latin indices.
Moreover, the momentum flow is indicated by small arrows next to the corresponding
four-vectors (bold symbols).

Diagram A is usually referred to as the s-channel graph, diagrams B and C as the
t- and u-channel graphs, respectively. The corresponding Feynman-amplitudes read:

MA = ur(pt)igsγκ(tc̃)efvs(pt)gsf
abc

[gµν(p1 − p2)ρ + gνρ(p2 + qs)µ + gρµ(−qs − p1)ν ] iDF,ρκ(qs)δc,c̃εµ,x(p1)εν,y(p2) (7.1a)

MB = ur(pt)igsγµ(ta)eciSF (qt)δc,c̃igsγν(tb)c̃fvs(pt)εµ,x(p1)εν,y(p2) (7.1b)

MC = ur(pt)igsγν(tb)eciSF (qu)δc,c̃igsγµ(ta)c̃fvs(pt)εµ,x(p1)εν,y(p2) (7.1c)

where the fermion spinors us and vs carry an additional polarization index s. The scalar
propagator Dµν

F (q) and the fermion propagator SF (q) are defined as

Dµν
F (q) = − 1

q2(+iε)
gµν (7.2)

SF (q) =
1

/q−mt(+iε)
=

/q +mt

q2 −m2
t (+iε)

. (7.3)
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7.1 Process GG→ tt̄

The gluon polarization vector is dentoted by εµ,x, the strong coupling constant by gs. The
(tc)ab are the generators of the SU(3) group, fabc correspond to the structure constants
of the SU(3) group (see also section 3.1). Summation over repeated indices is under-
stood.

The squared matrix element takes the form

|M|2 = |MA +MB +MC |2

= |MA|2 + |MB|2 + |MC |2 + 2MAM†B + 2MAM†C + 2MBM†C ,
(7.4)

where the symbol † denotes hermitian conjugation. Since there are two gluons in the initial
state with two physical polarizations and eight possible colors each, the squared matrix
element, averaged over polarization and color of the incoming particles and summed over
all polarizations and colors of the outgoing particles, reads

|M|2 =
1

22 · 82

∑
a,b,e,f︸ ︷︷ ︸

sum over color

∑
s,r,x,y︸ ︷︷ ︸

sum over polarization

|M|2. (7.5)

To see how the procedure of the calculation as outlined in section 5.3 works, the explicit
computing is performed for the part |MA|2 in the following. After starting with

|MA|2 =
1

256

∑
a,b,e,f

∑
s,r,t

MAM†A

=
1

256
g4
s

1
q4
s

∑
s,r

ur(pt)γρvs(pt)vs(pt)γρ̃ur(pt)

[gµν(p1 − p2)ρ + gνρ(p2 + qs)µ + gρµ(−qs − p1)ν ][
gµ̃ν̃(p1 − p2)ρ̃ + gν̃κ̃(p2 + qs)µ̃ + gρ̃µ̃(−qs − p1)ν̃

]∑
x,y

εµ,x(p1)ε∗µ̃,x(p1)εν,y(p2)ε∗ν̃,y(p2)∑
a,b,e,f

(tc)effabc(tc̃)fefabc̃,

(7.6)

we employ the completeness relations∑
s=1,2

us(p)us(p) = /p +m (7.7a)

∑
s=1,2

vs(p)vs(p) = /p−m. (7.7b)

The gluon polarization sum requires a more rigorous treatment. There are two possibilities
to handle this problem: Either one uses the physical polarization sum (5.12) or instead
employs the simple polarization sum∑

pol. s

εµ,s(p)ε∗ν,s(p)→ −gµν (7.8)

and additionally subtracts the contributions of the ghost graphs:
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D�pt

p1

ps
pt

t̄f

te

ρ, c κ, c̃

E�ptp2

ps
pt

t̄f

te

ρ, c κ, c̃

This is necessary to cancel the contributions of unphysical gluon polarizations due to the
involved three-gluon vertex. As the second approach keeps the computational effort much
lower compared to the first method, this approach is followed. The squared matrix element
(7.4) thus receives the corrections of the ghost graphs to become

|M|2 = |MA +MB +MC |2 − |MD|2 − |ME |2
= |MA|2 + |MB|2 + |MC |2 − |MD|2 − |ME |2 + 2MAM†B + 2MAM†C + 2MBM†C .

(7.9)

The amplitudes for the ghosts graph read:

MD = ur(pt)igsγν(tc)efvs(pt)
(
−gsfabcpµ1

)(
−i
gµν
q2
s

δcc̃

)
(7.10a)

ME = ur(pt)igsγν(tc)efvs(pt)
(
−gsfabcpµ2

)(
−i
gµν
q2
s

δcc̃

)
(7.10b)

Going back to the calculation of |MA|2, equation (7.6) becomes

|MA|2 =
1

256
g4
s

1
q4
s

Tr
[
(/pt

+mt)γρ(/pt
−mt)γρ̃

]
[gµν(p1 − p2)ρ + gνρ(p2 + qs)µ + gρµ(−qs − p1)ν ][
gµ̃ν̃(p1 − p2)ρ̃ + gν̃κ̃(p2 + qs)µ̃ + gρ̃µ̃(−qs − p1)ν̃

]
gµµ̃gνν̃

∑
a,b,e,f

(tc)ef (tc̃)fefabcfabc̃,

(7.11)

having performed the polarization sums, as discussed above. In the next step the color
factor, that is the sum in the last line, is evaluated. For this purpose, the identities

facdf bcd = C2(G)δab = N (7.12a)
tata = C2(r) · 1 (7.12b)

with

C2(G) = N = 3 (7.13a)

C2(r = N) =
N2 − 1

2N
=

4
3

(7.13b)

in SU(N = 3) for QCD are useful. Thus, one obtains∑
a,b,e,f

(tc)ef (tc̃)fefabcfabc̃ =
∑
e,f

(tc)ef (tc̃)fe · 3 δc,c̃ = Tr[tctc] · 3 =
4
3

Tr[1] · 3 = 12. (7.14)
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7.1 Process GG→ tt̄

Now the Dirac trace in equation (7.11) has to be calculated. Employing the linearity of the
trace and numerator algebra for Dirac matrices (see e. g. Ref. [44]), one yields

Tr
[
(/pt

+mt)γρ(/pt
−mt)γρ̃

]
= 4

(
pt ρpt ρ̃ + pt ρ̃pt ρ − gρ,ρ̃ pt · pt − gρ,ρ̃ m2

t

)
, (7.15)

where the four-vector dot-product

p · q ≡ pµqµ = pµqµ (7.16)

is introduced. Inserting (7.14) and (7.15) into equation (7.11) and contracting all Lorentz-
indices we find for on-shell external particles, i. e. p2

1/2 = 0 and p2
t/t

= mt, and after
algebraic simplification

|MA|2 =
3g4
s

8q4
s

[
3p1 · p2(pt · pt +m2

t ) + p2 · pt(2p2 · pt − pt · qs)

− p1 · pt(3p2 · pt + pt · qs) + p1 · pt(2p1 · pt − 3p2 · pt − pt · qs)

− pt · qs(p2 · pt + 2pt · qs)− (pt · pt + 3m2
t )(p1 · qs + p2 · qs + q2

s)
]
.

(7.17)

The next item on the agenda is to insert the scalar products in terms the phase space
parameterization. Since there are two particles in the final state, one variable is sufficient
for the phase space parameterization (cf. section 6.2). This parameter is chosen to be the
angle θ = ](~p, ~pt), that is the angle between the collision axis and the axis of the outgoing
particles (see figure 7.2).

~p −~p
−~pt

~pt

θ

Figure 7.2: Definition of the angle θ = ](~p, ~pt).

In the COM-frame the four-vectors of the external particles read

p1 =
(|~p|
~p

)
, p2 =

( |~p|
−~p
)
, pt =

(
Et

~pt

)
, and pt =

(
Et

−~pt

)
,

with |~p| = √s/2 and E2
t = |~pt|2 +m2

t = |~p|2. Hence, the scalar products involving external
particles take the form

p1 · p2 =
s

2
p2 · pt =

s

4
+ |~p||~pt| cos θ

p1 · pt =
s

4
− |~p||~pt| cos θ p2 · pt =

s

4
− |~p||~pt| cos θ

p1 · pt =
s

4
+ |~p||~pt| cos θ pt · pt =

s

2
−m2

t .

All residual scalar products are computed by replacing qs with p1 +p2 and making use of
the linearity of the scalar product. Consequently, inserting the scalar products, expression
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7 Analysis of the general γtt vertex in the process GG→ tt̄γ

(7.17) reduces significantly to

|MA|2 =
3g4
s

64s
(
11s+ 32m2

t + 5(s−m2
t ) cos2 θ

)
. (7.18)

The calculation of the remaining squared diagrams follows the same approach. Thus, only
the final result for the whole squared matrix element (7.9) is stated:

|M|2 =
g4
s

(
36m2

t − 23s+ 9
(
4m2

t − s
)

cos(2θ)
)

192s
(
4m2

t + s+
(
4m2

t − s
)

cos(2θ)
)2

·
(

176m4
t − 56m2

ts− 5s2 + 4
(−16m4

t + s2
)

cos(2θ) +
(−4m2

t + s
)2 cos(4θ)

)
.

(7.19)

The computation of the color factor for each squared diagram can be found in appendix
A. The differential cross-section then reads:

dσ
d cos θ

=
1

32πs2

√
(s− 4mt)s |M|2 (7.20)

Introducing the Mandelstam variables

s = q2
s = (pa + pb)2 = (pt + pt)

2 (7.21a)

t = q2
t = (pt − pa)2 = (pb − pt)

2 = m2
t −

s

2
+

1
2

√
s− 4m2

t

√
s cos θ (7.21b)

u = q2
u = (pa − pt)

2 = (pt − pb)2 = m2
t −

s

2
− 1

2

√
s− 4m2

t

√
s cos θ (7.21c)

with the property

s+ t+ u =
∑

external particles i

m2
i = 2 m2

t (7.22)

and considering the massless limitmt → 0 the familiar result (cf. e. g. Ref. [44])

dσ
dt

=
g4
s

96πs2

(
u

t
+
t

u
− 9

4

(
t2 + u2

s2

))
(7.23)

is reproduced.

The differential cross-section (7.20) can be integrated analytically to obtain the total
reaction cross-section. It is remarked at this point that the results for the process GG→ tt̄
are independent of the decay width of the top quark for a treatment of the decay width
as discussed in section 5.3 because the two involved momenta pt and pu are both timelike
(p2

t/u < 0).

7.2 Process GG→ tt̄γ

7.2.1 Calculation neglecting the top quark width

In this section the process GG → tt̄γ is considered, that is to say the process of the
previous section but with additional photon radiation. The eight Feynman graphs sketched
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in figure 7.3 (diagram A1-C3) contribute to this process. At first the top quark decay
width is neglected. Then we are allowed to employ the simple polarization sum (7.8)
for the external gluons if the contributions of the ghost diagrams (diagrams D1-E2 of
figure 7.3) are subtracted. The amplitudes of all Feynman diagrams are listed in appendix
B.1. The summation over the fermion polarization is accomplished the same way as in
equations (7.7) of the previous section. For the summation of the photon polarization
the simple polarization sum (7.8) may be used, too, as long as the decay width is set
to zero. As the additional radiated photon does not affect the color structure of the
involved graphs, the color factors computed in section 7.1 can be adopted. For example
any amplitude involving two A-graphs, such as |MA1|2 or MA1M†A2, has the same color
factor as the squared matrix element |MA|2 of section 7.1. Analogously, any amplitude
involving one of the B-graphs and one of the C-graphs, likeMB1M†C2, multiplies the color
factor of the MBM†C graph of the process GG → tt̄ and so on for the remaining terms.
The computation of the Dirac traces, the contracting and the analytical simplification
of the obtained expression for the squared matrix element is once more accomplished by
FeynCalc / Mathematica.

In the next step the scalar products are written in terms of the phase space parameteri-
zation. Referring to the notation introduced in section 6.3 we relate pa =̂ p1, pb =̂ p2,
p1 =̂ pt, p2 =̂ pt and p3 =̂ k. The scalar products involving external particles for phase
space parameterization 1 and 2 (see section 6.3) take the form:

p1 · p2 =
s

2
p2 · pt =

√
s

2
Et + ~p · ~pt

p1 · pt =
s

2
Et − ~p · ~pt p2 · pt =

s

2
−
√
s

2
(Et + Ek)− ~p · ~pt − ~p · ~k

p1 · pt =
s

2
−
√
s

2
(Et + Ek) + ~p · ~pt + ~p · ~k p2 · pk =

√
s

2
Ek + ~p · ~k

p1 · pk =
√
s

2
Ek − ~p · ~k pt · pt = Et(

√
s− Ek)−m2

t + ~p · ~k,

with

~p · ~pt =
√
s

2

√
E2

t −mt cos θ

~p · ~k =
√
s

2
Ek

(
sin θ sin θ′ cosφ+ cos θ cos θ′

)
~pt · ~k =

√
E2

t −m2
t Ek cos θ′.

Once again, to calculate the remaining scalar products the four-vectors involved in the
propagators are expressed in terms of the external momenta:

qs = p1 + p2

qt = pt − p1 q′t = pt − p1 + k

qu = pt − p2 q′u = pt − p2 + k

p′t = pt + k p′t = pt + k

Having done these replacements for the scalar products, it is time to perform the phase
space integral as discussed in subsection 6.4.3. As argued in section 5.3, a cut of the
minimal energy of the radiated photon Ek,min has to be applied, which is chosen to be
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Figure 7.3: Feynman graphs for the process GG → tt̄γ. Greek indices at external particles and
vertices refer to the Dirac structure, the color structure is denoted by roman indices.
Moreover, the momentum flow is indicated by small arrows next to the corresponding
four-vectors (bold symbols).
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Figure 7.4: Pull between the calculation approach without any substitution of integration variables
and a more sophisticated and reliable method, which yields the correct results, as a
function of the top quark mass at a center-of-mass energy of

√
s = 1.0 TeV.

Ek,min = 5 GeV. It is furthermore convenient to replace the integral
∫ 2π

0 dφ in favor of
2
∫ π

0 dφ, which is possible since the integrand is a function of cosφ. At first we decide to
do the integration in terms of phase space parameterization 1. However, it shows that
the numeric integration converges badly for top quark masses mt � s. To stress this
statement the pull, defined as

pull(σa, sa;σb, sb) :=
σa − σb√
s2
a + s2

b

, (7.24)

where σ is the estimated value for the cross-section and s its estimated error, is considered.
As obvious from the definition (7.24), this quantity should be in the order of one in case
of consistent results of both calculation approaches a and b. The pull of the cross-section
calculated with two different methods is plotted in figure 7.4 as a function of mt for a
center-of-mass energy of

√
s = 1.0 TeV. The first method employs just the phase space

integral for parameterization 1 as stated in subsection 6.4.3 without any substitution of
integration variables. The VEGAS integrator gives an estimate of the relative error of 10−3

for each data point. The second method uses a more sophisticated approach, which will be
derived later on. As will be seen then, the results obtained with this method are reliable.
As is obvious from figure 7.4, the computed values for the cross-section employing the
simple method show a systematic deviation from the correct result. The values are too
small; the smaller the top quark mass, the more severe the discrepancy. The Monte Carlo
integrator significantly underestimates the integral and gives an error estimate which is
much too small. To understand the reason for that, recall the generic structure of the
propagators involved in bremsstrahlung diagrams, as discussed in section 5.3. In that
section it was seen that the denominator of the propagators may become very small in
specific phase space regions. In addition, the discussion of the basic principals of Monte
Carlo integration in section 4.3 implies that such quasi-singularities are problematic and
give rise to convergence problems. There it is also discussed that one may overcome these
problematics by virtue of adequate substitutions of integration variables. In fact, taking
a closer look at the Feynman diagrams 7.3, one notices that six problematic propagators
with different momenta occur. As a consequence each term is factorizable near its quasi-
singularity in a different coordinate system. In other words, there is no substitution where
all the terms factorize at the same time. As argued in section 4.3, this is however exactly
the motivation for the multi-channel Monte Carlo approach.
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7 Analysis of the general γtt vertex in the process GG→ tt̄γ

In the following paragraph the mathematical structure of the denominators near the prob-
lematic regions is analyzed with the aim of finding appropriate parameterizations for each
quasi-pol. This knowledge will eventually be used to implement a multi-channel Monte
Carlo environment in the programming language C to obtain a better convergent phase
space integration with the VEGAS integrator.

Appropriate parameterization of the quasi-singularities
Although six propagators with different momenta are encountered in the Feynman am-
plitudes (see figure 7.3), two denominators each can be grouped together to be described
by the same set of coordinates, however, still favoring a distinct substitution in these
coordinate systems. We begin with the analysis of the asymptotic behavior near the
quasi-singularities of the propagator with momentum p′t = pt + k, as occurring in graphs
MA1, MB1 and MC1. Its denominator takes the form

(pt + k)2 −m2
t = 2pt · k = 2Ek

(
Et −

√
E2

t −m2
t cos θ′

)
. (7.25)

This expression becomes small for small values of Ek and in the case Et � mt for
cos θ′ → 1 (cf. section 5.3). As for a specific phase space integration mt is fixed, the
ratio mt/Et is smallest for the maximum possible value of Et, i. e. for Et =

√
s/2. Thus,

the asymptotic behavior near the quasi-singularities of denominator (7.25) can be factor-
ized into

p′t
2 −m2

t ∼ 2Ek

(
Et −

√
E2

t −m2
t cos θ′

)∣∣∣∣
Et=
√
s/2

= Ek

(√
s−

√
s− 4m2

t cos θ′
)
.

(7.26)

Analogously, one finds for the propagator involving momentum p′
t

= pt+k

2pt · k =
(√

s

2
− Et − Ek

)
Ek +

(
~pt + ~k

)
· ~k =

(√
s

2
− Et

)
Ek +

√
E2

t −m2
tEk cos θ′

(7.27)

and asymptotically

p′t
2 −m2

t ∼ 2pt · k
∣∣∣∣
Et=
√
s/2

= Ek

(√
s+

√
s− 4m2

t cos θ′
)
. (7.28)

Therefore, an appropriate parameterization for the denominators with momenta p′t and
p′

t
should involve the parameters Ek and cos θ′, as does parameterization 1 introduced in

section 6.3. The next term to consider is the propagator involving momentum qt = pt−p1,
which occurs in diagrams MB2 and MB3. Writting the denominator of this propagator
explicitly, one obtains

q2
t −m2

t = −2pt · p1 = −2Et

√
s

2
+ 2~pt · ~p = −√sEt

(
1−

√
1− m2

t

E2
t

cos θ

)
. (7.29)

This denominator is problematic either if Et is minimal, that is Et = mt, or if Et is
maximal, that is Et =

√
s/2, because then the second factor becomes small for cos θ → 1.
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involved asymptotic behavior phase space
Ch. momentum of quasi-singularity parameter.

y

z

x

~pt

~p ~k

θ′θ

φ

1, 2 p′t, p′
t

Ek ·
(√

s±
√
s− 4m2

t cos θ′
)

parameter. 1
Ek, θ, θ′, φ

y

z

x

~pt

~p ~k

θ′θ

φ

3, 4 qt, qu Et ·
(√

s±
√
s− 4m2

t cos θ
)

parameter. 2
Et, θ, θ′, φ

y

z

x

~pt

~p ~k
θ̃′θ̃

φ̃

5, 6 q′t, q′u Et ·
(√

s±
√
s− 4m2

t cos θ̃
)

parameter. 3

Et, θ̃, θ̃
′, φ̃

Table 7.1: Asymptotic behavior of the six problematic propagators and the employed parameter-
ization. For two channels each the same set of parameters is used. The number of the
phase space parameterization refers to the introduced parameterizations in section 6.3.

Hence, a suitable factorization of this quasi-singularity is

q2
t −m2

t ∼ Et

(√
s−

√
s− 4m2

t cos θ
)

(7.30)

involving the parameters Et and cos θ, like in parameterization 2 of section 6.3. The pre-
ceding comments are also true for the propagator involving momentum q′t = pt−p1+k, the
only change being the sign of the cos θ term. Same reasoning yields

q2
u −m2

t ∼ Et

(√
s−

√
s− 4m2

t cos θ̃
)

(7.31)

and q′u
2 −m2

t ∼ Et

(√
s+

√
s− 4m2

t cos θ̃
)
, (7.32)

that is to say an appropriate parameterization should involve the parameters Et and cos θ̃
(cf. parameterization 3 of section 6.3). Table 7.1 summarizes the above found asymptotic
behavior of the six involved propagators and the suggested corresponding parameteriza-
tion. It is remarked at this point that these parameterizations are not the only possible
choice. However, it has shown empirically that significant enhancements of the perfor-
mance of the numerical integration can be achieved with them.

Having found a suitable coordinate system, where the quasi-singularity factorizes, for each
problematic denominator, the next step is to find the substitution in these coordinates
that eliminates the quasi-singularity. Knowing already the asymptotic behavior of it,
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this procedure is straight-forward. Consider for example the asymptotic behavior of the
propagator involving momentum p′t (expression (7.26)) with the original integration over
Ek from Ek,min to Ek,max and over x ≡ cos θ′ from -1 to 1. Since we want the Jacobian
invoked by the substitution to cancel the quasi-singularity (cf. example integral (4.5) in
section 4.3), in order to obtain the original integration variables in terms of the new ones
E′k and x′, we perform the analytical integrals∫

dEk
1
Ek

= lnEk ≡ E′ (7.33a)

∫
dx

1(√
s−

√
s− 4m2

t x
) =

ln
[√

s−
√
s− 4m2

t x
]

−
√
s− 4m2

t

≡ x′ (7.33b)

and solve for Et and x, respectively:

Ek = eE
′

(7.34a)

x =
exp

[
−
√
s− 4m2

t x
′
]

+
√
s

−
√
s− 4m2

t

. (7.34b)

As the integration domain of each new variables must be the unit hypercube (cf. section
4.3), the substitution is furthermore normalized to the integration range 0 to 1. We
eventually obtain for the integral in terms of the new variables

Ek,max∫
Ek,min

dEk

1∫
−1

dx f(Ek, x) =

1∫
0

dE′
1∫

0

dx′ gpt
(
Ek, pt(E′), xpt(x′)

)
f
(
Ek, pt(E′), xpt(x′)

)
(7.35)

with

Ek, pt(E′) = Ek,min

(
Ek,max

Ek,min

)E′
(7.36a)

xpt(x′) =

√s−(√s−√s− 4m2
t√

s+
√
s− 4m2

t

)x′ (√
s+

√
s− 4m2

t

) 1√
s− 4m2

t

(7.36b)

gpt(Ek, x) = Ek

(√
s−

√
s− 4m2

t x

)
ln
[
Ek,max

Ek,min

]
ln

[√
s−

√
s− 4m2

t√
s+

√
s− 4m2

t

]
1√

s− 4m2
t

.

(7.36c)

This procedure of finding a normalized substitution whose Jacobian kills a specific quasi-
pol can easily be automatized employing a computer algebra system like Mathemat-
ica.

Multi-channel Monte Carlo integration
Having obtained all the normalized parameterizations in the previous paragraph, this
knowledge is now used to implement the multi-channel Monte Carlo integration envi-
ronment, which is done in the programming language C. As we found six different help-
ful substitutions, six integration channels are employed. The function to be integrated
by the VEGAS algorithm takes the form (with x ≡ cos θ′, y ≡ cos θ, x̃ ≡ cos θ̃′, ỹ ≡
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cos θ̃)

prefactor ·
[

intpar 1

(
xpt(x′), ypt(y′), Ek, pt(E′), φ(φ′)

)
(channel 1)

+intpar 1

(
xpt̄(x

′), ypt̄(y
′), Ek, pt̄(E

′), φ(φ′)
)

(channel 2)
+intpar 2

(
xqt(x′), yqt(y′), Et, qt(E′), φ(φ′)

)
(channel 3)

+intpar 2

(
xqu(x′), yqu(y′), Et, qu(E′), φ(φ′)

)
(channel 4)

+intpar 3

(
x̃qt′(x′), ỹqt′(y′), Et, qt′(E

′), φ̃(φ′)
)

(channel 5)

+intpar 3

(
x̃qu′(x′), ỹqu′(y′), Et, qu′(E

′), φ̃(φ′)
)]

(channel 6)

(7.37)

where the integration range of all the four parameters (x′, y′, E′, φ′) is the unit hypercube
(from 0 to 1). The terms in (7.37) are defined as

intpar 1(x, y, Ek, φ) =

α1 g |M|2θ(E′k,max − Ek)θ(+x)
1
D

√
E2

t −m2
t Ek

∣∣∣∣
Et=Et,1

−α1 g |M|2θ(Ek − E′k,max)θ(−x)
1
D

√
E2

t −m2
t Ek

∣∣∣∣
Et=Et,1

+α1 g |M|2 θ(−x)
1
D

√
E2

t −m2
t Ek

∣∣∣∣
Et=Et,2

,

(7.38)

intpar 2(x, y, Et, φ) = α2 g |M|2 1
D′

√
E2

t −m2
t Ek

∣∣∣∣
Ek=Ek(Et)

(7.39)

and

intpar 3(x̃, ỹ, Et, φ̃) = α3 g |M|2 1
D′

√
E2

t
−m2

t Ek

∣∣∣∣
Ek=Ek(Et)

(7.40)

with the total probability density

1
g

=
1

g(x, y, Ek, Et, ỹ)
≡ α1

gpt(x,Ek)
+

α1

gpt̄(x,Ek)

+
α2

gqt(y,Et)
+

α2

gqu(y,Et)
+

α3

gqt(ỹ, Et)
+

α3

gqu(ỹ, Et)
. (7.41)

The factors αi (i = 1, 2, 3) are the probabilities for each channel (cf. section 4.3). For the
discussion in this paragraph all factors αi are set equally to 1. Since the algebraic struc-
ture of the substitutions for the propagators involving the momenta pt/pt′ and pu/pu′ ,
respectively, is the same, we have gqt(y,E) = gqt′(y,E) and gqu(y,E) = gqu′(y,E). For
this reason the symbol ′ is omitted at the last two terms in equation (7.41). Note that
the terms intpar i in expression (7.37) are just the integrands of the phase space integral
for parameterization i as introduced in subsection 6.4.3 multiplied with αi, the total prob-
ability density g and the squared matrix element |M|2. Since g takes the arguments
(x, y, Ek, Et, ỹ), some of them have to be expressed in terms of the parameters of the
corresponding phase space parameterization. In intpar 3 the variables x and y have to be
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expressed in terms of the other variables, which then read

x = cos θ′ =
~pt · ~k
|~pt| · |~k|

=

(
−~pt − ~k

)
· ~k∣∣∣~pt + ~k

∣∣∣Ek

= −
√
E2

t
−m2

t x̃+ Ek√
E2

t
−m2

t + E2
k + 2

√
E2

t
−m2

t Ek x̃

(7.42a)

y = cos θ =
~pt · ~p
|~pt| · |~p| =

(
−~pt − ~k

)
· ~p∣∣∣~pt + ~k

∣∣∣ √s2 = −
√
E2

t
−m2

t ỹ + Ek

(√
1− ỹ2

√
1− x̃2 cos φ̃+ x̃ỹ

)
√
E2

t
−m2

t + E2
k + 2

√
E2

t
−m2

t Ek x̃

.

(7.42b)

The formulas for x̃(Ek, Et, x) and ỹ(Ek, Et, x, y, φ) are of course exactly the same apart
from the replacements x↔ x̃, y ↔ ỹ, φ↔ φ̃ and Et ↔ Et.

Further enhancement: tt̄-symmetry
The multi-channel approach presented so far employs six different integration channels.
However, by virtue of employing the tt̄-symmetry this number can effectively be reduced
by two, as argued in the following. The crucial point of this further simplification is the
fact that inverting the direction of the fermion line in all the Feynman diagrams (see
figure 7.3) yields exactly the same sum of amplitudes. The consequences of the inverting
is twofold: On one hand, the role of the top quark and the antitop quark is interchanged,
on the other hand the sign of the momenta of the propagators is reversed, as the fermion
lines go now into the opposite direction as the momentum. Consider for example the
(original) Feynman graph MB1. Diagrammatically it is easily seen that by inverting the
fermion line this graph is transformed into the (original) graphMC2. This equivalence can
be shown rigorously looking at the expression for the Feynman amplitudeMB1 explicitly,
with q′t = pt − p1 + k:

MB1 ∝ u(pt)Γλ
/pt

+ /k +mt

2pt · k γµ
/pt
− /p1

+ /k +mt

(pt − p1 + k)2 −m2
t

γνv(pt). (7.43)

Inverting the fermion line yields, according to the Feyman rules,

∝ u(pt)γ
ν
−/pt

+ /p1
− /k +mt

(pt − p1 + k)2 −m2
t

γµ
−/pt
− /k +mt

2pt · k Γλv(pt). (7.44)

Taking into account the conservation of four-momentum in the form pt = p1 +p2−pt−k
in the first propagator (involving the original four-momentum q′t) and performing the
replacement pt ↔ pt, one eventually finds

∝ u(pt)γν
/pt
− /p2

+mt

(pt − p2)2 −m2
t

γµ
−/pt
− /k +mt

2pt · k
Γλv(pt), (7.45)

which equals exactly the original amplitude MC2, since qu = pt − p2. Analogously, the
relationsMA1 ↔MA2,MB2 ↔MC1 andMB3 ↔MC3 with respect to the tt̄-symmetry
can be established. In summary, we thus have

M(Et, θ, θ
′, φ) =M(Et,

∼
θ,
∼
θ
′
,
∼
φ). (7.46)

50



7.2 Process GG→ tt̄γ

For the definition of the involved parameters is referred to section 6.3. As the only differ-
ence between the phase space parameterizations 2 and 3 is the interchange of all variables
involving the top quark with the corresponding ones involving the antitop quark, this re-
sult can be employed to collect the integration channels 3/5 and 4/6, respectively. The
new multi-channel integrand hence takes the form

prefactor ·
[

intpar 1

(
xpt(x′), ypt(y′), Ek, pt(E′), φ(φ′)

)
+intpar 1

(
xpt̄(x

′), ypt̄(y
′), Ek, pt̄(E

′), φ(φ′)
)

+int′par 2

(
xqt(x′), yqt(y′), Et, qt(E′), φ(φ′)

)
+int′par 2

(
xqu(x′), yqu(y′), Et, qu(E′), φ(φ′)

)]
,

(7.47)

where the function intpar 1 is the same as in expression (7.37). However, the term int′par 2

differs slightly from intpar 2 (see expression (7.39)), the difference being the total probability
density g. The new total probability density g′ now takes the form

g′ = g(x, y, Ek, Et, ỹ) + g(x̃, ỹ, Ek, Et, y) =(
α1

gpt(x,Ek)
+

α1

gpt̄(x,Ek)
+

α2

gqt(y,Et)
+

α2

gqu(y,Et)
+

α2

gqt(ỹ, Et)
+

α2

gqu(ỹ, Et)

)−1

+
(

α1

gpt(x̃, Ek)
+

α1

gpt̄(x̃, Ek)
+

α2

gqt(y,Et)
+

α2

gqu(y,Et)
+

α2

gqt(ỹ, Et)
+

α2

gqu(ỹ, Et)

)−1

.

(7.48)

For symmetry reasons the probability factors αi are set equal in the first two channels
and in channels three to six, respectively. For the following statements both factors α1

and α2 are set to 1. The advantage of the integrand (7.47) is that the sampling of the
squared matrix element |M|2, which by far consumes the largest amount of computational
costs, has to be performed only four times compared with six times for the former inte-
grand (7.37). Nevertheless, the problematic quasi-singularities of the integrand are still
canceled by the Jacobians, i. e. both integrands converge equally well. Indeed, it shows
that the computational costs for the integration of (7.47) is reduced by approximately
30% compared to the integration of (7.37). Yet, it must be remarked that one can only
profit from the above presented enhancement so easily if the top quark and the antitop
quark are treated equally, that is to say, in particular, if the same (or no) cuts regarding
the top and the antitop quark are applied, because otherwise the tt̄-symmetry is broken.
However, that does not mean that one cannot employ the tt̄-symmetry in such scenarios
at all. It is more the case that the treatment becomes more sophisticated (see section
8.1).

Determination of the probability factor α
Up to now we have not benefited from a favorable choice for the probability factors for
the reduction of the variance of the numerical integration. For the integral (7.47) there
is only one free parameter in doing so, since on must satisfy the normalization condition
(4.9b). Thus, the only parameter to be varied is α := α1 = 1− α2. By simply computing
the cross-section for different values of α, the most favorable value turned out to be
α = 0.99. A reduction of the computational costs by roughly 30 % to 60 % (additionally
to the enhancements mentioned before) is achieved this way. The best value for α itself is
approximately independ of the ratio mt/

√
s.
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Figure 7.5: (a) Total reaction cross-section for the process GG → tt̄γ as a function of the center-
of-mass energy

√
s, where a cut on the minimal energy of the radiated photon of

Ek,min = 5 GeV is applied. (b) Semi-logarithmic plot of the total reaction cross-
section for the process GG→ tt̄γ as a function of the value for the cut on the minimal
energy of the radiated photon Ek,min at a center-of-mass energy of

√
s = 1.0 TeV. The

straight line is a linear fit to the plotted points, where the three ones with largest Ek,min

are omitted. In both calculations the top quark mass is assumed to be mt = 172 GeV
and the top quark width is neglected. The error bars due to numerical integration are
smaller than the dot size.

Discussion of results
For the following discussion of results the optimized phase space integration as presented
in expression (7.47) with α = 0.99 is employed. The hard scattering total reaction cross-
section for the process GG → tt̄γ as a function of the center-of-mass energy

√
s with

a top quark mass of mt = 172 GeV and a cut on the minimal energy of the radiated
photon of Ek,min = 5 GeV is plotted in figure 7.5(a). The relative error due to numerical
integration is 10−4 for each data point in this and the following plots. As expected, the
cross-section rises sharply for center-of-mass energies slightly above the energy threshold
(2mt) to reach a peak around

√
s = 1 TeV and then gradually decreases. Figure 7.5(b)

shows the cross-section as a function of the minimal energy of the radiated photon Ek,min at
a center-of-mass energy of

√
s = 1.0 TeV. The logarithmic dependence is evident for small

values of Ek,min (cf. the discussion of the divergent behavior of bremsstrahlung processes in
section 5.3). Finally, the cross-section as a function of cos θ′, i. e. of the cosine of the angle
between the three-momenta of the top quark and the radiated photon, is displayed in figure
7.6(a) for a center-of-mass energy of

√
s = 1.0 TeV, a top quark mass of mt = 172 GeV

and a cut on the minimal energy of the radiated photon of Ek,min = 5 GeV. This plot is
obtained by computing the total reaction cross-section with applying additional cuts on
cos θ′. Each point indicates the value for the cross-section in a range of ∆cos θ′ = 0.1. For
example the point on the left at cos θ′ = −0.95 gives the value for the cross-section in the
range −1 < cos θ′ < −0.9. The observed kinks in the graph for values of | cos θ′| close to
one are independent of the cut Ek,min but sensitive to the top quark mass. A larger mass
moves the kinks to smaller values of | cos θ′|.

Comparison with WHIZARD
The results of the semi-analytical calculation for the process GG → tt̄γ are compared
to the results obtained by WHIZARD in this paragraph. For this approach the total cross-
sections discussed above are computed once again employing the WHIZARD program system.
To facilitate a quantitative comparison all parameters are set to exactly the same values
as in the previous calculations. The signed pull between both obtained results for the
cross-section as a function of the center-of-mass energy is plotted in figure 7.7(a), the one
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Figure 7.6: (a) Cross-section for the process GG→ tt̄γ as a function of cos θ′ for a center-of-mass
energy of

√
s = 1.0 TeV, a top quark mass of mt = 172 GeV and a cut on the minimal

energy of the radiated photon of Ek,min = 5 GeV. The plot is obtained by applying cuts
on cos θ′ for each section. The error bars due to numerical integration are smaller than
the dot size. (b) Pull between the results of the semi-analytical calculation and the ones
of WHIZARD for the cross-section as a function of cos θ′ (

√
s = 1.0 TeV; mt = 172 GeV;

Ek,min = 5 GeV). The straight dashed line indicates the mean of all values.

for the cross-section as a function of the minimal energy of the radiated photon Ek,min

in figure 7.7(b) and the pull for the cross-section as a function of cos θ′ in figure 7.6(b).
The straight dashed line indicates the mean of the signed pull in each plot. Whereas the
estimated relative error due to numerical integration for the semi-analytical calculation is
10−4 for each data point in all the plots, the corresponding relative errors for the results
of WHIZARD vary slightly. For figures 7.7(a) and (b) they are in the order of 1.5 · 10−4,
while for figure 7.6 the relative error varies in the range between 2 · 10−4 for | cos θ′| ∼ 1
and 5 · 10−4 for | cos θ′| ∼ 0.
As both the semi-analytical approach and WHIZARD employ Monte Carlo integration tech-
niques, the values for the pull statistically fluctuate around 0. Since only three out of
32 values exceed ±3 and the absolute value of the mean of all values for each plot is
significantly below 1, a good accordance of WHIZARD with the semi-analytical approach
is manifest. For a more quantitative comparison of both calculation approaches is also
referred to chapter 9.

7.2.2 Calculation including the top quark width

Up to now the width of the top quark has been neglected. To see how a non-vanishing
width affects the results, the process GG → tt̄γ with the SM γtt vertex is considered
once again, this time including a finite top quark width Γt. At first glance the only thing
changing in the calculation procedure is the additional term imtΓt in the denominator of
the propagators involving spacelike momenta, i. e. in the propagators with momenta p′t
and p′

t
. However, as discussed in section 5.3, such terms violate Gauge invariance and

require the usage of the physical polarization sum (5.12) both for the external gluons and
the photon. The additional ghost graphs can then be dropped. Yet, due to the more
involved polarization sum the computational effort for calculating the squared matrix
element significantly increases and so does the length of the obtained expression. Note
that this statement is not true for the WHIZARD program package. Calculating the matrix
elements efficiently as helicity amplitudes, WHIZARD always uses the physical polarization
sum anyway.
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Figure 7.7: (a) Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section for the process GG→ tt̄γ as a function of the center-of-mass energy√
s, where a cut on the minimal energy of the radiated photon of Ek,min = 5 GeV is

applied. (b) Semi-logarithmic plot of the pull between the results of the semi-analytical
calculation and the ones of WHIZARD for the cross-section for the process GG→ tt̄γ as
a function of the value for the cut on the minimal energy of the radiated photon Ek,min

at a center-of-mass energy of
√
s = 1.0 TeV. The straight dashed line indicates the

mean in each plot.

In order to enhance the performance of the numerical integration, the same multi-channel
approach as introduced in the preceding subsection is employed. Though the structure
of the quasi-singularities of the propagators involving momenta p′t and p′

t
has changed

slightly, it showed that the suggested integration channels of the preceding section still yield
satisfactory performance enhancements. Thus, the phase space integration is performed
as presented in expression (7.47). In the following discussion the top quark width is
assumed to be Γt = 1.523 GeV. The total reaction cross-section is analyzed as a function
of the center-of-mass energy (see figure 7.8(a)), the mass of the top quark (see figure
7.8(c)) and the value for the cut on the minimal energy of the radiated photon Ek,min

(see figure 7.8(e)). In these graphs the relative deviation ∆ = (σ0 − σΓt)/σ0 of the total
reaction cross-section of the calculation without considering the top quark width (σ0) and
of the one with Γt = 1.523 GeV (σΓt) is shown. Additionally, to ensure that the physical
polarization sum is indeed necessary, the computation is performed once again using the
simple polarization sum. It shows that the effect of the top quark width is most prominent
for small values of the top quark mass and small values for Ek,min. This behavior seems
reasonable, since Γt becomes the dominant term in the denominator of the propagator in
this parameter region. Yet, the effect is maximal of the order of 1% for mt = 172 GeV
and Ek,min = 5 GeV, which are the values that will be used later on for the analysis of
the general vertex. Moreover, the effect of the top quark width on the cross-section as a
function of cos θ′ is examined at a center-of-mass energy of

√
s = 1.0 TeV. As obvious

from figure 7.8(g), the relative deviation ∆ tends to 0 for cos θ′ ≈ 0 but increases for
| cos θ′| approaching 1.

The results for the calculation for the cross-sections including the top quark width using
the physical polarization sum are compared to WHIZARD. For this purpose the pull between
the semi-analytical results and the results of WHIZARD are shown in figures 7.8(b) for σ(

√
s),

7.8(d) for σ(mt), 7.8(f) for σ(Ek,min) and 7.8(h) for σ(cos θ′).
As in the previous subsection the values for the pull are statistically distributed around
0, while very few points with an absolute value for the pull greater than 3 are observed.
Since also the means of the values for the pull is very close to 0, a good accordance
of the results of WHIZARD with the ones of the semi-analytical approach may safely be
assumed.
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Figure 7.8: Plots on the left: Relative deviation ∆ = (σ0 − σΓt)/σ0 of the cross-section for the
calculation without considering the top quark width (σ0) and of the one with Γt =
1.523 GeV (σΓt). Blue points indicate the values where the physical polarization sum
is used (for σΓt), red crosses the ones where the simple polarization sum is used. Plots
on the right: Pull between the results of the semi-analytical calculation and the ones
of WHIZARD. In both calculations the physical polarization sum is used. The straight
dashed line indicates the mean. In figure (a) and (b) ∆ and the pull are shown as a
function of the center-of-mass energy

√
s (mt = 172 GeV; Ek,min = 5 GeV), in (c)

and (d) as a function of the top quark mass (Ek,min = 5 GeV;
√
s = 1.0 TeV), in (e)

and (f) as a function of the value for the cut on the minimal energy of the radiated
photon Ek,min (mt = 172 TeV;

√
s = 1.0 TeV) and in (g) and (h) as a function of cos θ′

(mt = 172 TeV; Ek,min = 5 GeV;
√
s = 1.0 TeV), respectively. Note that the x-axis is

scaled logarithmically for the graphs (c) to (f).
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7.2.3 Calculation including the general γtt-vertex

In this section the process GG→ tt̄γ including the general γtt vertex

Γµ(k) = γµfA
V −

υ

Λ2
iσµνkν(dA

V + i dA
Aγ5) (7.49)

(cf. section 3.3) is considered, where υ = 246 GeV and Λ = 1 TeV. The procedure of
calculating the cross-section, as discussed in the previous subsections, is not affected by the
general couplings. However, the more involved structure of the vertex once again increases
significantly the computational costs both of calculating the squared matrix elements and
the numerical integration. Since we found in subsection 7.2.2 that the effect of the top
quark width is maximally of the order of 1% for physically interesting parameters, one
may expect that the qualitative results of the analysis of the general γtt vertex do not
change if the top quark width is neglected. Moreover, the quantitative accordance with
WHIZARD for the SM-vertex including the top quark width was already seen in subsection
7.2.2. Hence, in the following discussion we abandon the consideration of the top quark
width in favor of performance.

Since the general vertex (7.49) involves a γ5-matrix, terms of the form

pa,µ pb,ν pc,ρ pd,σ εµνρσ (7.50)

occur in the squared matrix element, where εµνρσ denotes the fully antisymmetric symbol
and pi,µ is any of the internal or external four-momenta occurring in the Feynman-graphs.
The εµνρσ-term vanishes if at least one of the involved four-momenta can be expressed as
a linear combination of the other four-momenta. Consequently, for a three-particle final
state any term of the form (7.50) either vanishes or is equivalent to

±pk,µ p1,ν p2,ρ pt,σ ε
µνρσ. (7.51)

This observation is employed to simplify the obtained expression for the squared matrix
element before integration.

Discussion of results
For the following discussion the function

δσ :=
σanom. − σSM

σSM
(7.52)

is defined, which is the normalized deviation of the cross-section with anomalous couplings
σanom. from the SM cross-section σSM. To see how each of the anomalous coupling pa-
rameters affects the cross-section qualitatively, at first only one of the three anomalous
couplings fA

V , dA
V and dA

A is varied simultaneously, while the SM values are kept for the
remaining two parameters. As expected from the structure of the vertex, a variation of
the parameter fA

V then just induces a global rescaling of the SM cross-section, which is
proportional to fA

V
2. Yet, the parameters dA

V and dA
A have a more interesting influence.

Figure 7.9(a) shows the deviation δσ as a function of the center-of-mass energy
√
s for

dA
V = 1 and dA

A = 1, the other parameters taking the SM values. Two main conclusions can
be drawn from this plot: Firstly, δσ is dependent on the center-of-mass energy for both
couplings. Secondly, the dependence on

√
s for dA

V = 1 differs from the one for dA
A = 1.

This observation will afterwards be employed when formulating a strategy to distinguish
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Figure 7.9: (a) Normalized deviation δσ := (σanom.−σSM)/σSM of the cross-section with anomalous
couplings σanom. from the SM cross-section σSM as a function of the center-of-mass
energy

√
s (mt = 172 GeV; Ek,min = 5 GeV). (b) Normalized deviation δσ = (σanom.−

σSM)/σSM as a function of cos θ′ (
√
s = 500 GeV; mt = 172 GeV; Ek,min = 5 GeV). In

both plots the data set with dA
V = 1 is illustrated with blue points, the one with dA

A = 1
with red crosses. The remaining anomalous parameters are set to their SM values.
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Figure 7.10: Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section for the process GG → tt̄γ as a function of the center-of-mass
energy

√
s (mt = 172 GeV; Ek,min = 5 GeV). The anomalous coupling dA

V is set to
1 in figure (a), while dA

A = 1 in figure (b). The remaining couplings take SM values.
The straight dashed line indicates the mean in each plot.

these two couplings through measurement. The effect of the anomalous couplings is also
examined for the cross-section as a function of cos θ′ in an analogous way. The values for
δσ are plotted in figure 7.9(b) for a center-of-mass energy of

√
s = 500 GeV. It shows that

here the qualitative dependence is the same for dA
V > 0 and dA

A > 0. A rescaling of the
points for dA

A = 1 by a factor of ∼ 10 would yield a similar shape as observed for dA
V = 1 for

the dependence of the cross-section on cos θ′. As a consequence, the analysis of δσ(cos θ′)
is not useful for the distinction of the anomalous couplings.

Comparison with WHIZARD
For comparison of the results of the preceding paragraph with WHIZARD the corresponding
pulls are calculated. Figure 7.10 depicts the pull for the total reaction cross-section σ(

√
s)

for dA
V = 1 (a) and dA

A = 1 (b), all other couplings taking SM values. The pull for the
cross-section as a function of cos θ′ is shown in figure 7.11(a) and (b) for dA

V = 1 and
dA

A = 1, respectively.
Also including anomalous top quark photon couplings the results of WHIZARD are fully
consistent with the ones of the semi-analytical approach, since the values for the pull
closely fluctuate around 0.
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Figure 7.11: Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section for the process GG→ tt̄γ as a function of cos θ′ (

√
s = 500 GeV;

mt = 172 GeV; Ek,min = 5 GeV). The anomalous coupling dA
V is set to 1 in figure (a),

while dA
A = 1 in figure (b). The remaining couplings take SM values. The straight

dashed line indicates the mean in each plot.

7.3 Strategy to distinguish the anomalous
couplings

7.3.1 Strategy to distinguish the anomalous couplings on parton
level

The information gathered in the previous section can be employed to formulate a strategy
to distinguish the three unknown parameters of the general γtt vertex in a fictitious exper-
imental measurement. In this subsection the discussion will be led on parton level, that is
to say, in particular, under the assumption that the precise determination of the center-
of-mass energy of the event is possible. In this idealized scenario a strategy including the
following two steps is suggested:

1. Measurement of the cross-section for the process GG → tt̄γ at different center-of-
mass energies

√
s

2. Calculation of the deviation of the cross-section from the SM expectation δσ =
(σanom. − σSM)/σSM

This allows to extract the first parameter fA
V from the constant contribution of δσ, while

the remaining two parameters dA
V and dA

A can be determined from the
√
s-dependent

contribution. The latter will be illustrated by an example in the following. For this
purpose consider figure 7.12(a) at first. It shows a two-dimensional contour plot of the
calculated values for δσ as a function of the two anomalous coupling parameters dA

V and dA
A

at a definite center-of-mass energy of
√
s = 0.5 TeV. The plot is obtained by computing the

cross-section for each point on the two-dimensional (dA
V, d

A
A)-grid, where adjacent points

are separated by ∆ = 0.1 along the dA
V and dA

A direction. Though the relative error for each
value for the cross-section is estimated to be 10−3, a rather smooth plot is obtained. Of
course, the deviation vanishes in the lower left corner at dA

V = dA
A = 0. Figure 7.12(b) shows

a similar plot for the calculated values at a different center-of-mass energy (
√
s = 1.5 TeV).

Let us assume that we are actually able to carry out the measurement of the cross-section at
these definite center-of-mass energies and further that the analysis of it shows a deviation
δσ of 0.1% at

√
s = 0.5 TeV and of 0.05% at

√
s = 1.5 TeV. Then one can combine

the information of these two measurements in a such a way as to enable one to read
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the values for dA
V and dA

A directly at the point of intersection of the two curves (see figure
7.13). In conclusion, this procedure allows for the determination of all the three anomalous
couplings through experimental measurements.

Since the discussion above does not include the convolution of the hard scattering cross-
section with the PDFs (cf. section 5.1), this is supplemented in the following subsec-
tion.

7.3.2 Strategy to distinguish the anomalous couplings including the
convolution with the PDFs

As argued in section 5.1, for hadron colliders the hard interaction cross-section has to be
convoluted with the PDFs to obtain the measurable cross-section. For this reason, the
feasibility of the strategy to distinguish the anomalous couplings dA

V and dA
A including the

convolution with the PDFs is examined in this subsection. The analysis is carried out
using unweighted events generated by the WHIZARD program package at a center-of-mass
energy of

√
s = 7.0 TeV with a top quark width of Γt = 1.523 GeV. A cut on the minimal

energy of the photon of Ek,min = 5 GeV is applied. The PDF description CTEQ6L1
[51] is used. The following discussion is based on samples with around 7.2 · 105 events
each, which corresponds to an integrated luminosity of 5.0 · 103 fb−1 = 5.0 ab−1. Since
the study on parton level showed that the deviation δσ can be separated into the sum
δσ(dA

V) + δσ(dA
A) in very good approximation, the event samples are generated only for

dA
V going from 0.1 to 1 in steps of 0.1 while dA

A = 0 and vice versa in order to reduce
the computational effort. Furthermore, an additional event sample with SM coupling
parameters is produced.

In the following a possible approach for the determination of the anomalous coupling
parameters dA

V and dA
A is discussed. For this purpose, all events are divided into two classes:

The first class contains all events for which the invariant mass of the top quark, the antitop
quark and the photon is below a specific threshold

√
s1, the second class all events where

this quantity exceeds a specific threshold
√
s2. The dependence of δσ on the partonic

center-of-mass energy for dA
V = 1 and dA

A = 1 (cf. figure 7.9(a)) suggests to choose the
threshold energies around

√
s1 = 750 GeV and

√
s2 = 1.0 TeV. Certainly it would be more

favorable to set
√
s2 to a larger value but this would negatively affect the available statistics

of the second class. Comparing the number of events in the two classes for each sample with
anomalous couplings with the one of the SM sample allows to determine the normalized
deviation δσ as a function of dA

V and dA
A. However, it shows that the effect of the anomalous

couplings on the cross-section is much too small to allow an extraction of the parameters
from statistical fluctuations in spite of the large integrated luminosity. As a consequence,
this approach fails. The situation does not improve when applying an additional cut
demanding that the invariant mass of the top quark and the photon is greater than mt +
5 GeV. It is speculated that applying a more stringent cut on the invariant mass of the
form mt + Emin, where Emin is in the order of the Z-boson mass, could lead to a more
promising approach. Moreover, the anomalous couplings cannot be distinguished by the
analysis of the transverse momenta of the photon, either.

Though not providing a promising strategy to determine the anomalous couplings, the sce-
nario considered in the previous paragraph is still far from a realistic one, in which several
difficulties arise. Firstly, other involved vertices, in this case particularly the Gtt vertex,
could contain anomalous couplings, as well. This would lead to an even larger number of
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Figure 7.12: Normalized deviation δσ = (σanom. − σSM)/σSM in percent of the cross-section with
anomalous couplings σanom. from the SM cross-section σSM as a function of the two
anomalous couplings dA

V and dA
A (mt = 172 GeV; Ek,min = 5 GeV). Figure (a) shows

the calculated values for the definite center-of-mass energy of
√
s = 0.5 TeV, figure

(b) for
√
s = 1.5 TeV.
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Figure 7.13: Example for the determination of the two anomalous couplings dA
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7.3 Strategy to distinguish the anomalous couplings

unknown parameters, which would need to be determined. More seriously is however the
point that a real measurement always comes with an experimental error. For the measure-
ment of the top quark pair cross-section the error is predicted to be in the order of 5−10%
at the ATLAS detector of the LHC [4]. This error might be even larger for the process with
additional photon radiation. As the experimental error is expected to be well above the
possible deviation due to anomalous couplings, a determination of the parameters of the
couplings seems very challenging in the analysis of the total reaction cross-section for the
process GG→ tt̄γ at the LHC. Yet, by investigating specific differential cross-sections with
the objective of finding more appropriate observables, promising strategies to distinguish
the anomalous couplings are hopefully formulated in future studies.
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8 Analysis of the general Ztt vertex in the
process GG→ tt̄Z

This chapter deals with the analysis of the anomalous Ztt vertex in the process GG→ tt̄Z.
As in the case of the γtt vertex, first of all this event is studied with the SM vertex
without considering the top quark width (section 8.1) and then including the top quark
width in the subsequent section (8.2). Section 8.3 finally analyzes the anomalous couplings
including the general Ztt vertex. Strategies to distinguish the anomalous couplings both
on parton level and including the convolution with the PDFs are discussed later on in
section 8.4.

8.1 Calculation neglecting the top quark width

Firstly, the process GG → tt̄Z is considered with neither anomalous couplings nor top
quark width. For convenience the notation of chapter 7 is kept, i. e. in particular the four-
vector of the Z-boson is denoted by k. The Feynman diagrams contributing to this process
look exactly the same as for the process GG→ tt̄γ (cf. figure 7.3), the only difference being
the replacement of the photon in favor of the Z-boson. Hence, the procedure of calculating
the total reaction cross-section is very similar. Still, there are two deviations: Firstly, the
coupling of the top quark to the Z-boson differs from the γtt-coupling. Secondly, the Z-
boson is massive. The latter point implicates several consequences: There are additional
longitudinal polarized Z-bosons meaning that the Z-boson has three polarization degrees
of freedom. As a consequence, one has to employ the polarization sum for massive gauge
bosons, which takes the form∑

pol. s

εµ,s(p)ε∗ν,s(p)→ −gµν +
pµpν
m2
Z

. (8.1)

Additionally, having k2 = m2
Z > 0, some of the scalar products involving the external

particles are slightly altered (cf. section 7.2). Now they read:

p1 · p2 =
s

2
p2 · pt =

√
s

2
Et + ~p · ~pt

p1 · pt =
s

2
Et − ~p · ~pt p2 · pt =

s

2
−
√
s

2
(Et + Ek)− ~p · ~pt − ~p · ~k

p1 · pt =
s

2
−
√
s

2
(Et + Ek) + ~p · ~pt + ~p · ~k p2 · pk =

√
s

2
Ek + ~p · ~k

p1 · pk =
√
s

2
Ek − ~p · ~k pt · pt = Et(

√
s− Ek)−m2

t + ~p · ~k −m2
Z ,
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8.1 Calculation neglecting the top quark width

with

~p · ~pt =
√
s

2

√
E2

t −mt cos θ

~p · ~k =
√
s

2

√
E2

k −m2
Z

(
sin θ sin θ′ cosφ+ cos θ cos θ′

)
~pt · ~k =

√
E2

t −m2
t

√
E2

k −m2
Z cos θ′.

As discussed in chapter 6, the phase space is also affected by the mass of the final state par-
ticles. For the process GG→ tt̄Z the phase space integral as introduced in section 6.4.2 is
performed. Furthermore, because of k2 = m2

Z > 0 this term adds in the denominator of the
propagators involving momenta p′t and p′

t
. This additional mass prevents the divergence of

the phase space integral for small values for the energy Ek of the Z-boson. No explicit cut
on the minimal energy of the Z-boson is thus required. Though the convergence behavior
of the integral is positively affected for the same reason, a multi-channel Monte Carlo
approach is nevertheless preferable for the phase space integration. As the denominator
of the propagators with momenta p′t and p′

t
has changed, new substitutions need to be

found. The denominator with momentum p′t takes now the form

2EkEt − 2
√
E2

t −m2
t

√
E2

k −m2
Z cos θ′ +m2

Z . (8.2)

Its asymptotic behavior is well approximated by the factorized ansatz(√
sEk +m2

Z

) (
s+ 2m2

Z −
√
s− 4mt

√
s− 4mZ cos θ′

)
. (8.3)

Since this approach involves the parameters Ek and cos θ′, it is suitable for parameteriza-
tion 1 of section 6.3. For the propagator involving momentum p′

t
a similar ansatz is chosen,

where cos θ′ is replaced with cos θ̃′. Note that there is no need to adapt the substitutions
of integration channels 3 to 6 of the multi-channel approach (7.37) because mZ does not
occur in the chosen parameterizations. Still the integrals of the corresponding phase space
parameterizations are changed in comparison to section 7.2.

Multi-channel Monte Carlo integration
The multi-channel Monte Carlo approach for the phase space integration for the process
GG→ tt̄Z takes the form as stated in equation (7.37) for the process GG→ tt̄γ. However,
the definitions of the terms intpar i now are

intpar 1(x, y, Ek, φ) =

α1 g |M|2θ(E′k,max − Ek)θ(+x)
1
D

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Et=Et,1

−α1 g |M|2θ(Ek − E′k,max)θ(−x)
1
D

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Et=Et,1

+α1 g |M|2 θ(−x)
1
D

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Et=Et,2

,

(8.4)
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8 Analysis of the general Ztt vertex in the process GG→ tt̄Z

intpar 2(x, y, Et, φ) =

α2 g |M|2θ(E′t,max − Et)θ(+x)
1
D′

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,1

−α2 g |M|2θ(Et − E′t,max)θ(−x)
1
D′

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,1

+α2 g |M|2 θ(−x)
1
D′

√
E2

t −m2
t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,2

(8.5)

and

intpar 3(x̃, ỹ, Et, φ̃) =

α3 g |M|2θ(E′t,max − Et)θ(+x̃)
1
D′

√
E2

t
−m2

t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,1

−α3 g |M|2θ(Et − E′t,max)θ(−x̃)
1
D′

√
E2

t
−m2

t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,1

+α3 g |M|2 θ(−x̃)
1
D′

√
E2

t
−m2

t

√
E2

k −m2
Z

∣∣∣∣
Ek=Ek,2

.

(8.6)

The total probability density reads

1
g

=
1

g(x, y, Ek, Et, x̃, ỹ)
≡ α1

gpt(x,Ek)
+

α1

gpt(x̃, Ek)

+
α2

gqt(y,Et)
+

α2

gqu(y,Et)
+

α3

gqt(ỹ, Et)
+

α3

gqu(ỹ, Et)
. (8.7)

The formulas to express x and y in terms of x̃ and ỹ and vice versa are obtained from
expressions (7.42) by replacing Ek in favor of

√
E2

k −m2
Z .

Further enhancement: tt̄-symmetry
The enhancement of the phase space integral by virtue of the tt̄-symmetry as applied for
the processGG→ tt̄γ in section 7.2 cannot be adopted directly because the structure of the
integrals of phase space parameterizations 2 and 3 has changed drastically. These integrals
now involve the step-functions θ(±x) and θ(±x̃), which act as top and antitop specific cuts,
respectively. Hence, the tt̄-symmetry is not fully provided any more. Nevertheless, if x(x′)
and x̃(x′) have the same sign, the Feynman amplitude in terms of the variables of the
top quark and the one in terms of the antitop quark are still identical, i. e. equation 7.46
holds. This observation is employed in the implementation in C. Formally the integration
channels 3/5 and 4/6 are treated separately. Yet, the computed values for the squared
matrix elements of channels 3 and 4 are temporarily stored so that they can be reused
for channels 5 and 6, respectively, if possible. Moreover, channels 1 and 2 were chosen
such that the employment of the tt̄-symmetry is feasible without difficulties. Thus, the
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8.1 Calculation neglecting the top quark width

optimized integrand takes the form

prefactor ·
[

2 · intpar 1

(
xpt(x′), ypt(y′), Ek, pt(E′), φ(φ′)

)
+intpar 2

(
xqt(x′), yqt(y′), Et, qt(E′), φ(φ′)

)
+intpar 2

(
xqu(x′), yqu(y′), Et, qu(E′), φ(φ′)

)
+intpar 3

(
x̃qt′(x′), ỹqt′(y′), Et, qt′(E

′), φ̃(φ′)
)

+intpar 3

(
x̃qu′(x′), ỹqu′(y′), Et, qu′(E

′), φ̃(φ′)
)]
,

(8.8)

where the values for the squared matrix elements of parameterization 3 are adopted from
the computation for parameterization 2 if possible. With this procedure a reduction of
the computational costs for the total reaction cross-section of about 30% was measured,
where all probability factors αi are set to 1. Since all integration channels are formally
implemented separately, it is possible to benefit from this enhancement also in calculations
where (anti-)top quark specific cuts are applied, as it is the case for the computation of the
cross-section as a function of the cosine of the angle between the three-momenta of the top
quark and the Z-boson (cos θ′). The achieved gain of performance is however dependent
on the type of the cut.

Determination of the probability factor α
To further optimize the performance of the integration the probability factors αi are de-
termined empirically. For symmetry reasons α2 and α3 are supposed to be identical so
that only one parameter α = α1 = 1−α2 is variable. Testing different values for α showed
that the most favorable value depends on the top quark mass for a definite center-of-mass
energy. In the subsequent calculations with mt = 172 GeV the setting α = 0.7 is used,
which results in a reduction of the computational costs of approximately 10% (additionally
to the enhancements mentioned before).

Discussion of results
The hard scattering total reaction cross-section for the process GG → tt̄Z as a function
of the center-of-mass energy

√
s with a top quark mass of mt = 172 GeV is shown in

figure 8.1(a), whereas the dependence on cos θ′, i. e. on the cosine of the angle between
the three-momenta of the top quark and the Z-boson, is presented for the same top quark
mass and a center-of-mass energy of

√
s = 1.0 TeV in figure 8.1(b). The shape of the

function σ(
√
s) is similar to the one of the process GG→ tt̄γ but slightly shifted to larger

values of
√
s. The estimated relative error due to numerical integration is 10−4 for each

point in both plots.

Comparison with WHIZARD
Once again, the results obtained so far are compared to the ones of the WHIZARD program
package. The signed pull (for its definition see equation (7.24)) for the total reaction cross-
section as a function of the center-of-mass energy and as a function of cos θ′ is plotted in
figure 8.2(a) and (b), respectively. The estimated relative errors for the Monte Carlo
integration of the computation of WHIZARD varies slightly and is in the order of 10−4.
The plots show that the values for the pull statistically fluctuate around 0 with a maximum
absolute value of approximately 4 for the pull as a function of cos θ′ and of around 2.3 for
the pull as a function of

√
s. For both samples the mean of all values for the pull is close to
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Figure 8.1: (a) Total reaction cross-section for the process GG→ tt̄Z as a function of the center-of-
mass energy

√
s. (b) Cross-section as a function of cos θ′ for a center-of-mass energy of√

s = 1.0 TeV. In both calculations the top quark mass is assumed to be mt = 172 GeV
and the top quark width is neglected. The error bars due to numerical integration are
smaller than the dot size.

0.5 1.0 1.5 2.0 2.5
ΣHTeVL

-2

-1

0

1

2

pull(a)

-1 -0.5 0.5 1
cos Θ¢

-4

-3

-2

-1

1

2

3

4

pull
(b)

Figure 8.2: (a) Pull between the results of the semi-analytical calculation and of WHIZARD for the
cross-section for the process GG→ tt̄Z as a function of the center-of-mass energy

√
s.

(b) Pull between the results of the semi-analytical calculation and of WHIZARD for the
cross-section as a function of cos θ′ for a center-of-mass energy of

√
s = 1.0 TeV. The

straight dashed line indicates the mean in each plot.
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8.2 Calculation including the top quark width

0. In conclusion, a good qualitative accordance of both calculation approaches is evident.
A more quantitative comparison is supplemented in chapter 9.

8.2 Calculation including the top quark width

The calculations of the previous section are done once again including a finite top quark
width of Γt = 1.523 GeV. As argued in section 5.3, the physical polarization sum (5.12) has
to be used for the external gluons to substract contributions of unphysical polarizations. As
already mentioned for the process GG→ tt̄γ in subsection 7.2.2, this leads to a significant
increase of the computational costs for the calculation of the squared matrix element and
the numerical integration. Yet, the polarization sum of the Z-boson is not affected by
the involvement of the top quark width. The effect of the top quark width on the cross-
section is analyzed as a function of the top quark mass varying from mt = 0.1 GeV to
mt = 200 GeV at a center-of-mass energy of

√
s = 1.0 TeV, as a function of the center-

of-mass energy varying from
√
s = 0.5 TeV to

√
s = 2.5 TeV with a top quark mass of

mt = 172 GeV and as a function of cos θ′ (
√
s = 1.0 TeV; mt = 172 GeV). For none

of these calculations a change of the result due to the top quark width can be observed
within the error for the numerical integration, where the relative error is estimated to
be 10−4 everywhere. This result is fully in accordance with the computation of WHIZARD
(The plots of the corresponding pulls can be found in appendix C.1.). That means that
the top quark width can safely be neglected for the process GG→ tt̄Z. This observation
seems reasonable when considering that the absolute value of the additional term imtΓt

in the denominator of the propagators with momenta p′t and p′
t
, which take the generic

form

1
2 p · k +m2

Z + imtΓt
, (8.9)

is small compared to the square of the mass of the Z-boson m2
Z .

8.3 Calculation including the general Ztt-vertex

The aim of this section is the analysis of the general Ztt vertex

Γµ(k) = γµ
(
gV − gAγ5

)− υ2

Λ2

[
γµ
(
XZ

LPL +XZ
RPR

)
+

iσµνkν
mZ

(
dZ

V + i dZ
Aγ5

)]
(8.10)

(cf. section 3.3), where υ = 246 GeV and Λ = 1 TeV. The projectors are defined as
PR = 1 + γ5 and PL = 1 − γ5. The SM vector and axial-vector couplings take the values
gV = 1/2 − 4/3(sin θW)2 and gA = 1/2, respectively (cf. equations (3.7) of section 3.1).
Since it was seen in the previous section that the top quark width is negligible, in the
following analyzes the top quark width is set to zero.

Discussion of results
For the examination of the modification of the cross-section due to the four anomalous
couplings the normalized deviation δσ = (σanom. − σSM)/σSM is considered analogously
to the preceding chapter. First of all, the effect on the cross-section as a function of the
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Figure 8.3: Normalized deviation δσ = (σanom. − σSM)/σSM of the cross-section with anomalous
couplings σanom. from the SM cross-section σSM. In the plots on the left (a) and (c)
the results are shown for XZ

L = 1 and XZ
R = 1, in the plots on the right (b) and (d) for

dZ
V = 1 and dZ

A = 1. The remaining parameters are set to their SM value. In figures (a)
and (b) δσ is plotted as a function of the center-of-mass energy

√
s (mt = 172 GeV),

in figures (c) and (d) as a function of cos θ′ (
√
s = 0.5 TeV; mt = 172 GeV).

center-of-mass energy is analyzed. Figure 8.3(a) shows δσ where either the coupling XZ
L

or XZ
R is set to 1 and the remaining ones to 0, whereas in figure 8.3(b) only dZ

V or dZ
A

is turned on. The deviation for the parameters XZ
L or XZ

R is independent of the center-
of-mass energy. In contrast to that in the case dZ

V = 1 or dZ
A = 1 the function δσ is

approximately linear dependent on
√
s with almost identical slope for both couplings in

the range from
√
s = 0.75 TeV to

√
s = 2.5 TeV. It is only for center-of-mass energies

close to the energy threshold for this process that a distinction between dZ
V and dZ

A seems
possible. Looking at the deviation δσ for the cross-section as a function of cos θ′ at a
center-of-mass energy of

√
s = 0.5 TeV, the situation is very similar for the parameters

XZ
L and XZ

R (see figure 8.3(c)). Once again, the probability of distinguishing the anomalous
couplings in this analysis looks more promising for the parameters dZ

V and dZ
A. Having

dZ
A = 1, δσ is positive over the whole range of cos θ′. On the contrary, δσ changes its sign

near cos θ′ = 0.8 for dZ
V = 1. Additionally, the plots of δσ for

√
s = 1.0 TeV are shown in

figure C.2 of appendix C.2.

Moreover, the normalized deviation from the SM expectation is examined for the cross-
section as a function of the energy of the Z-boson, for the invariant mass (pt + k)2 of the
top quark and the Z-boson and for the scalar triple product (pt × p) · k. The obtained
results are plotted both for a center-of-mass energy of

√
s = 0.5 TeV and

√
s = 1.0 TeV

in figure C.4 of appendix C.2. Though the analysis of these quantities could provide a
possibility to cross-check the measured values for the couplings dZ

V and dZ
A, no distinction

between the parameters XZ
L and XZ

R seems feasible. Still, the most promising approach for
the latter might be the study of the scalar triple product at energies close to the energy
threshold.
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Figure 8.4: Pull between the results of the semi-analytical calculation and the ones of WHIZARD for
the cross-section for the process GG→ tt̄Z as a function of the center-of-mass energy√
s (mt = 172 GeV). Figure (a) shows the pull for XZ

L = 1, figure (b) for XZ
R = 1,

figure (c) for dZ
V = 1 and figure (d) for dZ

A = 1 the remaining anomalous couplings
vanishing. The straight dashed line indicates the mean in each plot.

Comparison with WHIZARD
For comparison with the WHIZARD program package the signed pull is determined. The
pull between the results of the semi-analytical calculation and the results of WHIZARD for
the cross-section as a function of the center-of-mass energy

√
s is presented in figure 8.4(a)

for XZ
L = 1, in figure 8.4(b) for XZ

R = 1, in figure 8.4(c) for dZ
V = 1 and finally for dZ

A = 1 in
figure 8.4(d). Similar plots for the cross-section as a function of cos θ′ for a center-of-mass
energy of

√
s = 0.5 TeV are shown in figure 8.5, similar ones for

√
s = 1.0 TeV in figure

C.3 in appendix C.2.
The distribution of the values for the pulls suggests a qualitative accordance of the results
of WHIZARD and the semi-analytical approach. Except of few outliers of the plots showing
the dependence of cos θ′ all points are in the order of one.

8.4 Strategy to distinguish the anomalous
couplings

8.4.1 Strategy to distinguish the anomalous couplings on parton
level

In this subsection the question whether a distinction of the four anomalous couplings
through measurement is feasible is addressed on parton level. Since a non-vanishing pa-
rameter for both the coupling XZ

L and XZ
R entails a global rescaling independent of the

center-of-mass energy and of the angle between momenta of the top quark and the Z-boson,
a determination of these couplings is not possible through the study of the dependences
σ(
√
s) and σ(cos θ′). However, in order to distinguish the couplings dZ

V and dZ
A the analysis
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Figure 8.5: Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section as a function of cos θ′ for the process GG → tt̄Z (

√
s = 0.5 TeV;

mt = 172 GeV). Figure (a) shows the pull for XZ
L = 1, figure (b) for XZ

R = 1, figure
(c) for dZ

V = 1 and figure (d) for dZ
A = 1 the remaining anomalous couplings vanishing.

The straight dashed line indicates the mean in each plot.

of the total reaction cross-section as a function of the center-of-mass energy in the pre-
ceding section suggested that the strategy presented in subsection 7.3.1 can be adopted.
One of the measurements of the normalized deviation δσ should be carried out around√
s = 0.5 TeV, the second one sufficiently above this value, for example at

√
s = 0.75 TeV.

First of all the
√
s independent contribution has to be determined and removed. Having

done this, the
√
s dependent part is considered. As illustrated in figure 8.6 showing the

dependence of δσ on dZ
V and dZ

A at (a)
√
s = 0.5 TeV and (b)

√
s = 0.75 TeV, the contour

lines of both plots cross each other in a sufficiently large angle such that the values of the
two anomalous couplings can be extracted at the intersecting of two lines (for an example
see figure 8.8(a)).

Alternatively, the coupling parameters dZ
V and dZ

A can also be determined by the analysis
of the dependence of the cross-section on cos θ′. For this purpose, the normalized deviation
δσ is measured for the cross-section separately in the range cos θ′ < 0 and cos θ′ > 0 at the
same center-of-mass energy. Combining the measured values for δσ in a way analogous to
the procedure presented before, the values for dZ

V and dZ
A can be read at the intersection of

the contour lines (for an example see figure 8.8(b)). The calculated deviation δσ is shown
as a two dimensional contour plot of dZ

V and dZ
A in figure 8.7(a) for cos θ′ < 0 and in figure

8.7(b) for cos θ′ > 0.
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Figure 8.6: Normalized deviation δσ = (σanom. − σSM)/σSM in percent of the cross-section with
anomalous couplings σanom. from the SM cross-section σSM as a function of the two
anomalous couplings dZ

V and dZ
A (mt = 172 GeV). Figure (a) shows the calculated

values for the definite center-of-mass energy of
√
s = 0.5 TeV, figure (b) for

√
s =

0.75 TeV.
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Figure 8.7: Normalized deviation δσ = (σanom. − σSM)/σSM in percent of the cross-section with
anomalous couplings σanom. from the SM cross-section σSM as a function of the two
anomalous couplings dZ

V and dZ
A (
√
s = 0.5 TeV; mt = 172 GeV). Figure (a) shows the

calculated values for the range cos θ′ < 0, figure (b) for the range cos θ′ > 0.
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Figure 8.8: Examples for the determination of the two anomalous couplings dZ
V and dZ

A through
measurement. Figure (a) illustrates the procedure, where the total reaction cross-
section is measured at two different center-of-mass energies. A measured deviation δσ
of 0.01% at

√
s = 0.5 TeV (blue curve) and of 0.1% at

√
s = 0.75 TeV (red curve)

is assumed. The combination of both measurements would restrict the parameters to
dZ
V = 0.06 and dZ

A = 0.12 in this case. Figure (b) illustrates the procedure, where
the cross-section is measured separately in the regions cos θ′ < 0 and cos θ′ > 0 at√
s = 0.5 TeV. A measured deviation δσ of 0.01% for cos θ′ < 0 (blue curve) and of

-0.1% for cos θ′ > 0 (red curve) is assumed. The combination of both measurements
would restrict the parameters to dZ

V = 0.13 and dZ
A = 0.14 in this case.

8.4.2 Strategy to distinguish the anomalous couplings including the
convolution with the PDFs

Since at a hadron collider, such as the LHC, the momenta of the initial state gluons
and thus the exact center-of-mass energy are a priori not known, only the cross-section
convoluted with the PDFs is experimentally accessible. Hence, the aim of this subsection is
to examine whether the strategies introduced before are still feasible on hadron level. Since
it was shown that the couplings XZ

L and XZ
R cannot even be distinguised on parton level,

the focus is shifted to the remaining couplings dZ
V and dZ

A. Again, this analysis is done with
the WHIZARD event generator program package using the PDF description CTEQ6L1 [51].
The analysis is based on samples with around 3.6 · 106 events each, which corresponds to
an integrated luminosity of 105fb−1 = 102ab−1 at a center-of-mass energy (of the proton
system) of

√
ŝ = 7.0 TeV1. The top quark width is set to Γt = 1.523 GeV. In order to

keep the computational effort as well as the needed amount of disc space modest, it is
assumed that the deviation of the cross-section including anomalous couplings from the
SM cross-section δσ can be written in good approximation as δσ = δσ(dZ

V) + δσ(dZ
A) for

sufficiently small values of the anomalous couplings. This assumption showed to be fully
in accordance with the actual values on partonic level. Hence, only samples are generated
where either dZ

V > 0 or dZ
A > 0 going from 0.1 to 1 in steps of 0.1, and, additionally, one

sample for the SM parameters.

1In this subsection the center-of-mass energy of the proton system is denoted by
√
ŝ in order not to be

confused with the center-of-mass energy
√
s on parton level.
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Figure 8.9: Normalized deviation δσ = (σanom. − σSM)/σSM in percent of the cross-section with
anomalous couplings σanom. from the SM cross-section σSM as a function of the two
anomalous couplings dZ

V and dZ
A (
√
ŝ = 7.0 TeV; mt = 172 GeV). Figure (a) shows

the dependence for events in the range
√
s < 600 GeV, figure (b) for the ones with√

s > 700 GeV.

Taking into account the dependence of the hard scattering cross-section as a function of
the center-of-mass energy (see figure 8.3(b)), the most obvious way to adopt the strategy
involving the analysis of

√
s is to divide the events into two classes: the first one containing

all events with
√
s <
√
s1, the second class the events with

√
s >
√
s2, where the threshold

energies
√
s1 and

√
s2 have to be chosen adequately. The Monte Carlo study showed that

good results are achieved with
√
s1 = 600 GeV and

√
s2 = 700 GeV. The dependence

of δσ on the parameters dZ
V and dZ

A as obtained from the analysis of the Monte Carlo
event samples is shown in figure C.5 of appendix C.3. A quadratic dependence on the
anomalous couplings is evident. Thus, for each of the four plots a function of the form
a (dZ

V/A)2 + b dZ
V/A + c is fitted to the Monte Carlo data. These functions as well as the fit

parameters are also shown in figure C.5. The one-dimensional graphs can then be combined
to get two-dimensional plots δσ(dZ

V, d
Z
A), as shown in figure 8.9(a) for

√
s < 600 GeV and

figure 8.9(b) for
√
s > 700 GeV. Assuming that it is possible to measure the deviation δσ

for both classes, the values for the anomalous parameters can be determined analogously to
the approach presented in the previous subsection. The procedure is moreover illustrated
in figure 8.10(a). The main disadvantage of this method is the point that it depends on the
determination of the invariant mass of the two top quarks and the Z-boson. The energy of
the neutrino being not detectable, this is however rather challenging since top quark pair
events are usually investigated in the semi-leptonic decay channel (cf. section 2.3). Still
the approach seems to be promising because it does not rely on the precise measurement of
the invariant mass but rather on the decision whether the invariant mass is below or above
specific thresholds. Thus, by employing sophisticated event reconstruction algorithms (see
for instance Ref. [4]), this problem should be overcome.

Nonetheless, a further strategy to distinguish the anomalous couplings, which does not
rely on the full reconstruction of the tt̄Z-event, is presented in the following. Involving the
analysis of the cross-section as a function of cos θ′, this method is completely similar to
the one discussed for the hard scattering cross-section, i. e. the deviation δσ is determined
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Figure 8.10: Examples for the determination of the two anomalous couplings dZ
V and dZ

A through
measurement. Figure (a) illustrates the procedure where the deviation δσ is measured
separately for events with

√
s < 600 GeV and

√
s > 700 GeV. A measured deviation

δσ of 0.5% both for
√
s < 600 GeV (blue curve) and

√
s > 700 GeV (red curve) is

assumed. The combination of both measurements would restrict the parameters to
dZ
V = 0.27 and dZ

A = 0.14 in this case. Figure (b) illustrates the procedure, where
the deviation δσ is measured separately for cos θ′ < 0 and cos θ′ > 0. A measured
deviation δσ of 1.5% for cos θ′ < 0 (blue curve) and of 1.0% for cos θ′ > 0 (red curve)
is assumed. The combination of both measurements would restrict the parameters to
dZ
V = 0.42 and dZ

A = 0.18 in this case.

separately for cos θ′ < 0 and cos θ′ > 0. Yet, in lieu of a definite (hard scattering) center-of-
mass energy

√
s the deviation δσ involves now events with all possible values for

√
s due to

the convolution with the PDFs. For the following Monte Carlo study the same assumption
on δσ as in the preceding paragraph is made, that is to say δσ = δσ(dZ

V) + δσ(dZ
A). As

before, δσ shows approximately a quadratic dependence on the coupling parameters dZ
V

and dZ
A (see figure C.6 in section C.3 of the appendix), which suggests to fit a function of

the form a t2V/A + b tV/A + c to the Monte Carlo data. The resulting δσ(dZ
V, dZ

A) contour
plots for cos θ′ < 0 and cos θ′ > 0 are presented in figure 8.11(a) and (b), respectively. As
illustrated in figure 8.10(b), with the information of the measurement for the two ranges
of cos θ′ the determination of dZ

V and dZ
A is feasible in general. However, since the angle of

intersection of the two contour lines is rather small, a precise determinination of the two
coupling parameters is very challenging. It is speculated that this angle increases when
considering only events where the invariant mass of the two top quarks and the Z-boson
is required to be below a threshold

√
s1 ∼ 600 GeV. This would however re-introduce the

problem of the difficult determination of the invariant mass.

In conclusion, the strategies discussed above represent two independent approaches, which
allow for the determination of the anomalous couplings dZ

V and dZ
A under ideal circum-

stances. However, similar difficulties as mentioned for the γtt vertex arise. Among those
are potential further anomalous couplings of the Gtt vertex and the large expected exper-
imental error for the measurement of tt̄-cross-sections. The latter is even more severe for
the process GG→ tt̄Z since the total reaction cross-section is only about one tenth com-
pared to the process GG→ tt̄γ. Hence, one cannot expect a precise determination of the
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Figure 8.11: Normalized deviation δσ = (σanom. − σSM)/σSM in percent of the cross-section with
anomalous couplings σanom. from the SM cross-section σSM as a function of the two
anomalous couplings dZ

V and dZ
A (
√
ŝ = 7.0 TeV; mt = 172 GeV). Figure (a) shows

the dependence for events with cos θ′ < 0, figure (b) for events with cos θ′ > 0.

anomalous Ztt-couplings through the analysis of the process GG→ tt̄Z at the LHC. Yet,
using the methods described here allows to give upper limits on these couplings, where
the limits will depend on the achieved experimental accuracy.
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9 Quantitative comparison with Whizard

9.1 Comparing the means of two normally distributed
populations

This chapter addresses the question whether all the results of the semi-analytical calcula-
tion and the ones of WHIZARD are in accordance with each other or whether a significant
deviation is found. Since both the semi-analytical approach and the WHIZARD program
package make use of numerical integration techniques, the achieved results are not ana-
lytically exact numbers but are rather given by an estimate for the integral together with
its estimated error. Hence, for a rigorous comparison, one has to compute the value for
the cross-section for definite parameters, such as the center-of-mass energy, masses and
couplings, sufficiently often with both calculation methods. Then the statistical analy-
sis of these samples allows to decide whether or not both approaches show a significant
deviation. This is exemplified for the computation of the hard-scattering total reaction
cross-section for the process GG → tt̄γ for the definite parameters

√
s = 1.0 TeV and

mt = 172 GeV with SM top quark couplings neglecting the top quark width. Moreover,
the additional cut on the minimal energy of the photon of Ek,min = 5 GeV is applied. The
estimate for the cross-section is calculated nsa = nWh = 1000 times with an estimated
relative error of approximately 10−3 employing both the semi-analytical approach and
WHIZARD. The probability density of all results is shown in figure 9.1(a), whose analysis
allows to draw several conclusions: Obviously, the values are normally distributed with
a specific mean µ and standard deviation s, the values of which are stated in table 9.1
both for the semi-analytical calculation (µsa and ssa) and for the calculation with WHIZARD
(µWh and sWh). Knowing these numbers, the hypothesis that the means of the two sam-
ples are the same (H0: µsa = µWh) can be probed by applying the two sample z-test1 for
independent samples (see e. g. Ref. [52, 53]). The corresponding standard score, that is
to say the distance of both means in units of the combined standard error, is calculated
as

z =
µsa − µWh√
s2sa
nsa

+ s2Wh
nWh

=
221.386− 221.469√
0.2214332

1000 + 0.4550782

1000

= −5.193. (9.1)

This leads to the conclusion that the null hypothesis H0 is rejected with a confidence level
of (100 − 10−5)%. The same test is done once more, where the estimated relative error
for each value for the cross-section is now reduced to approximately 10−4. Figure 9.1(b)
shows the corresponding probability densities. With the obtained values for the means
and standard deviations listed in table 9.1 a standard score of even z = −8.029 is obtained.

Yet, note that the means of all four statistics samples are fully in accordance with each
other within their standard deviations (cf. table 9.1). It is only due to the fact that

1This test is sometimes also referred to as two sample Gauss-test.
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Figure 9.1: Probability density of the value for the cross-section for the process GG→ tt̄γ (
√
s =

1.0 TeV; mt = 172 GeV; Ek,min = 5 GeV). The statistics samples are based on
1000 calculations each. The distribution of the semi-analytic calculation (orange, solid
lines) features a narrower Gaussian peak than the one of WHIZARD (blue, dashed lines).
The curve indicate the probability density of the normal distribution with mean and
standard deviation of the corresponding sample. The estimated relative error for each
value of the cross-section is ≈ 10−3 in figure (a) and ≈ 10−4 in figure (b).

est. relative error ≈ 10−3 est. relative error ≈ 10−4

semi-analy. calc. WHIZARD semi-analy. calc. WHIZARD

mean µ [fb] 221.386 221.469 221.441 221.459
stdev. s [fb] 0.2214 0.4551 0.02257 0.06534

mean est. stdev. s̄est. [fb] 0.2156 0.2319 0.02209 0.02693
s/s̄est. 1.03 1.96 1.02 2.43

Table 9.1: Properties of the statistical samples of the values for the cross-section for the process
GG → tt̄γ (

√
s = 1.0 TeV; mt = 172 GeV; Ek,min = 5 GeV). The first row gives the

mean of the statistics sample, the second row its standard deviation. The mean of the
estimated standard deviation stated by the Monte Carlo integrator is printed in the
third row.

77



9 Quantitative comparison with Whizard

the standard error s/
√
n, as encountered in the denominator for the computation of the

standard score (9.1), can become arbitrarily small for a sufficiently large size n of the
sample that the z-test discloses the slight discrepancy. If samples with lower statistics
were considered, the absolute value of the standard score would be smaller. A closer look
suggests to interpret the discrepancy rather as a slight convergence problem of the semi-
analytical calculation than a disagreement of both calculation methods for the following
reasons. The absolute deviation of the means of both samples is reduced by a factor of
4.7 comparing the one for the samples with lower precision with the one for the samples
with higher precision. Whereas the mean of the WHIZARD sample with higher precision
remains almost unchanged compared to the one with lower precision, a shifting of the
mean to higher values, that is to say to the means of the WHIZARD samples, is observed
for the semi-analytical calculation. This shifting is so large that a z-test for the two semi-
analytical samples with lower precision and higher precision would come to the conclusion
that the hypothesis that both samples have the same mean would be rejected with a
confidence level of (100− 10−13)% (standard score z = −7.87671).

Moreover, the analysis of the samples allows also to check the stated estimated error of the
numerical integration. Comparing the numbers for the actual standard deviation of the
sample with the mean estimated standard deviation stated by the Monte Carlo integrator
shows that they are fully in accordance with each other for the semi-analytical calculation
(see last row in table 9.1). However, the error is underestimated by a factor of ∼ 2 by
WHIZARD.

An analogous study for the process GG→ tt̄Z with the definite parameters
√
s = 1.0 TeV,

mt = 172 GeV and Γt = 0 with SM top quark couplings arrives at similar conclusions
as for the process GG → tt̄γ. As before, the hard-scattering total reaction cross-section
is computed 1000 times using both the semi-analytical approach and WHIZARD. The prob-
ability density is presented for samples with an estimated relative error of ≈ 10−3 and
≈ 10−4 in figure 9.2(a) and (b), respectively. Again, the z-test is employed to test the
hypothesis that the means of the two samples are the same. The values for the means
and standard deviations are given in table 9.2. For the samples with a relative error of
≈ 10−3 the standard score is z = −3.97346, whereas one yields z = −6.37669 for the sam-
ples with higher precision. Consequently, the null hypothesis is rejected with a confidence
level very close to 100%. It is remarked, however, that the means of the four samples are
fully in accordance with each other within their standard deviations. As in case of the
process GG→ tt̄γ, the origin of the discrepancy disclosed by the z-test is supposed to be a
slight convergence problem of the semi-analytical approach. As before, the mean remains
approximately unchanged for the WHIZARD samples when increasing the numerical preci-
sion. On the contrary, the mean moves to larger values for the semi-analytical calculation.
With a standard score of z = −7.12889, the two means of the semi-analytical approach
for the two tested accuracies significantly differ. Moreover, also for the process GG→ tt̄Z
the analysis of the standard deviation of the sample and the mean stated estimated stan-
dard deviation indicates that WHIZARD gives a too optimistic error estimate. The actual
standard deviation is found to be larger by a factor of ∼ 2.

Since it is not feasibly to carry out a rigorous z-test for each point in the parameter space,
a test involving the pull is used instead. The squared pull of a sample x1, x2, · · · , xn of a
normally distributed statistical population, i. e. the quantity (xi−µ)2/s2, where µ denotes
the known expectation value and s the variance, is χ2-distributed with one degree of free-
dom [54]. This still holds in case where the pull between two normally distributed samples
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Figure 9.2: Probability density of the value for the cross-section for the process GG→ tt̄Z (
√
s =

1.0 TeV; mt = 172 GeV). The statistics samples are based on 1000 calculations
each. The distribution of the semi-analytic calculation (orange, solid lines) features
a narrower Gaussian peak than the one of WHIZARD (blue, dashed lines). The curves
indicate the probability density of the normal distribution with mean and standard
deviation of the corresponding sample. The estimated relative error for each value of
the cross-section is ≈ 10−3 in figure (a) and ≈ 10−4 in figure (b).

est. relative error ≈ 10−3 est. relative error ≈ 10−4

semi-analy. calc. WHIZARD semi-analy. calc. WHIZARD

mean µ [fb] 74.4869 74.5029 74.5037 74.5080
stdev. s [fb] 0.07455 0.1034 0.007492 0.01984

mean est. stdev. s̄est. [fb] 0.07324 0.0623 0.007437 0.008511
s/s̄est. 1.02 1.66 1.01 2.33

Table 9.2: Properties of the statistical samples of the values for the cross-section for the process
GG → tt̄Z (

√
s = 1.0 TeV; mt = 172 GeV). The first row gives the mean of the

statistics sample, the second row its standard deviation. The mean of the estimated
standard deviation stated by the Monte Carlo integrator is printed in the third row.
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9 Quantitative comparison with Whizard
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Figure 9.3: Propability density for the squared values of the pull between the sample of the semi-
analytical approach and WHIZARD for the process GG→ tt̄γ (figure (a)) and the process
GG→ tt̄Z (figure (b)). Both plots are based on the samples with an estimated relative
error of ≈ 10−3. The solid curve indicates the propability density function for the
χ2-distribution with one degree of freedom.

xi and yj , defined as (xi − yj)/
√
s2
x + s2

y, is considered. As illustrated in figure 9.3 the
squared pull between the sample of the semi-analytical approach and WHIZARD is precisely
χ2-distributed with one degree of freedom both for the process GG → tt̄γ (figure 9.3(a))
and GG → tt̄Z (figure 9.3(b)). This means that the distances xi − yj are distributed as
expected for one combined sample of a normally distributed statistical population with
mean µ = µsa = µWh and standard deviation

√
s2

sa + s2
Wh. Consequently, the conclusion

may be drawn that the results of both calculation approaches are in accordance with each
other within their errors. Note that, if the standard deviation stated by the WHIZARD pro-
gram was used instead of the actual standard deviation of the WHIZARD sample, the values
of the pull would not be χ2-distributed with one degree of freedom but the distribution
would be somewhat broader. Hence, in the following sections the estimated error of the
integral of the computation of WHIZARD is supplied with a fudge factor to correct for the
underestimated error.

9.2 Analysis of the distribution of the pull for the process
GG→ tt̄γ

To test the accordance of the results of WHIZARD with the semi-analytical computation
on a more quantitative level for the process GG → tt̄γ, the distribution of the pull for
this process is examined in this section. As argued in the preceding section, the values
for the pull for each pair of results for the cross-section is recalculated providing a fudge
factor for the estimated error of the calculation of WHIZARD. Assuming that the error
is underestimated by approximately the same extend in the whole parameter space of
interest, this factor is chosen to be 2 for all pulls. The resulting probability density of the
pull is shown in figure 9.4(a). This plot contains both the obtained values for the pull with
SM couplings with and without consideration of the top quark width and the values for
the pull with anomalous couplings. All in all the statistics sample is based on 174 values.
The probability density is well approximated by the one of the χ2-distribution with one
degree of freedom. This is even more evident when comparing the cumulative distribution
function (see figure 9.4(b)). Consequently, the hypothesis that both calculation approaches
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9.3 Analysis of the distribution of the pull for the process GG→ tt̄Z
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Figure 9.4: Probability density (a) and cumulative probability function (b) for all squared values
of the pull for the process GG → tt̄γ. For comparison the corresponding function for
the χ2-distribution with one degree of freedom is indicated (red line).
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Figure 9.5: Probability density (a) and cumulative probability function (b) for all squared values
of the pull for the process GG → tt̄γ. For comparison the corresponding function for
the χ2-distribution with one degree of freedom is indicated (red line).

yield compatible results for the cross-section for the process GG→ tt̄γ can not be rejected
on a significant level.

9.3 Analysis of the distribution of the pull for the process
GG→ tt̄Z

Analogously to the previous section, the distribution of the values for the pull for the pro-
cess GG → tt̄Z is analyzed for a more quantitative comparison of the results of WHIZARD
with the semi-analytical approach. All values for the pull are recalculated providing a
fudge factor of 2 for the estimated error of the computation of WHIZARD. The statistics
sample involves all values for the pull discussed in chapter 8 for the SM and the vertex with
anomalous couplings. Including those values shown in appendix C the sample contains all
in all 260 values. Looking at the resulting probability density (figure 9.5(a)) and the cu-
mulative distribution function (see figure 9.5(b)) the accordance with the χ2-distribution
with one degree of freedom is apparent. Hence, also for the process GG→ tt̄Z a disagree-
ment between the results of WHIZARD and those of the semi-analytical approach cannot be
established.
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10 Conclusion

In this thesis the γtt and Ztt vertices including anomalous couplings generated by dimension-
six gauge invariant operators were analyzed. For this purpose, the two processes GG→ tt̄γ
and GG → tt̄Z were considered, which required the use of a three-particle phase space
parameterization for massive particles. The problematic structure of the propagators in-
volved in the Feynman amplitudes for these processes entailed the use of multi-channel
Monte Carlo integration techniques to overcome the slow convergence for the integral of
the differential cross-section.

One of the main issues of this thesis dealt with the question whether the unknown anoma-
lous top quark photon and top quark Z-boson coupling parameters could be extracted
from experimental measurements at the LHC. Apart from the coupling fA

V , which just
implies a global rescaling of the total reaction cross-section, the general γtt vertex comes
with two anomalous couplings dA

V and dA
A. As their effect on the total reaction cross-

section depends on the partonic center-of-mass energy, a strategy to distinguish these two
couplings in a fictitious experimental measurement on parton level could be formulated.
However, the relative deviation of the cross-section including anomalous couplings to the
SM cross-section was too small to be still extractable after convoluting the hard scat-
tering cross-section with the PDFs. Hence, the presented approach does not allow for
a determination of the anomalous γtt couplings by means of the analysis of total reac-
tion cross-section for the process GG → tt̄γ at the LHC at a center-of-mass energy of√
s = 7 TeV. Hence, future studies of promising differential cross-sections are required to

search for appropriate observables.
For the general Ztt vertex there are four anomalous coupling parameters to be considered.
While two of them (couplings XZ

L and XZ
R) just induce a global rescaling of the total re-

action cross-section independent of the center-of-mass energy
√
s of the process and the

angular distribution of the final state particles, a significant dependence on
√
s and on

the cosine of the angle between the three-momentum of the top quark and the one of the
Z-boson (cos θ′) was observed for the couplings dZ

V and dZ
A. This allowed to formulate

two independent strategies to determine these two couplings through a fictitious experi-
ment on parton level. The first approach involves the measurement of the cross-section
at different center-of-mass energies, whereas the second one employs the dependence of
the cross-section on cos θ′. Since the impact of the anomalous couplings is considerably
larger for the Ztt vertex than for the γtt vertex, after convoluting the hard scattering
cross-section with the PDFs, analogous strategies still seemed promising. Yet, a precise
determination of the anomalous Ztt-couplings did not seem realistic at the current center-
of-mass energy at the LHC due to the rather large expected experimental error for the
measurement of tt̄ cross-sections.

Moreover, another main goal of this work was the comparison of the results of the semi-
analytical calculation with the ones of WHIZARD [19], the generic Monte Carlo integration
and event generation package for multi-particle processes. Values of both calculation
approaches for the total reaction hard scattering cross-section as a function of the center-
of-mass energy, cos θ′ and the top quark mass were compared with each other for the
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processes GG → tt̄γ and GG → tt̄Z for SM top quark couplings both with and without
consideration of the top quark width and, additionally, for anomalous couplings neglect-
ing the top quark width. For each pair of values the pull was computed, i. e. the quantity
(σsa−σWh)/(

√
s2

sa + s2
Wh), where σsa and σWh are the estimated values for the cross-section

and ssa and sWh the estimated error for the semi-analytical calculation and WHIZARD, re-
spectively. Since all values for the pull were found to be in the order of one having estimated
relative errors for the cross-section of approximately 10−4, a good qualitative accordance
of both calculation methods was established. Additionally, for a quantitative compari-
son of the results, the cross-section was computed 1000 times each for the same definite
parameters using the semi-analytical approach and WHIZARD, which was accomplished for
two different computational accuracies. By virtue of the large statistics of the samples,
the analysis came to the following conclusions: Firstly, a slight convergence problem of the
semi-analytical calculation was disclosed. As a consequence, a rigorous z-test suggested a
significant deviation of the mean of the semi-analytical approach from the one of WHIZARD,
since, instead of the standard deviation, the standard error is involved by the z-test, which
becomes small for a large sample size. Secondly, the error due to numerical integration is
underestimated by a factor of around 2 by WHIZARD. The latter was taken into account by
a corresponding fudge factor for the analysis of the distribution of all obtained values for
the pull. This distribution turned out to be fully in accordance with the χ2-distribution
with one degree of freedom, which would be expected in case of consistent results of both
calculation approaches.

Since the reliability of the results of WHIZARD for cross-sections of processes with a three-
particle final state including anomalous top quark couplings has significantly been estab-
lished by comparison with a semi-analytical approach in this thesis, the WHIZARD program
package is predestined for future top quark studies. Thus, analyzes of events generated
by WHIZARD can facilitate the investigation of top quark anomalous couplings. This is of
particular interest for the study of the general γtt vertex, where the analysis of differential
cross-sections is favorable. In conclusion, the WHIZARD program package is a recommend-
able tool for the fully automated calculation and generation of multi-particle events, such
as for processes involving top quark anomalous couplings.
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A Calculation of the color factors

In this section the calculation of the color factors of all involved combinations of ampli-
tudes of the process GG → tt̄ (see figure 7.1) is presented. The corresponding factor
for the matrix element |MA|2 was already given in section 7.1. The ghost graphs D
and E having the same color structure, their color factor is identical to the one of graph
A.

• Color factor for |MB|2 and |MC |2

∑
a,b,e,f

(ta)ec(tb)cf (tb)fc̃(ta)c̃e =
∑
a,b

Tr[tatbtbta] =
(

4
3

)2

Tr[1] =
16
3

(A.1)

• Color factor for MAM†B∑
a,b,e,f

(tc)effabc(tb)fc̃(ta)c̃e =
∑
a,b

fabc Tr[tctbta] =

=
∑
a,b

fabc
(

Tr[tctatb] + Tr[tc[tb, ta]]
)

=

=
∑
a,b

fabc Tr[tctatb] +
∑
a,b

fabcf bad Tr[tctd] =

=
∑
a,b

f bac Tr[tctbta]− iC2(G) Tr[tctc] =

= −
∑
a,b

fabc Tr[tctbta]− iC2(G)C2(r = 3) Tr[1]

⇒
∑
a,b,e,f

(tc)effabc(tb)fc̃(ta)c̃e = −1
2

iC2(G)C2(r = 3) Tr[1] = −6i

(A.2)

• Color factor for MAM†C∑
a,b,e,f

(tc)effabc(ta)fc̃(tb)c̃e = −
∑
a,b,e,f

(tc)effabc(tb)fc̃(ta)c̃e = 6i (A.3)

• Color factor for MBM†C∑
a,b,e,f

(ta)ec(tb)cf (ta)fc̃(tb)c̃e = Tr[tatbtatb] = Tr[tatbtbta]︸ ︷︷ ︸
= 16

3

+i fabc Tr[tatbtc]︸ ︷︷ ︸
=6i

= −2
3

(A.4)
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B Feynman amplitudes

B.1 Feynman amplitudes for the processes GG→ tt̄γ and
GG→ tt̄Z

Process GG→ tt̄γ
The corresponding Feynman amplitudes for the Feynman graphs shown in figure 7.3 of
section 7.2 for the process GG→ tt̄γ read as follows:

MA1 = ur(pt)
(
−i

2
3
e

)
Γλi

pt + k +mt

2pt · k M̃Avs(pt)ε
∗
λ(k) (B.1a)

MA2 = ur(pt)M̃Ai
−pt − k +mt

2pt · k
(
−i

2
3
e

)
Γλvs(pt)ε

∗
λ(k) (B.1b)

MB1 = ur(pt)
(
−i

2
3
e

)
Γλi

pt + k +mt

2pt · k M̃B(q′t)vs(pt)ε
∗
λ(k) (B.1c)

MB2 = ur(pt)M̃B(qt)i
−pt − k +mt

2pt · k
(
−i

2
3
e

)
Γλvs(pt)ε

∗
λ(k) (B.1d)

MB3 = ur(pt)igsγµ(ta)eci
/qt +mt

q2
t −m2

t

(
−i

2
3
e

)
Γλi

/q′t +mt

q′t
2 −m2

t

igsγν(tb)c̃fvs(pt)

εµ,x(p1)εν,y(p2)ε∗λ(k) (B.1e)

MC1 = ur(pt)
(
−i

2
3
e

)
Γλi

pt + k +mt

2pt · k M̃C(q′u)vs(pt)ε
∗
λ(k) (B.1f)

MC2 = ur(pt)M̃C(qu)i
−pt − k +mt

2pt · k
(
−i

2
3
e

)
Γλvs(pt)ε

∗
λ(k) (B.1g)

MC3 = ur(pt)igsγν(ta)eci
/qu +mt

q2
u −m2

t

(
−i

2
3
e

)
Γλi

/q′u +mt

q′u
2 −m2

t

igsγµ(tb)c̃fvs(pt)

εµ,x(p1)εν,y(p2)ε∗λ(k) (B.1h)

MD1/E1 = ur(pt)
(
−i

2
3
e

)
Γλi

pt + k +mt

2pt · k M̃D/Evs(pt)ε
∗
λ(k) (B.1i)

MD2/E2 = ur(pt)M̃D/E i
−pt − k +mt

2pt · k
(
−i

2
3
e

)
Γλvs(pt)ε

∗
λ(k) (B.1j)
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B Feynman amplitudes

The abbreviations involved in the formulas above take the form:

M̃A = igsγκ(tc̃)efgsfabc [gµν(p1 − p2)ρ + gνρ(p2 + qs)µ + gρµ(−qs − p1)ν ]
iDF,ρκ(qs)δc,c̃εµ,x(p1)εν,y(p2) (B.2a)

M̃B(q) = igsγµ(ta)eciSF (q)δc,c̃igsγν(tb)c̃f εµ,x(p1)εν,y(p2) (B.2b)

M̃C(q) = igsγν(tb)eciSF (qu)δc,c̃igγµ(ta)c̃f εµ,x(p1)εν,y(p2) (B.2c)

M̃D = igsγν(tc)ef
(
−gsfabcpµ1

)(
−i
gµν
q2
s

δcc̃

)
(B.2d)

M̃E = igsγν(tc)ef
(
−gsfabcpµ2

)(
−i
gµν
q2
s

δcc̃

)
(B.2e)

Process GG→ tt̄Z
The Feynman amplitudes for the process GG→ tt̄Z are similar to the ones for the process
GG → tt̄A except of two changes: The vertex prefactor (−i2/3e) is replaced in favor of
ig/(2 cos θW) and the term m2

Z is added in the denominator of the propagators (pt + k +
mt)/(2pt · k) and (−pt − k +mt)/(2pt · k).
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C Further figures to chapter 8

C.1 Further figures to section 8.2
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Figure C.1: Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section for the process GG → tt̄Z including a top quark width of Γt =
1.523 GeV. The physical polarization sum is used. Figure (a) shows the pull as a
function of the center-of-mass energy

√
s (mt = 172 GeV), figure (b) as a function of

the top quark mass mt (
√
s = 1.0 TeV) . The straight dashed line indicates the mean

in each plot.

C.2 Further figures to section 8.3

-1.0 -0.5 0.5 1.0
cosΘ'

-20

-10

10

20

∆Σ@%D(a)

XZ
L = 1

XZ
R = 1

-1.0 -0.5 0.0 0.5 1.0
cosΘ'

2

4

6

8

10
∆Σ@%D

(b)

dZV = 1

dZA = 1

Figure C.2: Normalized deviation δσ = (σanom. − σSM)/σSM of the cross-section with anomalous
couplings σanom. from the SM cross-section σSM as a function of cos θ′ (

√
s = 1.0 TeV;

mt = 172 GeV). In figure (a) the results are shown for XZ
L = 1 and XZ

R = 1, in figure
(b) for dZ

V = 1 and dZ
A = 1. The remaining parameters are set to their SM value.
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C Further figures to chapter 8
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Figure C.3: Pull between the results of the semi-analytical calculation and the ones of WHIZARD
for the cross-section as a function of cos θ′ for the process GG→ tt̄Z (

√
s = 1.0 TeV).

Figure (a) shows the pull for XZ
L = 1, figure (b) for XZ

R = 1, figure (c) for dZ
V = 1

and figure (d) for dZ
A = 1 the remaining anomalous couplings vanishing. The straight

dashed line indicates the mean in each plot.
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C.2 Further figures to section 8.3
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Figure C.4: Normalized deviation δσ := (σanom. − σSM)/σSM of the differential cross-section with
anomalous couplings σanom. from the SM differential cross-section σSM. Figures (a)
and (b) show the dependence on the energy of the Z-boson Ek, figures (c) and (d) on
the squared invariant mass (pt +k)2 of the top quark and the Z-boson and figures (e)
and (f) on value of the scalar triple product (pt × p) · k. For the figures on the left a
center-of-mass energy of

√
s = 0.5 TeV is set, for the ones on the right a center-of-mass

energy of
√
s = 1.0 TeV.
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C Further figures to chapter 8

C.3 Further figures to section 8.4
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Figure C.5: Dependence of the normalized deviation δσ = (σanom. − σSM)/σSM on the anomalous
couplings dZ

V (on the left) and dZ
A (on the right) (

√
ŝ = 7.0 TeV; mt = 172 GeV).

Figures (a) and (b) show δσ for the events with an invariant mass of the two top
quarks and the Z-boson below 600 GeV, figures (c) and (d) for events with an invariant
mass above 700 GeV. The points indicate the values obtained from the analysis of
the Monte Carlo event samples, whereas the lines are fitted functions of the form
a (dZ

V/A)2 + b dZ
V/A + c. The values of the fit parameters are: (a) (a = 2.78719; b

= -0.0370364; c = -0.00448161), (b) (a = 5.04276; b = 1.20547; c = 0.0401432), (c)
(a = 6.39835; b = -0.178967; c = -0.024608), (d) (a = 7.19022; b = -0.164657; c =
-0.00173849)
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C.3 Further figures to section 8.4
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Figure C.6: Dependence of the normalized deviation δσ = (σanom. − σSM)/σSM on the anomalous
couplings dZ

V (on the left) and dZ
A (on the right) (

√
ŝ = 7.0 TeV; mt = 172 GeV).

Figures (a) and (b) show δσ for the events with cos θ′ < 0, figures (c) and (d) for
events with cos θ′ > 0. The points indicate the values obtained from the analysis
of the Monte Carlo event samples, whereas the lines are fitted functions of the form
a dZ

V/A

2 + b dZ
V/A + c. The values of the fit parameters are: (a) (a = 6.02063; b =

-0.0633946; c = -0.0096642), (b) (a = 7.13633; b = 0.0606893; c = 0.00827197); (c)
(a = 4.03352; b = -0.167153; c = -0.0217955), (d) (a = 5.65709; b = 0.27627; c =
0.00206206)
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